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Abstract Querying large-scale video datasets differs from querying short videos due to the inherent challenges
in volume, velocity, and variety. In the last decade, this area has emerged thanks to the effectiveness of deep
learning methods, new graphics processing units, new video databases, advances in distributed computing, among
others. The main goal of querying video streams is to find the best balance between available hardware, software
resources, and query latency, taking into account quality goals, constraints, and video configurations. Due to these
challenges, many development methods, frameworks, and evaluation metrics have been proposed. As a result, this
systematic literature review addresses a gap in the current body of knowledge. It covers ten years, from 2014 to
2024, and 4,248 papers, of which 99 were identified as relevant and used to answer the research questions on (i)
processing methods, hardware architecture, and software, (ii) query languages, (iii) evaluation metrics, (iv) and
available datasets. In addition, this review shows how this niche is promising and concerned with the rational use
of available resources. Among the results, the following are highlighted: cheap detection models are very popular,
smart IoT devices are very useful, distributed computing for video query applications is complex, system latency
is essential, and there is no standard video query language. Current trends include the development of a standard
video query language, in-memory computing, processing where data is produced, low-latency processing, and active
learning for labeling objects. This original work shows a domain perspective, identifies problems and opportunities,
and provides directions for future studies.
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1 Introduction

Querying videos has long been a goal within the computer
vision community [Ogle and Stonebraker, 1995; Li et al.,
1997]. This aspiration has been largely influenced by the
database community, which has relied on the versatile tools
provided by Structured Query Language (SQL). However,
traditional query languages like SQL are designed for struc-
tured data, whereas video content is inherently unstructured
and frame-based. As a result, processing unstructured data
presents a complex challenge, as it requires sophisticated
hardware and software algorithms to analyze videos and ex-
tract high-level information from raw data, such as relevant
details about people, objects, events, and actions [Kang et al.,
2017, 2019a; Kossoski, 2024].
Recently, the task of querying videos in large-scale

datasets or streaming environments has received growing at-
tention, driven by its diverse range of applications. Specif-
ically, Complex Event Detection (CED) involves several
challenges, including object detection, tracking, identifying
spatiotemporal relationships, and event matching. These
tasks are further complicated by factors such as environmen-
tal changes, obstructions, and tracking errors [Honarparvar
et al., 2024].
For instance, in smart cities, traffic must be continuously

monitored [Lu et al., 2015; Stonebraker et al., 2020]. In this
context, traffic authorities may need systems that support
direct queries to detect congestion, identify vehicles by at-

tributes (e.g., license plate, color), or track coordinatedmove-
ments such as criminal convoys [Stonebraker et al., 2020;
Hsieh et al., 2018; Hsieh, 2019; Kang et al., 2019a].
Due to the high volume, speed and variety of data pro-

duced by large scale video querying/retrieval systems, these
can be considered big data applications [Zhang et al., 2017;
Lu et al., 2016; Alam et al., 2020a]. Unlike traditional
data, the term Big Data encompasses large and heteroge-
neous datasets that demand advanced algorithms and high-
performance infrastructure.
Thus, traditional processing and analysis tools can no

longer be efficient in the case of big data applications [Ous-
sous et al., 2018]. For instance, most data scientists and ex-
perts define Big Data by the following threemain characteris-
tics (called 3Vs) [Furht and Villanustre, 2016; Oussous et al.,
2018]:

• Volume: It refers to large volumes of digital data gen-
erated continuously from various devices and applica-
tions (e.g. IP cameras, smartphones, social networks,
sensors, records, etc.)

• Velocity: refers to the rapid generation of data that ne-
cessitates swift processing in order to derivemeaningful
information and relevant insights.

• Variety: refers to the diverse nature of data generated
from multiple distributed sources and in various for-
mats, such as videos, documents, comments, and logs.
Large datasets typically encompass both structured and
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unstructured data, which may be public or private, lo-
cal or remote, shared or confidential, and complete or
incomplete, among other variations.

Fortunately, in the last ten years at least, there has been
a lot of progress in the development of software and hard-
ware that is making it possible to work with large masses
of video. Particularly, computer vision has advanced signif-
icantly due to deep learning [Goodfellow et al., 2016; Rose-
broke, 2017; Chollet, 2021], detection models [Farhadi and
Redmon, 2018; Bochkovskiy et al., 2020], larger datasets
[Kang et al., 2017; Wen et al., 2020; Jodoin et al., 2014;
MOT2016, 2022; Xipg, 2021; Ristani et al., 2016; Kos-
soski, 2024], graphical processing libraries1, video descrip-
tion [Aafaq et al., 2019], development frameworks [Pouyan-
far et al., 2018a; Dong et al., 2021], and improved hardware
acceleration (e.g., GPUs).
With regard to advances in hardware, it is worth pointing

out the distributed processing of large volumes of data and,
in particular, the use of Graphical Processing Unit (GPU) to
speed up model training and object detection in big data con-
text [Pouyanfar et al., 2018b; Alam et al., 2020b].
However, these advances are insufficient to address key

issues in video querying, notably computational cost and la-
tency [Kang et al., 2017; Yi et al., 2017; Hsieh et al., 2018;
Kang et al., 2019a; Yadav et al., 2020; Hwang et al., 2022].
In these literature, computational cost refers to the process-

ing time of a video querying application and latency refers to
the time required between starting a query and retrieving it
when the query matches with an event in video. Both these
concepts are directly related to the tools and processing steps
used in the processing pipeline of a video querying appli-
cation. It is particularly relevant because video querying at
scale is muchmore challenging than a standalone application
on a single node. The complexity involves several hardware,
software, network connections, databases, and high-level ap-
plications.
Many researchers have studied different aspects of this

area and proposed approaches to object detection, data in-
gestion, content-based video retrieval, video databases, pro-
cessing pipelines, and query languages. To the best of our
knowledge, there is no systematic review that consolidates
state-of-the-art approaches to video query systems.
Precisely, this paper aims to fill this gap and present a

novel perspective on the domain, including a broad overview
of the relevant methods, frameworks, models, query lan-
guages, video databases, and evaluation metrics. Therefore,
with the aim of providing valuable content to the scientific
community, this paper conducted a Systematic Literature Re-
view (SLR) of 99 studies published between 2014 and 2024
and presents the following contributions:

• It highlights relevant approaches for querying videos
through both software and hardware solutions, with il-
lustrations that can help readers gain a better understand-
ing;

• A comparison of existing video query languages, includ-
ing the types of supported operators;

1https://docs.opencv.org/4.x/index.html

• A list of common or available video datasets for bench-
mark;

• A summary of issues and trends in the query video and
direction for future research.

The remainder of this paper is organized as follows: Sec-
tion 2 provides background information on computer vision
and video codecs. Section 3 presents the related work. Sec-
tion 4 presents the method and organization of the review
following a SLR. Sections 5, 6, 7, and 8 treat each research
question formulated in the SLR with descriptions and the an-
swers found in relevant papers. Finally, Section 9 presents
the conclusion, trends, and challenges.

2 Background
This section provides a brief overview of computer vision
and video codecs, as these topics are commonly addressed
in the reviewed literature.

2.1 Computer Vision
Computer Vision (CV) is a sub-field of computer engineer-
ing focused on enabling computers to interpret and under-
stand images and videos. In academic literature, CV gener-
ally refers to the research and development of algorithms and
models designed to automate tasks that require visual percep-
tion. These tasks encompass image recognition, object detec-
tion, facial recognition, image generation, and more. Com-
puter vision techniques are widely applied in areas such as
image and video analysis, autonomous vehicles, medical im-
age analysis, and augmented reality [Rosebrock, 2016].
For a computer, images are represented simply as large

numeric matrices. In contrast, humans interpret images in
terms of distinct components and meaningful concepts. This
discrepancy is known as the semantic gap, which refers to the
difference between human perception of an image’s contents
and the way those contents are represented for computer un-
derstanding [da Silveira, 2023; Rosebroke, 2017]. While im-
age algorithms process low-level data, such as pixels and col-
ors, humans comprehend higher-level data, such as objects
and events. The challenge lies in bridging the gap between
basic visual elements and the meaningful concepts that hu-
mans perceive [Alam et al., 2020b].
Significant advancements have been made in computer vi-

sion (CV), as well as in other fields such as natural language
processing and speech recognition, largely due to major im-
provements in Artificial Intelligence (AI) research. These
improvements are driven by increased computing power and
the availability of large datasets for training detection mod-
els. Two important and related areas of AI are Deep Learning
(DL) and Machine Learning (ML).
While DL is a subset of Neural Networks (NN), which in

turn is a subfield of ML, DL distinguishes itself from ML
by its ability to automatically extract features from unstruc-
tured data. This capability reduces the need for human inter-
vention, which is a common requirement in traditional ML
methods. Neural networks, fundamental to DL, consist of
layers of interconnected nodes, each with weights and thresh-
olds. The term “deep” refers to the multiple layers within
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these networks, which allow for more complex processing
and representation of data [Rosebroke, 2017; Chollet, 2021].
In particular, Deep Learning architectures typically in-

volve neural networks with multiple stacked layers, each
containing one or more hidden layers [Nielsen, 2015; Chol-
let, 2021; Goodfellow et al., 2016]. This approach enables
the network to extract features at increasingly finer granu-
larities. However, it also results in higher processing costs.
These layered or hierarchical representations form a mathe-
matical framework for learning from data, where each suc-
cessive layer captures progressively more meaningful repre-
sentations of the data. The term deep in deep learning reflects
this concept of hierarchical, layer-by-layer abstraction. Deep
Learning has led to significant breakthroughs in several tradi-
tionally challenging areas of computing, such as image classi-
fication at near-human levels, speech recognition, handwrit-
ing transcription, autonomous driving, advanced machine
translation, text-to-speech synthesis, and web search opti-
mization, among others.
Convolutional Neural Networks (CNNs), a class of deep

learning models, have become the state-of-the-art approach
for a wide range of computer vision tasks, including ob-
ject detection and classification [Krizhevsky et al., 2012;
Bochkovskiy et al., 2020; Sandler et al., 2018; He et al.,
2017, 2016]. In CNNs, hidden layers perform convo-
lution operations—such as multiplications or other scalar
products—typically followed by a Rectified Linear Unit
(ReLU) activation function [Nair and Hinton, 2010]. These
convolutional layers are often complemented by additional
components, including pooling layers, fully connected lay-
ers, and normalization layers, to enhance feature extraction
and learning capacity [Goodfellow et al., 2016].

2.2 Video capture CODECs
ACODEC is a software, hardware, or combined solution that
can digitize, compress, and decompress audio or video sig-
nals. It converts raw data into digital form, allowing it to
be transmitted, received, stored, and compressed to reduce
storage space, increase transmission bit rate, or both [Punchi-
hewa and Bailey, 2020; Sun et al., 2024]. According to the
author, some of the most common video encoding standards
include:

• H.264/AVC (Advanced Video Coding): One of the
most widely used video compression standards, H.264
offers high-quality compression and is supported by a
broad range of devices and platforms.

• H.265/HEVC (High-Efficiency Video Coding): A
newer standard that provides greater compression ef-
ficiency compared to H.264/AVC. It offers the same
video quality at smaller file sizes, maintaining the same
bit rate.

• VP9: An open-source video compression standard
developed by Google, VP9 offers compression effi-
ciency similar to H.265/HEVC and is primarily used for
streaming applications like YouTube.

• AV1: Another open-source video compression standard
developed by the Alliance for Open Media, AV1 pro-
vides even better compression efficiency than VP9 and

H.265/HEVC. Due to its advantages, AV1 is expected
to see widespread adoption for streaming video.

• MPEG-2: An older video compression standard still
used in some applications, such as DVDs and broad-
cast television. While it provides good quality, MPEG-
2 is less efficient than more recent standards like
H.264/AVC and H.265/HEVC.

3 Related work
The present Systematic Literature Review (SLR) differs
from other areas of research, such as video description
[Aafaq et al., 2019], content-based video retrieval [Spolaôr
et al., 2020; Latif et al., 2019], action recognition [Tran et al.,
2018; Inacio et al., 2021; Gutoski et al., 2021], and cross-
modal retrieval [Zhen et al., 2019]. These studies, however,
do not specifically address the video events query process-
ing, reduction of computing costs and latency in large video
datasets. Nonetheless, there are related aspects in the ex-
isting literature, and in the following, we contrast the simi-
larities and differences between this body of work and the
present study.
The authors in Olatunji and Cheng [2019] conducted a re-

view of video analytics methods and techniques applied to
video surveillance, providing an in-depth discussion of the
theoretical foundations behind the current state-of-the-art ap-
proaches. In contrast, our analysis examines video analytics
from a different perspective, encompassing common datasets
used for training and testing machine learning models, video
query languages, and various hardware architectures.
In Zhang et al. [2019], the authors reviewed the appli-

cations, algorithms, and platforms for edge video analytics,
specifically within the context of public safety, with a focus
on both domain-specific and general-purpose platforms. In
comparison, our review offers a broader overview of diverse
hardware computing architectures for video processing, in-
cluding the edge-first computing architecture.
The authors in Usman et al. [2019] analyzed various ma-

chine learning platforms that can process and manage mul-
timedia data generated by different smart city applications,
exploring the concept of smart cities within the context of
Big Data. In contrast, while our review also addresses appli-
cations in smart cities and Big Data environments, it specifi-
cally concentrates on video query approaches and associated
tasks.
The authors in Xu et al. [2023] examine the fundamentals

of edge computing and provide an overview of video ana-
lytics. In comparison, our research offers a comprehensive
overview of video analytics, with a focus on three distinct
hardware architectures: server-driven, edge computing, and
fully distributed systems.

4 Method and organization of the re-
view

This section presents a systematic literature review (SLR)
covering the period from 2014 to 2024, adhering to the guide-
lines established by Pagani et al. [2015] for the portfolio se-
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lection methodology known as ”Methodi Ordinatio.” This
methodology employs an equation referred to as the Index
Ordinatio (or InOrdinatio) to classify papers based on their
scientific relevance, considering factors such as the journal’s
impact factor, citation count, and year of publication. As an
example, the Methodi Ordinatio framework divides the SLR
process into nine phases, presented in Figure 1. The first
five phases focus on the selection of a bibliographic portfo-
lio, while the final four phases are dedicated to classifying
publications, acquiring papers, and performing a systematic
analysis.
In phase 1, we defined the research questions based on

the objectives of our SLR: to summarize and clarify the pri-
mary approaches, video querying languages, evaluation met-
rics, datasets, and research gaps within the field.
In phases 2, 3, and 4, we developed a search strategy to

identify relevant papers addressing our research questions.
This involved defining a search query and selecting target
databases. As a result, a set of candidate studies was re-
trieved from the query search in each database.
Subsequently, in phases 5, 6, and 7, these candidate studies

were filtered according to predefined inclusion and exclusion
criteria. During this process, the InOrdinatio equation was
applied to rank the papers based on their scientific relevance.
Finally, phases 8 and 9 focused on acquiring the full pa-

pers, reading them, and performing a systematic analysis of
their contents. Each of these phases is described in further
detail below.

Phase 1: Establishing the purpose of the research

The aim of this systematic literature review is to identify
and examine existing approaches for querying large video
databases. To guide this review, four research questions (RQ)
have been defined:

• RQ1: Whatmodels, methods, and frameworks are avail-
able for video querying?

• RQ2: What video query languages exist, and what op-
erations do they support?

• RQ3: How is the quality of existing approaches as-
sessed, both quantitatively and qualitatively?

• RQ4: What datasets are available for training and eval-
uating models and frameworks?

Phase 2 – Preliminary exploratory search of keywords
in databases

To identify key repositories related to video querying, ma-
chine learning, big data, and computer vision, a search was
conducted on Google Scholar2 using the initial search term
”querying large video datasets.” The following databases
were selected for the search: ACM Digital Library3, IEEE
Xplore4, SpringerLink5, and ScienceDirect6. Arxiv7 and
similar preprint repositories were deliberately excluded from
this SLR, as they do not undergo peer review.

2https://scholar.google.com/
3https://dl.acm.org/
4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://link.springer.com/
6https://www.sciencedirect.com/
7https://arxiv.org/

Phase 3 – Definition and combination of keywords and
databases

The following keywords were defined for searching the
selected databases: “querying video stream”, “query video”,
“search events in video”, “query video database”, and “query
video language”. The search was restricted to the period
from 01/01/2014 to 31/12/2024, with the aim of achieving a
comprehensive coverage of relevant papers spanning nearly
a decade. We focused on the past decade, as the rise of deep
learning since 2012 has significantly advanced video process-
ing [Krizhevsky et al., 2012].

Phase 4 – Search in the databases

The broad search returned a total of 4,248 results, dis-
tributed as follows: IEEE Xplore (313), ACM Digital Li-
brary (362), SpringerLink (3,320), and ScienceDirect (253).

Phase 5 – Filtering procedures

All the papers retrieved in the broad search were carefully
checked and filtered. The Mendeley reference manager tool
was used to load and remove duplicates. Subsequently, each
remaining paper was quickly assessed for relevance by re-
viewing its title, abstract, and keywords. Only those papers
directly related to the domain were retained to form the initial
portfolio. As a result of this filtering process, many papers
were excluded, with the aim of retaining only the most perti-
nent studies. Ultimately, a total of 99 papers remained.

Phase 6 – Collecting information about paper’s impact

In addition to the year of publication, each selected paper
was also evaluated on the basis of its impact factor and the
number of citations. These widely recognized metrics are in-
dicative of the scientific relevance of a paper published in
scholarly journals. Pagani et al. [2015] proposed the InOrdi-
natio equation (1) to rank the papers.
In this equation, IF represents the impact factor or another

impact index of journals, which is divided by 1000 to nor-
malize its value, α is a weighting factor ranging from 1 to
10, assigned by the researcher; ResearchY ear refers to the
year the research was conducted; PublishY ear is the year
the paper was published; and Ci denotes the number of cita-
tions the paper has received. As suggested by Pagani et al.
[2015], the value of α should be set based on the user’s expe-
rience with the topic. To maintain objectivity and avoid bias,
we set α = 5 for all the papers under review.

InOrdinatio = (IF/1000) + α∗

[10 − (ResearchY ear − PublicationY ear)] +
∑

Ci(1)

Among the results obtained in Phase 5, many papers were
published in conferences or as book chapters and, therefore,
did not have an Impact Factor. According to Pagani et al.
[2015], when the Impact Factor is unavailable, the researcher
may choose an alternative metric. In this case, we decided
to include these publications due to their academic relevance
and high citation count. Consequently, we used the H-index
Hirsch and Buela-Casal [2014] of the first author, as it is read-
ily available via Google Scholar, in place of the Impact Fac-
tor.
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Figure 1. Phases of the review

Phase 7 – Ranking the papers using the InOrdinatio

Table 1 presents the ranking of the papers according to the
InOrdinatio approach.

Phase 8 – Retrieving the full papers

According to Pagani et al. [2015], the researcher deter-
mines the number of papers to be read based on their InOr-
dinatio rank. In this study, all remaining papers were thor-
oughly read and included in the composition of this review.

Phase 9 – Final reading and systematic analysis of the
papers

In the following four sections, the research questions for-
mulated in phase 1 are addressed based on the analysis of the
papers surveyed.

5 RQ1: Which models, methods,
frameworks, and systems exist for
video querying?

This section presents the main architectures and software
components used in video query systems.
Subsection 5.1 discusses themain approaches for handling

large-scale video querying applications focusing on hard-
ware configuration. Subsection 5.2 describes the implemen-
tation of a complete video query pipeline, encompassing the
stages of ingestion, storage, retrieval, and consumption.

5.1 Overview of the main approaches for han-
dling large-scale video querying applica-
tions

The systematic literature review identified hardware config-
uration as a critical driver behind the development of the re-

viewed methods and frameworks. The need to query large-
scale video datasets demands high-performance computing
resources, often relying on distributed architectures. Conse-
quently, virtually all approaches take hardware availability
into account as a fundamental aspect of their design.
Hardware configurations refer to the physical infrastruc-

ture that interconnects video producers, consumers, and the
entire processing pipeline. In general, there are three com-
puting architectures: a) server-driven, computing everything
on a powerful server; b) edge-first, computing everything
where the data are produced; and c) fully distributed, dis-
tributing computing across hierarchical nodes. Each of these
approaches has advantages and disadvantages. It is worth
noting that many solutions employ hybrid architectures to
some degree. Nevertheless, for the sake of clarity and ana-
lytical coherence, the hardware architectures are categorized
based on the primary problem addressed by the respective au-
thors. Hence, certain methods do not explicitly specify the
architecture they employ; consequently, this section focuses
on articles where the architecture is clearly defined. To fur-
ther enhance readability, the name of each solution method
or framework (when available) is presented in bold through-
out the text.

5.1.1 Server-driven

The most common hardware architecture is “server-driven”,
also known as client-cloud configuration and cloud comput-
ing. These architectures benefit from high computational re-
sources and facilitate the deployment of large and complex
models. However, they introduce high network usage, in-
crease transmission latency, and may become bottlenecks un-
der heavy workloads. Due to its simplicity, this architecture
is the most widely used over time for many different applica-
tions and query processing. Figure 2 shows an overview of
the server-driven hardware architecture.
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Table 1. Papers in chronological order and the computed InOrdinatio ranking
Paper Type H-index Year of publication Number of citations InOrdinatio
Shen et al. [2014] R 20 2014 20 35
Jodoin et al. [2014] R 5 2014 148 163
Lu et al. [2015] A 0 2015 29 49
Chen et al. [2015] C 8 2015 586 606
Lu et al. [2016] S 14 2016 118 143
Han et al. [2016] C 20 2016 476 501
Patino et al. [2016] D 15 2016 122 147
Ristani et al. [2016] D 5 2016 3298 3323
de Boer et al. [2017] C 12 2017 3 33
Kang et al. [2017] C 26 2017 468 498
Yi et al. [2017] S 16 2017 379 409
Zhang et al. [2017] S 9 2017 533 563
Shen et al. [2017] C 18 2017 87 117
Hung et al. [2018] S 9 2018 333 368
Pakha et al. [2018] R 0 2018 57 92
Poms et al. [2018a] A 7 2018 92 127
Jiang et al. [2018] C 35 2018 541 576
Hsieh et al. [2018] S 22 2018 344 379
Ran et al. [2018] R 8 2018 499 534
Wang et al. [2018] C 33 2018 163 198
Grulich and Nawab [2018] C 16 2018 68 103
Krishnan et al. [2018] C 32 2018 28 53
Haynes et al. [2018] C 12 2018 44 79
Lu et al. [2018] C 14 2018 128 163
Liu et al. [2018] C 26 2018 238 273
Kang et al. [2019a] C 26 2019 161 201
Canel et al. [2019] C 7 2019 188 228
Jain et al. [2019] W 5 2019 98 138
Anderson et al. [2019] R 12 2019 96 136
Xu et al. [2019] C 5 2019 90 130
Xarchakos and Koudas [2019] C 4 2019 35 75
Yadav [2021] T 11 2019 3 43
Yadav and Curry [2019b] C 11 2019 43 83
Zhang and Kumar [2019] C 7 2019 44 84
Mao et al. [2019] R 17 2019 30 70
Mullapudi et al. [2019] C 9 2019 128 168
Kang et al. [2019b] C 26 2019 50 90
Hsieh [2019] T 22 2019 8 48
Fu et al. [2019] R 15 2019 61 101
Yadav [2019] S 11 2019 10 50
Liu et al. [2019] C 10 2019 66 106
Yadav et al. [2020] A 11 2020 12 57
Chao et al. [2020] C 5 2020 25 70
Li et al. [2020b] W 5 2020 2 47
Kraft et al. [2020] C 12 2020 31 76
Kang et al. [2020b] C 26 2020 56 101
Stonebraker et al. [2020] W 0 2020 12 57
Bastani et al. [2020] C 19 2020 100 145
Collins [2020] M 0 2020 1 46
Sipser [2020] M 0 2020 3 48
Li et al. [2020a] C 5 2020 262 307
Yang et al. [2020] J 30 2020 96 141
Lai et al. [2021] C 6 2020 8 53
Du et al. [2020] C 6 2020 8 53
Kang et al. [2020a] C 26 2020 37 82
Haynes et al. [2020] C 12 2020 25 70
Laskaridis et al. [2020] C 11 2020 308 353
Wen et al. [2020] D 45 2020 742 787
Ramachandra and Jones [2020] D 8 2020 191 236
Jain et al. [2020] S 5 2020 112 157
Nguyen-Duc et al. [2021] C 6 2021 6 56
Yadav et al. [2021] J 11 2021 24 74
Haynes et al. [2021] R 12 2021 37 48
Daum et al. [2021] C 0 2021 43 93
Qin et al. [2021] C 6 2021 6 56
Kang et al. [2021] C 26 2021 27 57
Chen et al. [2021] C 6 2021 21 71
Guo et al. [2021] C 8 2021 53 103
Kang et al. [2022] C 26 2022 24 79
Moll et al. [2022] C 7 2022 38 93
Chunduri et al. [2022] C 3 2022 19 74
Yang et al. [2022] C 0 2022 25 80
Romero et al. [2022] C 11 2022 29 84
Koudas et al. [2022] C 68 2022 43 98
Hwang et al. [2022] C 2 2022 13 68
Dai et al. [2022] A 4 2022 31 86
Chen et al. [2022] C 6 2022 9 64
Khani et al. [2023] S 8 2023 60 120
Agarwal and Netravali [2023] R 5 2023 12 72
Rahmanian et al. [2023] S 11 2023 4 64
Chao et al. [2023] C 5 2023 2 62
Wu et al. [2023] A 4 2023 9 69
Li et al. [2023a] C 5 2023 20 80
Kakkar et al. [2023] C 4 2023 7 67
Lv et al. [2023] A 0 2023 11 71
Yang et al. [2023] C 10 2023 15 75
Wang et al. [2023] C 2 2023 7 67
Zhang et al. [2023] C 16 2023 6 66
Li et al. [2023b] C 5 2023 1 61
HÖnig et al. [2023] C 3 2023 0 60
Kossoski et al. [2024] A 1 2024 1 66
Dai et al. [2024] C 4 2024 8 73
Madden et al. [2024] A 144 2024 2 67
Chaudhary et al. [2024] C 1 2024 1 66
Zhang et al. [2024] C 5 2024 3 68
Rahmanian et al. [2024] C 11 2024 1 66
Sun et al. [2024] C 0 2024 2 67
Wang et al. [2024] C 2 2024 2 67
Wen et al. [2024] A 0 2024 0 65
Legend: A (Article), C (Conference), D (Dataset), M (Masters Thesis), R (Research Paper), S (Symposium), T (Ph.D. Thesis),
W (Workshop).
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Figure 2. Basic overview of server-driven architecture

The advantages are simplicity, powerful hardware support,
and low internal latency. However, the main drawback is re-
lated to the cost and quality of the external communication
links, particularly if the data travels through the internet con-
nection, and monolithic processing.
Based on a detailed analysis of the problems articulated by

the authors, the papers are categorized into thematic groups
as follows:
Efficient Large-Scale Video Analytics and Querying
This group addresses the scalability, efficiency, and com-

putational cost associated with processing, analyzing, and
querying vast amounts of video data, often from numerous
cameras. Problems include managing high data volumes, op-
timizing deep learning inference for video, and enabling com-
plex spatiotemporal queries.

• Lu et al. [2016]: Optasia focuses on the critical chal-
lenge of efficiently performing large-scale video analyt-
ics from numerous cameras, overcoming issues of scal-
ability, efficiency, and error-proneness inherent in ex-
isting methods.

• Zhang et al. [2017]: VideoStorm deals with efficiently
analyzing live video streams at scale, specifically ad-
dressing the high costs of vision processing and the ne-
cessity to effectively manage resources to meet diverse
quality and latency goals.

• Kang et al. [2017]: The authors of Noscope identifies
the high computational cost and inefficiency inherent
in applying DNNs to large-scale video data for analy-
sis, which traditional methods struggle to handle effec-
tively.

• Kang et al. [2019a]: Blazeit addresses the high compu-
tational cost and the complex, imperative programming
required for querying large volumes of video data us-
ing DNNs, especially concerning aggregation and limit
queries that existing approximate filtering methods do
not handle efficiently.

• Anderson et al. [2019]: The authors of Tahoma high-
lights that querying the content of images and videos
using CNNs is computationally expensive and slow,
making it prohibitive for massive video libraries. It
also notes that existing visual data system optimizations
primarily focus on computation and overlook signifi-

cant data-handling costs like loading and transforma-
tion, which drastically impact overall query time.

Optimizing Video Streaming Protocols for AI Analyt-
ics
This group concentrates on redesigning or adapting video

streaming protocols to better suit the specific requirements of
AI, particularly DNNs, rather than human viewing. The prob-
lems stem from the inefficiency of traditional source-driven
streaming for machine perception, leading to suboptimal ac-
curacy or excessive bandwidth consumption.

• Pakha et al. [2018]: The authors of SimpleProto tack-
les the inefficiency of traditional video streaming proto-
cols for distributed vision analytics, which are designed
primarily for human viewing quality rather than the spe-
cific, distinct needs of DNNs.

• Du et al. [2020]: The authors of DDS identifies the
inefficient video streaming for AI applications, where
source-driven protocols lead to high bandwidth con-
sumption and suboptimal DNN inference accuracy due
to limited camera-side intelligence and lack of server
feedback.

Dynamic Configuration and Resource Management
for Video Analytics Pipelines
This group addresses the challenge of dynamically adjust-

ing configurations, managing resources, and optimizing the
performance of video analytics pipelines in response to vary-
ing workloads, resource availability, and quality-of-service
demands.

• Jiang et al. [2018]: The authors of Chameleon high-
lights the prohibitive computational resource costs in-
curred when applying deep convolutional neural net-
works to video data at scale, necessitating dynamic op-
timization of pipeline configurations to manage these
expenses effectively.

5.1.2 Edge-first

Edge-first architecture, also known as edge computing,
client-first, or server-less, end-edge-cloud, is almost the op-
posite of server-driven architecture. In that sort of archi-
tecture, query processing is concentrated on edge devices
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rather than advanced cloud servers, even if it uses some net-
work connection between the nodes (Figure 3). Edge-first
systems prioritize early data filtering and inference on edge
devices, reducing bandwidth usage and enabling faster re-
sponses. With the proliferation of cheap IoT devices that al-
low local query processing, such as IP cameras and sensors,
the number of processing algorithms on the end node has in-
creased, following this trending architecture. Basically, the
applications run where the data is produced, and data trans-
fer to a cloud server is performed just when the device cannot
handle it.
Although processing at the edge is a priority in this ar-

chitecture, some applications use edge/cloudlet servers, con-
nected a hop away, to process heavier loads, such as DNN
models, computer vision tasks, and database operations. An-
other similar approach called federated learning coordinates
mobile devices to train a machine learning model using wire-
less networks and keeping the training data on local devices
[Hsieh, 2019].
The main advantage of the edge-first architecture is that

processing is focused where the data is produced, allowing
for low response times and saving network bandwidth, espe-
cially for latency-sensitive systems such as autonomous vehi-
cles and surveillance. Given the conditions of the scheduler,
the edge server processes less data and only complex tasks
that are not supported by the edge node.
Despite their advantages, some solutions can have prob-

lems, especially those that rely on an internet connection for
some tasks. Other disadvantages include limited comput-
ing power, low memory availability, simple CPU process-
ing (rarely with GPU), high battery consumption (if battery-
powered), and more complexity due to distributed process-
ing.
Based on a detailed analysis of the problems articulated by

the authors, the papers are categorized into thematic groups
as follows:
Optimizing DNN Execution on Resource-Constrained

Mobile/Edge Devices
This group focuses on the fundamental challenge of

running computationally and memory-intensive DNNs effi-
ciently on devices with limited resources, particularly for
continuous or real-time applications. The core problem of-
ten revolves around bridging the gap between high DNN de-
mands and constrained device capabilities, while accounting
for dynamic environmental factors.

• Chen et al. [2015]: The authors of Glimpse addresses
the challenge of achieving continuous, real-time object
recognition on mobile devices, where persistent high-
performance inference is difficult due to computational
and power limitations

• Shen et al. [2014]: The authors of MCDNN con-
cerns running computationally and memory-intensive
DNNs efficiently on resource-constrained mobile de-
vices, especially for continuous mobile vision applica-
tions, while accounting for varying resources and net-
work conditions.

• Ran et al. [2018]: The authors of DeepDecision tack-
les the difficulty of executing computationally intensive
deep learning models, particularly for real-time video

analytics, on resource-constrained mobile devices that
lack the processing power for full on-device execution.

CoreDNN InferenceOptimization for Edge-Cloud and
Mobile Devices:
This group enhances the fundamental performance (la-

tency, throughput, cost, accuracy) of DNN inference, partic-
ularly CNNs, within environments where edge devices and
the cloud collaborate. Emphasis is placed on mechanisms
such as model splitting, early-exit strategies, and data com-
pression.

• Laskaridis et al. [2020]: The authors of SPINN focuses
on the runtime co-optimization of early-exit policies
and CNN splitting for dynamic adaptation and robust-
ness. It also introduces a specific packing mechanism
to minimize data transfer overhead.

• Grulich and Nawab [2018]: Addresses video process-
ing in IoT and edge contexts by combining Neural Net-
work techniques such as splitting, compression, and dif-
ferential communication to optimize collaborative infer-
ence.

• Hsieh [2019]: Focus is a system designed for low-cost,
low-latency ML serving over large datasets like videos,
utilizing inexpensive CNNs for approximate indexing
and more costly CNNs for query accuracy. Also fea-
tures a geo-distributed ML training system that opti-
mizes communication and eliminates insignificant inter-
data center traffic.

• Rahmanian et al. [2023]: RAVAS is a framework that
employed Q-Learning for DNN model selection based
on GPU utilization and workload, alongside a resource
allocation strategy to mitigate interference during con-
current GPU execution.

Bandwidth Optimization and Intelligent Video Data
Filtering:
This group reduced the volume of video data transmitted

from the edge to the cloud using smart filtering, compression,
and other techniques to alleviate bandwidth bottlenecks and
associated costs.
Papers:

• Lv et al. [2023]: FDDIA leverages feedback from prior
frames and inter-frame differences to identify candidate
regions, generating smaller images for efficient edge in-
ference, thereby reducing both latency and bandwidth
consumption.

• Li et al. [2020a]: Reducto dynamically adapts filtering
decisions directly at the camera using lightweight ma-
chine learning and low-level video features, effectively
reducing bandwidth usage and backend computation.

• Yadav et al. [2021]: VID-WIN targets efficient video
event processing in IoMT environments. It employs a
two-stage windowing approach (edge and cloud) with
content-aware optimizations like micro-batch resizing
and “eager” and “lazy” filtering to significantly reduce
bandwidth requirements.

• Dai et al. [2022]: Respire reduces spatial-temporal re-
dundancy in industrial video analytics at edge comput-
ing nodes by characterizing it with feature descriptors



Querying large video datasets: a systematic literature review Kossoski, Lopes & Simão, 2025

Figure 3. Basic overview of edge-first architecture

and an online heuristic algorithm for efficient frame se-
lection and pruning, aiming to optimize transmission
and processing costs.

Multi-Camera Collaboration and Cross-Camera Opti-
mization:
This group leverages information from multiple cameras,

particularly those with overlapping Fields of View (FoVs),
to eliminate redundancies, optimize inference and tracking,
and scale video analytics deployments.

• Dai et al. [2024]: AxionVision is a framework that uti-
lizes a tiered edge-cloud architecture with continuous
online learning and an efficient perspective-aware adap-
tation method. It also incorporates topology-guided
clustering for accelerated model selection in multi-
camera systems.

• Yang et al. [2023]: CEVAS is a framework that utilizes
a fine-grained input filtering policy to eliminate spatial
and temporal redundancy, an object manager for sharing
detection results, and a content-aware model selection
policy for multi-view video processing, particularly for
vehicular perception.

• Wu et al. [2023]: ILCAS integrates a cross-camera col-
laboration scheme that quantifies spatio-temporal cor-
relations between cameras and shares FoV information
via motion feature maps.

• Li et al. [2023a]: Polly is a cross-camera inference
system designed to share inference results among co-
located cameras with overlapping FoVs, thereby elim-
inating redundant processing and optimizing resource
utilization.

• Guo et al. [2021]: CrossRoi is a resource-efficient sys-
tem that defines Regions of Interest (RoI) across a cam-
era network with overlapping coverage to reduce redun-
dant information. It operates with offline phases (data
association, RoI calculation) and online phases (stream
filtering).

• Jain et al. [2020]: Spatula is a cost-efficient system
that leverages spatial and temporal correlations between
cameras to reduce computation and communication
overhead by pruning the search space for object track-
ing across large-scale camera networks.

• Liu et al. [2019]: Caesar is a hybrid edge computing-
based system that intelligently partitions video process-
ing tasks between cameras and an edge cluster to enable
near-real-time detection of complex activities spanning
multiple cameras.

• Jain et al. [2019]: Addresses the challenge of scaling
video analytics to large camera deployments by exploit-
ing spatio-temporal correlations among cameras to re-
duce the inference search space and improve efficiency.

• Rahmanian et al. [2024]: CVF addresses the challenge
of significant computational resource waste that oc-
curs when processing all frames frommultiple real-time
camera streams on edge devices, especially since only
a fraction often contain objects of interest. Highlights
the shortcomings of existing on-camera filtration meth-
ods, which often lack adaptability to varying workloads,
available edge resources, camera numbers, frame prior-
itization, and resource-aware filtering.

• Wang et al. [2024]: Gecko is a framework to overcome
these issues by: (i) obtaining optimal models from a
model zoo and assigning them to edge devices for ex-
ecuting current queries, (ii) optimizing resource usage
of the edge cluster at runtime through dynamic adjust-
ment of the frame query interval for each video stream
and flexible forking/joining of running models on edge
devices, and (iii) improving accuracy in changing video
scenes via fine-grained stream transfer and continuous
learning of models.

Dynamic Adaptation and Automated Configuration
for Video Analytics:
This group developed systems that automatically adapt to

varying conditions (network, video content, workload) and
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optimize model or analytics pipeline configurations, either
through self-learning or without manual intervention.

• Jiang et al. [2018]: Chameleon is a system that dynam-
ically adapts Neural Network configurations for video
analytics. It amortizes profiling costs by exploiting tem-
poral and spatial correlations within the video character-
istics, enabling efficient resource utilization in dynamic
environments.

5.1.3 Fully distributed

Fully distributed architectures decentralize both inference
and data management. Multiple nodes—edge, fog, and
cloud—collaborate dynamically to execute query tasks. As
expected, this is more complex than server-driven and edge-
first architectures because it needs to manage distributed
processing, load balancing, device configurations, and time
constraints among different machines using network connec-
tions. Figure 4 shows the basic overview of the fully dis-
tributed architecture. It includes a cloudlet server, usually
between the edge devices and the cloud, to reduce overall
latency when heavy data needs to be processed using the dy-
namic partitioning of tasks.
Based on a detailed analysis of the problems articulated by

the authors, the papers are categorized into thematic groups
as follows:
Web-Scale Visual Content Management
This group argues that traditional search engines face chal-

lenges in handling the massive volume of visual content and
meeting the computational demands of evolving AI models,
which are essential for efficiently and accurately understand-
ing and retrieving images and videos.

• Qin et al. [2021]: Mixer is a system that efficiently
understands and retrieves visual data for a search en-
gine. It uses CNNs for categorization, generates uni-
fied feature vectors, and includes a comprehensive DL
model production system with optimized execution and
resource allocation. It employs approximate nearest
neighbor search (ANNS) for image retrieval and amulti-
step process for accurate video retrieval.

Edge-Cloud Optimization for Real-time Video Analyt-
ics
This group argues that real-time video inference on

resource-constrained edge devices is adversely affected by
data drift in dynamic environments, leading to performance
degradation and reduced model accuracy and adaptability.

• Wang et al. [2023]: The authors of Shoggoth pro-
posed an edge-cloud collaborative architecture that en-
hances real-time video inference by addressing data
drift through adaptive online learning and decoupled
knowledge distillation. It uses a lightweight edgemodel
fine-tuned by a cloud-based teacher model, incorporat-
ing adaptive training and frame sampling.

• Ran et al. [2018]: DeepDecision is a framework that
intelligently offloads parts of deep learning processing
to powerful backend “helpers” (cloud/edge servers). It
uses extensive measurements to understand tradeoffs

between factors like video quality, network, battery, de-
lay, and accuracy, and applies mathematical optimiza-
tion to determine the optimal offloading strategy.

Distributed and Archival Video Analytics
This group argues that executing resource-intensive com-

puter vision queries on edge devices for distributed video
streams imposes significant bottlenecks on centralized
servers, hindering system scalability and responsiveness.
Also, managing and analyzing large archival videos effi-
ciently is challenging due to complex format configurations
and conflicting resource demands.

• Nguyen-Duc et al. [2021]: Presented an autonomous se-
mantic stream fusion approach using “ASF agents” that
push computing operations closer to video sources. It
uses semantic-based representation for federated query
processing across diverse hardware configuration.

• Xu et al. [2019]: Vstore is a holistic system for fast and
resource-efficient analytics over large archival videos.
It uses a “backward derivation” approach and novel
techniques to manage the vast space of video format
configurations (“knobs”), coalesce stored formats, and
erode aging data, optimizing across multiple resource
types.

5.2 Processing pipeline
This section presents the core concepts of the video query
pipeline, outlining the key stages from data ingestion to con-
sumption. Querying video data at scale introduces signifi-
cantly greater challenges than managing a standalone appli-
cation on a single server, primarily due to the integration
of heterogeneous hardware components, software systems,
network infrastructures, databases, and high-level applica-
tions. In response to these complexities, various solutions
have been developed over time to support videomanagement
in big data contexts.
Currently, the video processing pipeline at scale is divided

into four main phases: ingestion, storage, retrieval, and con-
sumption [Xu et al., 2019], as depicted in Figure 5. Table 2
provides a glossary of the components involved in the pro-
cessing pipeline. These phases are further explained in the
following sections.

Table 2. Glossary of components in a video query pipeline
Component Role
Preprocessing Decoding, sampling, and nor-

malization of video frames
Inference Engine Object detection, tracking,

and semantic extraction
Indexer Organizes metadata and em-

beddings for fast retrieval
Query Parser Translates declarative query

into executable tasks
Scheduler Allocates resources and man-

ages parallelism
Result Filter Applies confidence thresholds

and ranks outputs
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Figure 4. Basic overview of fully distributed architecture
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Figure 5. Processing pipeline overview

5.2.1 Ingestion

The ingestion phase has been extensively studied over the
years, leading to the development of various approaches
in the literature. To better understand this phase, it can
be divided into several key components: video capture by
CODECs (enCODer-DECoder), pre-processing tasks, object
detection and labeling, ingestion time, and query time. Each
of these components plays a crucial role in efficiently han-
dling video data during the ingestion process.

Data preprocessing Image preprocessing involves manip-
ulating raw image data to transform it into a usable andmean-
ingful format. This process removes unwanted distortions
and enhances specific characteristics that are crucial for com-

puter vision applications. It serves as a fundamental initial
step in preparing image data for input into machine learning
models.
For example, consider the classic problem associated with

a surveillance system: “The Road Traffic Authority may
need a system that allows direct queries for tasks such as
detecting high-volume traffic on specific roads, locating ve-
hicles by characteristics (e.g., license plate, color, model, or
a combination of features), or tracking suspicious vehicles
traveling together (such as a criminal escort car” [Kang et al.,
2019a; Anderson et al., 2019; Kang et al., 2019b; Lu et al.,
2016; Zhang et al., 2017; Xu et al., 2019]. According to the
literature, this scenario presents several challenges:

• Computational cost: Preprocessing can be viewed as an
optimization problem or a multi-objective optimization
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problem due to its computational demands. Applica-
tions dealing with large-scale videos or streaming data
require solutions that avoid wasting computing power
and communication resources.

• Many visual concepts: The interpretation of an im-
age can range from simple (e.g., recognizing a car) to
complex (e.g., identifying activities related to that car).
Moreover, image detection models can fail under vary-
ing lighting conditions, object size, partial occlusion,
and changes in position.

• Limitation of training data: To develop an efficient and
generalized image detection model, a large dataset of
images with appropriate parameters must be used. This
requires skilled programmers, substantial time, and suit-
able hardware resources, all of which can be costly.

• Dynamic queries: In video surveillance systems, users
expect the ability to query past events (e.g., how many
people were at a particular bus station in July?) or real-
time events (e.g., which streets are busiest at the mo-
ment?). This dynamic nature introduces additional com-
plexity.

• Complex code: Many computer vision projects and li-
braries, often shared in repositories such as GitHub, fea-
ture complex codebases and data structures, adding fur-
ther challenges for integration and maintenance.

Common preprocessing tasks include:

• Resizing: Standardizes the frame size to ensure consis-
tent input for machine learning algorithms.

• Grayscaling: Converts color images to grayscale, sim-
plifying the data and reducing computational require-
ments.

• Noise reduction: Removes unwanted noise from im-
ages using filters such as smoothing and blurring.

• Normalization: Normalizes pixel intensity values to a
desired range, usually between 0 and 1, to enhance
model training.

• Binarization: Converts grayscale images into black and
white by applying a threshold.

• Contrast enhancement: Adjusts image contrast using
techniques like histogram equalization to improve the
visual quality of images.

Moreover, video processing on a large scale may require
additional preprocessing strategies, particularly due to the
volume and speed at which data is generated and stored:

• Varying image resolution: Lower frame resolution can
accelerate inference time but may reduce detection ac-
curacy [Xu et al., 2019].

• Frame compression: Video CODECs use redundant in-
formation within each frame to improve compression
by identifying regions with high similarity and storing
each region only once [Haynes et al., 2021].

• Adjusting frame rate ingestion: This strategy is similar
to varying image resolution but focuses on accelerating
inferences on live streams.

• Background subtraction: Helps identify foreground ob-
jects and extract motion vectors, isolating areas with
moving objects [Daum et al., 2021].

• Frame difference detector: Highlights temporal differ-
ences between frames to determine whether the video
content has changed [Kang et al., 2017].

• Analysis of specific parts of the video or frame: Iden-
tifies video sequences or frame regions most relevant
for offloading to cloud servers for heavy computations,
especially when the local node cannot handle the load
[Pakha et al., 2018; Canel et al., 2019; Chao et al., 2020;
Chaudhary et al., 2024].

• Automatic configuration adjustments for improved pro-
cessing speed: Optimizes input configurations, includ-
ing resolution, segment length, and sampling rate, to en-
hance query processing in accordance with predefined
thresholds for accuracy, latency, and resource consump-
tion [Chunduri et al., 2022; Zhang et al., 2024].

• Window size to process events: Defines a specific num-
ber of frames or time interval for event processing,
avoiding the need to process the entire video due to
high computational cost [Yadav and Curry, 2019a; Ya-
dav et al., 2021; Yadav and Curry, 2019b; Yadav et al.,
2020; Koudas et al., 2022].

• Mix of many different configurations: Employs various
strategies to reduce computational costs according to
specific thresholds or resource constraints [Poms et al.,
2018a].

Heavy models and specialized models As previously
stated, currently, CNNs are the most common type of DNNs,
and they are widely used for locating and classifying objects
in frames or images. Table 3 provides a temporal overview
of the deep learning models utilized by the authors in their
experiments.

Table 3. Temporal trends of deep learning models in reviewed stud-
ies

Models First
Use

Most
Recent

Total
Papers

YOLO (all variants) 2017 2024 42
ResNet (all variants) 2018 2024 27
Faster-RCNN 2018 2024 13
Specialized CNNs 2017 2022 13
MobileNet (all variants) 2018 2024 8
Mask RCNN 2019 2023 8
Inception (all variants) 2017 2020 7
VGG (all variants) 2017 2020 7
DeepSORT 2019 2024 5
SSD 2019 2024 5
AlexNet 2018 2021 3
SORT 2022 2023 2

In the recent years, two variants of CNN have been ex-
tensively used in the ingestion phase: Ground-Truth Mod-
els (GT Models) and Specialized Models, also called Cheap
CNNs. GT models are the most widely studied because they
are highly accurate, free, ready to use, and have a wide range
of support for many programming languages. For example,
the most used ground-truth models include Yolo, ResNet,
Faster R-CNN, MobileNet, and Mask RCNN [Wang et al.,
2021; Liu et al., 2016; Sandler et al., 2018; He et al., 2017].
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However, they are costly in the context of video process-
ing due to the high inference time. For example, accord-
ing to Khani et al. [2023], a current state-of-the-art NVIDIA
V100 GPU can support only two video streams running the
YOLOv5-L model at 30 Frames Per Second (FPS). If run-
ning on large processing clouds, the total cost will be around
$1,100 per month. This is also evidenced by the Keras8 web-
site, which shows the most common models and their CPU
and GPU inference times.
As naive processing of all frames using expensive models

is impractical for many tasks, especially in video or big data
contexts, many researchers have proposed different types
of small or Specialized Models [Kang et al., 2017, 2019a].
They are based on GT models but trained with fewer lay-
ers and focused on particular contexts. Because they are not
generalists, Specialized Models are suitable for some types
of applications, i.e., they act as binary classifiers, returning
whether the specified objects are present in a given frame or
image (e.g., a white car).
For example, Figure 6 presents a basic scheme for making

Specialized Models. Training the specialized model requires
a dataset of labeled data, usually from the same video stream
in which this model will be used. Basically, the video stream
is previously stored in a labeled dataset and then this dataset
is used to train the specialized model.
Due to its limitations, the use of just one specialized model

is not practical. For this reason, the common approach is to
use a cascade of Specialized Models, each of which is more
accurate and usually more expensive than the other [Xu et al.,
2019], as shown in Figure 7. In the cascade set, each clas-
sifier only checks for the presence of a specific feature or
class. If the accuracy is below a threshold, then the next
classifier is called to check. The execution is stopped when
the model produces a prediction with high-confidence (e.g.,
greater than 90%). Only when the cheap models fail, the
ground-truth model used. Several authors developed their
Specialized Models and cascade classifiers. They called
cheap CNNs, small CNNs, proxy models, hierarchical mod-
els, specialized neural networks, and micro-classifiers [An-
derson et al., 2019; Kang et al., 2019a,b; Hsieh et al., 2018;
Kang et al., 2020b; Shen et al., 2014; Han et al., 2016; Shen
et al., 2017; Mullapudi et al., 2019; Canel et al., 2019; Kang
et al., 2020a; Chao et al., 2020; HÖnig et al., 2023].
Considering the significant human effort for proper soft-

ware development and hardware capacity required to create
a new detection model, several papers have proposed dif-
ferent strategies to create labeled video datasets and inex-
pensive models, including class refinement [Zhang and Ku-
mar, 2019], CNN hyperparameter tuning [Anderson et al.,
2019], approximate filtering Kang et al. [2019a], inference
cost reduction [Hsieh, 2019], noisy data reduction [Agarwal
and Netravali, 2023], query optimization [Chao et al., 2020],
trade-off between accuracy and inference speed [Li et al.,
2020b], optimization of temporal relations [de Boer et al.,
2017], and probabilistic predicates [Kang et al., 2021; Yang
et al., 2022; Romero et al., 2022; Moll et al., 2022; Lu et al.,
2018].
A complete pipeline, from data ingestion to classification,

8https://keras.io/api/applications/

is exemplified in Figure 8. In essence, detection models can
be categorized into two groups, known as early and late oper-
ators, depending on the computational cost, the function, and
the order in which they are employed. In a holistic view, the
early operators, such as video ingest and decode, frame dif-
ference detector, and cheap models, are faster but intended
for basic, low-cost tasks. They activate later operators such
as GT models, motion detectors, object trackers, and OCR
readers on a small fraction of the video for more in-depth
analysis. Generally, the cost of late operators can differ by
three orders of magnitude from early operators [Kang et al.,
2017].

Ingestion time and querying time When querying a large
number of images, such as video datasets or streaming video
in real-time, the latency between the search command and
the retrieval of the video is often regarded a very important
problem [Yi et al., 2017; Hsieh et al., 2018; Hsieh, 2019].
However, the processing time between the user’s search com-
mand and the system’s retrieval typically varies from seconds
to hours of intensive computing, depending on the activity
envisaged [Kang et al., 2017; Hsieh et al., 2018]. In this con-
text, a video query system usually performs tasks that need
to be fast (or even in real-time), such as video ingestion and
object detection. These systems also have to perform tasks
that normally do not need to be done in real-time or even so
fast, such as database reading, or storing consolidated data
for persistence. For this reason, some studies have divided
processing strategies into ingest time and query time [Hsieh
et al., 2018; Hsieh, 2019; Chao et al., 2023].

a) Ingestion time (or online mode): focuses on data inges-
tion, data filtering, read frames, frame difference detec-
tor, and detection using cheap models. Given the fast
response time, ingestion time is usually also referred to
as online processing.

b) Query time (or offline mode): focuses on heavy pro-
cessing, such as query processing, inference using GT
models, cluster analysis, complex database operations,
feeding trend dashboards, human-machine interaction
(e.g., web page or mobile app), and expensive machine
learning operations. Query time is also known as search
time, profiling Zhang et al. [2017], or offline processing
Anderson et al. [2019].

An overview of ingestion time and query time is shown
in Figure 9. Hsieh et al. [2018] presented the first architec-
ture that formalized and divided processing between inges-
tion time and query time. At ingest time, the solution uses
cheap models to create an approximate index of all possible
object classes for each frame. At query time, it takes advan-
tage of this approximate index to provide low latency and,
at the same time, compensate for the low accuracy of cheap
models by using GT models when necessary. The objective
is to respond “after the fact”, or retrospectively, queries about
objects of certain classes (e.g., cars, people) over many days
of recorded video.
Similarly, retrospective video analysis has also been ex-

plored by Agarwal and Netravali [2023]; Kang et al. [2017,
2019a];Wen et al. [2024]. In addition, some studies also con-
sider a variety of ingestion time and query time separately,
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using different strategies to manage resources, online and
offline processing Zhang et al. [2017]; Hsieh et al. [2018];
Kang et al. [2017, 2019a].
Moreover, various approaches have been proposed for

different types of problems. For example, Zhang et al.
[2017] perform mathematical operations to distribute pro-

cessing in a cluster in which a scheduler optimizes video
resolution, frame rate and sliding window settings to mini-
mize the delay caused between processing and search time.
Hung et al. [2018] used a centralized manager and working
machines to execute queries configured as a Direct Acyclic
Graph (DAG), in which each transformation processes a
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time-ordered stream of messages (e.g., video frames). Chen
et al. [2022] built indexes for all desired objects of the given
videos during an ingestion time and evaluates query answers
efficiently in the query time. In a different way, Poms et al.
[2018a] represent video collections as a table in a database
that performs calculations expressed as data flow graphs on
those frames.

5.2.2 Storage

With advances in information technology, the amount of data
produced and stored is increasing very fast. Consequently,
multimedia content (e.g., audio, image, video) is widely used
by humans and machines (e.g., IoT devices) for many appli-
cations today. Therefore, the need to store, organize, and
efficiently retrieve this data has been a research motivation
for companies and universities for decades [Collins, 2020;
Lu et al., 2015]. However, traditional relational databases
are not suitable for dealing with multimedia data due to the
type of unstructured data, the large volume, and the speed
with which it is produced. Even more recently, streaming
applications bring additional complexity because they need
to process, store, and retrieve in real-time [Yadav and Curry,
2019b].
Figure 10 presents an overview of a common video

database system. Typically, video sources such as closed-
circuit television (CCTV), cell phones, and IoT devices send
content to a server responsible for storing the raw footage
and video metadata, such as objects, events and the time of
occurrences. The metadata is then used by query engine to
help search the raw footage. On the other side, an user inter-
face such as a webpage or mobile application allows some
interaction with this database to obtain relevant videos of in-
terest, alerts of events, and situations that happened.
An interesting method for storing the spatiotemporal at-

tributes of video events was introduced by Yadav and Curry
[2019a,b]; Yadav et al. [2020]. Figure 11 shows an example
of this approach. Given a video stream, the system detects
objects along with their attributes (e.g., car1, red) and stores
them in the graph database. The objects are represented as
nodes, while their spatiotemporal relationships (e.g., left, be-
low, after) are stored as edges connecting the nodes. For each
frame the database is updated according to the video stream.
While this approach is quite interesting, it can be costly in
terms of processing time and query latency.
Moreover, while NoSQL databases offer several advan-

tages, they generally lack the key transaction properties—
Atomicity, Consistency, Isolation, and Durability (ACID) –
that are inherent to relational databases. An ACID transac-
tion is defined by a database operation that exhibits these
properties, and systems that support these operations are clas-
sified as transactional systems [Andreas Meier, 2019]. The
properties of each read, write, or modification of a table are
guaranteed by ACID transactions. However, NoSQL inten-
tionally sacrifices these properties for improved performance
and scalability.
Even so, several authors have developed new video

database management systems. For instance, Haynes et al.
[2021] presented a new video storage system designed to au-
tomatically organize the data in the storage hardware struc-
ture in an efficient and granular format, eliminating the re-
dundancies found in videos captured from multiple cameras.
On the other hand, Daum et al. [2021] proposed a new sys-
tem that uses spatial random access to encode videos and op-
timize the file layout according to the content.
In turn, Collins [2020] presented a prototype of a query

engine for video data using active and relational database
concepts. The author developed an ingest module that pro-
cesses video sources with a GPU server and stores data and
metadata about each frame. In addition, a retrieval module
provides a user interface that accepts some search and query
criteria and presents matching video queries.
Still, Krishnan et al. [2018] studied execution trade-offs

in visual analytics and illustrated a complex relationship be-
tween storage, latency, and accuracy. Also, Haynes et al.
[2018] presented a new database management system for
managing virtual, augmented, and mixed reality video con-
tent, offering a query language and algebra, allowing declara-
tive queries. Madden et al. [2024] developed a new database
capable of ingesting, storing, processing, and querying all
types of data, integrating both relational and non-relational
database features.

5.2.3 Retrieval

There are several image indexing and retrieval techniques.
The first technique consists of associating images with a spe-
cific object or location of interest (e.g., a given image is a pho-
tograph of a specific building on the Stanford campus [Kang
et al., 2017]).
The second technique consists of searching for similari-

ties in a large corpus of images (e.g., reverse image search
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on Bing Visual Search). It can be achieved, for instance, us-
ing histogram comparisons, template matching, and feature
matching. Data mining algorithms, mainly based on clus-
tering, such as k-nearest neighbors, can also perform binary
classification.
The third technique is content-based video indexing and

retrieval, which uses advanced video segmentation, feature
extraction, dimensionality reduction, and machine learning
algorithms Spolaôr et al. [2020].
The fourth technique uses approaches based on deep learn-

ing (DL), since it revolutionized image similarity tasks using
pre-trained Deep Convolutional Neural Networks (DCNNs),
such as ResNet, VGG, and Inception, or inexpensive models.
The fifth technique consists of storing video metadata,

such as object, color, plate, and timestamp, and using it to
retrieve the original footage. These metadata usually need to
be obtained using specific detection models for each task.
The sixty technique is a novel approach called NOPQuery,

introduced byKossoski et al. [2024]. It is a video event query
engine based on the Notification Oriented Paradigm (NOP)
and leverages existing tools [Neves, 2021] to efficiently han-
dle multiple video events and respond with low latency when
matches are found. NOP offers a fresh perspective on soft-
ware development, where small, collaborative entities exe-

cute tasks and make logical decisions based on accurate no-
tifications. One of the key advantages of NOP Query is its
ability to avoid resource-intensive database operations, such
as storage, retrieval, and triggers.

5.2.4 Consumption

The consumption phase interacts directly with end users or
other machines to provide the results obtained by the video
processing system. In general, end users write some query
language to perform tasks, such as finding a specific object
or event or configuring triggers to be fired when a certain
condition occurs. Some solutions offer a human computer
interface (HCI), such as a web page or mobile application, to
improve usability. However, most studies do not offer query
language or HCI. More details about video query languages
are presented later in Section 6.
For example, Hsieh et al. [2018] offer a simple interface

in which the user selects the target video and the object class.
A piece of video is displayed if the system encounters the
object.
However, Kang et al. [2019a] also introduce a user-

friendly web-based interface that supports a SQL-like query
language, including operators such as SELECT, FROM,
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GROUP BY, HAVING, SUM, LIMIT, and GAP. Users can
search by video name, timestamp, and object class, and filter
results based on the frequency of object instances. When a
query matches metadata in the database, the system returns
the corresponding event timestamp and associated video seg-
ment.

6 RQ2: What video query languages
exist, and what operations do they
support?

Query languages are essential for efficient event retrieval in
large-scale video datasets, providing a structured means to
express complex temporal, spatial, and semantic conditions.
They allow users to abstract low-level visual features into
high-level event definitions, thereby enhancing scalability,
reproducibility, and automation in video analytics. When
designed to support real-time applications, such languages
enable the rapid and accurate detection of relevant events.
Section 6.1 discusses commonly used video query opera-

tors, while Section 6.2 introduces advanced video query lan-
guages designed to support more complex event retrieval.

6.1 Common video query operators
In the literature, there are several ways to perform video
queries. The most common approach is to utilize the same
query language as the database system that stores the video or
its associated metadata [Anderson et al., 2019; Collins, 2020;
Stonebraker et al., 2020; Sipser, 2020; Chao et al., 2023].
Some works extended SQL with spatiotemporal operators or
event query capabilities, creating a new language [Xarchakos
and Koudas, 2019; Lu et al., 2015; Chao et al., 2020; Yadav
and Curry, 2019b; Kang et al., 2019a]. Still, other works
do not mention any query language, although they perform
queries [Kang et al., 2017; Zhang et al., 2017; Kang et al.,
2022; Hsieh et al., 2018]. In any case, all of these approaches
use the so-called query operator. For example, according to
this literature, the most common query operators are the fol-
lowing:

• Objects: This operator is used to retrieve the object of
interest, such as a person or a vehicle.

• Object attributes: Attributes provide additional infor-
mation about objects. For instance, when considering
a specific person as an object, attributes may include
height, clothing, and accessories such as a hat or glasses.

• Spatiotemporal operators: Spatiotemporal operators are
two key features that distinguish video query languages
from others, as illustrated in Figure 12. Spatial opera-
tors pertain to the positioning of objects in space and
their spatial relationships. For example, “The white
truck is to the left of the red car”. Temporal operators,
on the other hand, relate to the order in which objects
appear over time and their temporal relationships. For
example, “The white truck appears before the red car”.
A detailed discussion of spatiotemporal operators is pro-
vided in Yadav and Curry [2019b]; Yadav et al. [2020].

Table 4 summarizes the many video query languages and
their support for the most common operators. Moreover,
these primary operators can be subcategorized as detailed in
Table 5.

6.2 Advanced video query operators
Some video query languages incorporate advanced features
that enhance expressiveness and usability. For instance,
Streaming Video Queries (SVQ) [Lu et al., 2015; Xarchakos
andKoudas, 2019; Chao et al., 2020] extends traditional SQL
syntax while leveraging a relational database management
system to translate each statement into corresponding SQL
queries. Its grammar supports standard SQL operators as
well as variable declarations and spatiotemporal constructs,
enabling more effective video stream querying. Listing 1 se-
lects all the frames in which there is a car to the left of a
yellow bus. In the query syntax, Ci are classifiers for dif-
ferent types of objects, such as vehicle types and colors, and
Fi are bounding box features for objects in the frame, using
vehDetector, an object detection algorithm.

Algorithm 1 Example of the SVQ query language
1: SELECT sensorID, timeStamp, Object1
2: (Feature1 (objectBox1)) AS objectClass1,
3: Object1 (Feature1 (objectBox2)) AS objectClass2,
4: Object2 (Feature2 (objectBox1)) AS objectColor
5: FROM (PROCESS inputStream
6: PRODUCE sensorID, timeStamp, objectBox1, object-
Box2

7: USING ObjectDetector)
8: WHERE objectClass1 = truck
9: AND objectColor = red
10: AND objectClass2 = sedan
11: AND (ORDER(objectClass1, objectClass2) = PRIOR)

=0

FrameQL [Kang et al., 2019a] extends SQL with spa-
tiotemporal capabilities, enabling video queries using rela-
tional algebra over a table-like schema. Videos are repre-
sented as virtual relations, where each tuple corresponds to
an object in a frame. Attributes such as time, location, object
class, bounding boxes, and object identifiers are automati-
cally populated through computer vision techniques. This
structure supports object tracking across multiple frames and
facilitates expressive, structured video querying.
Some of the video query operators discussed below have

emerged more recently in the literature, particularly in the
context of event query languages and CEP systems. Further
details can be found in Kang et al. [2019a, 2022]; Yadav and
Curry [2019a]; Cugola and Margara [2012].

• The aggregation operator allows computing some
statistics over the video frames. Common aggregations
include count, sum, average, maximum, and minimum
operator. For example, compute the average number of
cars per frame.

• The conj operator retrieves the objects(s) of interest,
evaluating two or more attributes. For example, show
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Table 4. Video query languages and their support for common operators: ✓=“yes”, P=“partially”, −=“no”

Objects Attributes Spatial op-
erators

Temporal
operators

EVAQL [Kakkar et al., 2023] ✓ P − −
FRAMEQL [Kang et al., 2019a] ✓ ✓ − −
ROLE [Liu et al., 2018] ✓ ✓ ✓ ✓
SVQ [Xarchakos and Koudas, 2019; Chao
et al., 2020]

✓ ✓ ✓ −

SVQL [Lu et al., 2015] ✓ ✓ ✓ ✓
VEQL [Yadav and Curry, 2019b] ✓ ✓ ✓ ✓
VRQL [Haynes et al., 2018, 2020] ✓ ✓ ✓ ✓

Table 5. Other types of operators in video query languages
Operator
type Description

Semantic Involve high-level meaning (e.g.,
person carrying object).

Probabilistic Allow uncertainty and confidence
scores in matching patterns.

Logical Combine multiple conditions (e.g.,
AND, OR, NOT).

the number of instances of cars and trucks in a time win-
dow.

• The count operator is a type of aggregation. Some ap-
proaches extend this operator by supporting more fea-
tures, such as counting objects between frames. For ex-
ample, to warn if there is high-volume traffic on a street.

• The iteration operator defines the repeated occur-
rences of a matching event, similar to a loop in a pro-
gramming language.

• The join operator allows performing a join and, sub-
sequently, a selection, aggregation, or limit query.
For example, an Amber Alert application can check
whether the detected license plates belong to a stolen
car database.

• The limit operator allows finding a cardinality-limited
number of events occurring within some time interval.
For example, selecting ten instances of buses at stop
signs.

• The projection operator extracts only a part of the in-

formation to compute video events.
• The renaming operator changes the name of a field.
• The selection operator allows the selection of particu-
lar objects or events of interest. For example, selecting
from all instances of a person in a video database.

• The sequence operator retrieves the occurrence of ob-
jects of interest, evaluating their temporal relationship.
Typically, the sequence operator is used with the win-
dow operator. For example, select a “car” object and a
“truck” object that appears in the same 10-second time
window.

• The similatiry operator allows searching for portions
of the video similar to a reference frame or video clip.
For example, given a picture or video clip of a soccer
player’s goal, find similar events. Such queries often
involve iterative, ad-hoc analysis to arrive at the final
query.

• The window operator establishes an interval scope in
which the query should be performed, generally based
on frame numbers or timestamps. It is often used to
limit the time interval that a query works, aiming at re-
ducing the computational cost of searches. For example,
bus and truck objects can be selected to travel together
within 10 seconds.

Complex Event Processing (CEP) [Cugola and Margara,
2012], Complex Event Recognition (CER) [Giatrakos et al.,
2020], or Complex Event Detection (CED) [Honarparvar
et al., 2024] refers to collections of simple events that derive
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from complex events when they satisfy some pattern. This
feature allows processing systems to react to events. CEP lan-
guages, for example, can query complex patterns that corre-
spond to input events based on their content, input order, and
relationships. There are several CEP systems and languages
in the literature that differ in their architectures, data models,
pattern languages, and processingmechanisms. Two surveys
about CEP systems were published in Cugola and Margara
[2012]; Giatrakos et al. [2020].
Basically, the input of a CEP system is a stream of events,

also called Simple Derived Events (SDEs), along with a set
of patterns, defining relationships between the SDEs. An
event has the structure of a tuple of values that can be nu-
meric or categorical (e.g., event type, timestamp). During
the event computation, it detects instances that satisfy an ex-
pected pattern and produces complex event output. Time is
critical, so the temporal formalism defines the detection pat-
terns According to Giatrakos et al. [2020], there are three
main types of CEP systems:

• In automata-based systems, patterns are usually defined
in a language similar to SQL that is later compiled into
some form of automata (often non-deterministic) for
pattern matching. The automaton is then fed with the
data stream, changing state as the predicates on the cur-
rent state transitions are satisfied.

• In logic-based systems, patterns often have the form of a
rule, with antecedent, consequent, and condition which,
if satisfied, lead to the detection of a CEP. Many un-
derlying mechanisms for performing inference can be
used, from PROLOG-based systems to directed graphs
(similar to automata).

• The tree-based systems differ from the other two above-
mentioned systems in many ways: they assume that
CEPs avoid semantic ambiguities when hierarchies of
events are present, and translate patterns to trees, whose
leaves store events and internal nodes correspond to op-
erators.

Beyond the above-mentioned systems, there are also hy-
brid approaches that consider a mixture of trees, automata,
and logic concepts, but the consequences on the semantics,
soundness, and completeness are unclear. The CEP lan-
guages use operators to perform queries. The most basic are
selection and sequence. There are many operators, but not
all languages support them [Giatrakos et al., 2020].

• Selection: Selects those events whose attributes satisfy
a set of predicates/relations, temporal or otherwise.

• Sequence: Two events following each other in time.
• Disjunction: Either of two events occurring, regard-
less of their temporal relation.

• Iteration: An event occurring N times in sequence,
where N > 0.

• Conjunction: Both events occur, regardless of their
temporal relation.

• Negation: Absence of event occurrence.
• Projection: Returns an event whose attribute values
are a transformed subset of the attribute values of its
sub-events.

• Windowing: The event pattern must occur within a
specified time window.

For instance, the Video Event Query Language (VEQL)
[Yadav and Curry, 2019b; Yadav, 2019, 2021; Yadav et al.,
2021] distinguishes itself from other query languages by be-
ing based on Complex Event Processing (CEP) systems and
graph databases. In a CEP system, information is conveyed
as notifications of events occurring in the external environ-
ment. The engine filters these events and combines them
into conditions that represent higher-level events [Cugola
andMargara, 2012]. Consequently, VEQL focuses on detect-
ing specific occurrences of low-level patterns and events that
form part of higher-level events. When a match is detected,
the CEP mechanism notifies the relevant parties. According
to Yadav and Curry [2019b], the key features of CEP systems
include the straightforward expression of events and the real-
time detection of patterns. VEQL offers a wide variety of
spatiotemporal operators and low-latency query correspon-
dences.

7 RQ3: How is the quality of existing
approaches assessed, both quantita-
tively and qualitatively?

Evaluation metrics are essential for assessing the quality of
the proposed approaches and for enabling comparisons with
existing literature. In this section, the metrics are grouped
into three categories: (i) machine learning and throughput,
(ii) video query latency, and (iii) system configuration. Sec-
tion 7.1 describes the machine learning metrics employed to
evaluate throughput. Section 7.2 focuses on the metrics used
to measure video query latency. Finally, Section 7.3 outlines
the system configuration metrics considered in the reviewed
studies.

7.1 Machine learning metrics and throughput
Five measures are frequently used in many deep learning al-
gorithms to evaluate the performance and processing cost of
models, which makes them valuable comparisons: accuracy
(equation 2), Precision (equation 3), Recall (equation 4), F1
score (equation 5) and Average Precision (equation 6) Hsieh
et al. [2018]; Bastani et al. [2020]; Romero et al. [2022]; Ya-
dav [2021]; Fu et al. [2019]; Mao et al. [2019]. In the afore-
mentioned equations, TP, FP, FN means, respectively, True
Positives, False Positives, and False Negatives. Precision
indicates the proportion of true positive predictions. Classi-
fication accuracy is the total number of correct predictions
divided by the total number of predictions made for a data
set. Precision quantifies the number of positive class predic-
tions that belong to the positive classes. Recall is a complete-
ness metric that specifies the proportion of detected positives.
F1-score combines Precision and Recall and is the harmonic
mean of these two metrics. Average Precision (AP) is a way
to summarize the precision-recall curve into a single value
representing the average of all precisions.

Accuracy = T P +T N
T P +T N+F P +F N (2)
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Precision = T P
T P +F P (3)

Recall = T P
T P +F N (4)

F1_score = 2 × P recision×Recall
P recision+Recall (5)

AP =
k=n−1∑

k=0

(Recallsn − Recallsn−1)Precisionsn (6)

Moreover, the authors in Kang et al. [2017] proposed the
cost-based model (CBO), which combines model special-
ization and difference detectors using inference-optimized
model search. It is used to find a cascade of high-qualitymod-
els (e.g., two vs. four-layer specialized model) and thresh-
olds (δdiff , clow, and chigh). The CBO receives a video and
target precision values as input, where FP∗ and FN∗, for
the false positive and false negative rates, respectively. For-
mally, it solves the following problem (Equation 7):

maximize E(throughput)
false positive rate < FP∗

false negative rate < FN∗
(7)

Equation 8 presents the CBO. The selectivities (fs, fm,
and fc) are estimated from a sample of the data. The
expected execution time per frame is given using TMSE ,
TSpecializedNN and TF ullNN which are the execution times
per frame for the MSE filter, the specialized NN and the
reference NN respectively. These execution times are data-
independent, so that they can be measured once per hardware
platform.

CBO = fsTMSE+fsfmTSpecializedNN +fsfmfcTF ullNN

(8)
The authors inMao et al. [2019] proposed the metricmean

delay, which emphasizes the early detection of objects in an
instance. Delay means the number of frames from the initial
frame of an object sequence to the first frame in which the
object is detected.
Moreover, the video querying community used more

metrics, including throughput (FPS) [Hwang et al., 2022;
Koudas et al., 2022; Haynes et al., 2018; Bastani et al., 2020;
Kang et al., 2017; Chen et al., 2021] and bandwidth usage
[Yadav, 2021; Poms et al., 2018b; Anderson et al., 2019;
Hsieh, 2019].

7.2 Video query latency metrics
Query latency refers to the time taken between the start of
the query and the retrieval or matching of the video. It is an
important topic due to the recent advances in hardware and
software mentioned in other sections. Recently, two doctoral
theses and related papers have presented solutions in this re-
search area [Hsieh, 2019; Yadav, 2021].
According to Hsieh et al. [2018]; Hsieh [2019], current

systems suffer from high costs at the ingestion phase and high
latency at the query time. The solution presented divides the
query processing work between ingest time and query time,
performing low-cost analysis at ingest time and facilitating

low-latency queries on recorded videos. In summary, those
work presented three approaches to keeping ingestion cost
and query latency low whereas still achieving the retrieval
and precision goals specified by the user:

• Top-K Index: It makes indexing more efficient during
ingestion, using specialized models for each video.

• Grouping similar objects. At ingestion time, it groups
similar objects using cheap resource vectors. At the
query time, each cluster executes only the centroid us-
ing GT-CNN and applies the result to all the objects in
the cluster.

• Balance ingestion and query costs: It automatically cal-
culates the ingestion CNN, the K value, the specialized
models, and the parameters for the desired precision and
recall targets.

In turn, Yadav and Curry [2019b] proposed a series of
throughput calculations for video streams.

• Matcher latency (Equation 9): It is the time difference
between when the window state is sent to the matcher
and when the pattern matches.

• System latency (Equation 10): It is the sum of the aver-
age event representation time, the window size (w), and
the matcher latency.

• Event Representation: It is the time taken by the video
stream processor to convert the frame into a graph.

• Event query accuracy: It examines how many relevant
event patterns were detected for each query compared
to the ground truth.

tmatcher−latency = tnotify − twindow send to matcher (9)

tsystem−latency =

(
w∑

i=1
(tevent−rep for window size(w))/w)

+tmatcher−latency

(10)

7.3 Configuration “knobs” metrics
The frame and video configuration (also called knobs) refers
to the set of values, options, or parameters of a frame or video.
Examples of settings for frames are size, format, and col-
ors, and for videos, are codecs, sampling rate, and playback
speed. In turn, configuration metrics act as filters that deter-
mine which and how many frames to process. Because of
their importance and diversity, knobs directly influence the
system’s performance. Therefore, choosing the right struc-
tures to use is an essential task. A module called profiler typ-
ically extracts measurements such as throughput, processing
time, memory consumption, and GPU usage in order to allo-
cate resources in the system.
For instance, as noted by Romero et al. [2022]; Kang et al.

[2022], processing all frames with expensive models is im-
practical. To address this, they propose optimizations like se-
lectively using faster, less accurate models to replace or filter
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out frames that would otherwise require expensive models.
In addition to frames and videos, the optimization process
also considers all relevant features, which impact the overall
ingestion and retrieval time.
The authors in Du et al. [2020] introduced the bandwidth

usage metric, which calculates the total system cost, encom-
passing the camera processing, network transmission of the
video, and server operations. Additionally, the average re-
sponse delay metric measures the average processing delay
per object, pixel, or segmentation. This metric accounts for
detection tasks, classification, and the time required to send
data to the server and perform inference.
The authors in Chen et al. [2021]; Dai et al. [2022] pro-

posed techniques for organizing detected objects during an
intermediate processing stage, aiming to reduce the number
of objects and frames that need to be evaluated.
The authors in Poms et al. [2018b] outline various meth-

ods for organizing video collections, including using tables
for frame sampling and pixel processing calculations repre-
sented as data flow graphs. Additionally, the paper examines
the performance of video decoding, the scheduling of graphs,
and the scalability of both single and multiple machine se-
tups.
The authors in Moll et al. [2022] propose processing

queries through chunk-based adaptive sampling. This ap-
proach identifies video frames containing objects of inter-
est without the need to run an object detection algorithm on
every frame, which is typically computationally expensive.
They also present an extensible set of definitions and equa-
tions to support their method.
The authors in Zhang et al. [2017] approach query process-

ing as an optimization problem, offering various equations to
predict query delay, load balancing, query distribution, and
other related factors.
The authors in Zhang et al. [2023] initially employed

a lightweight preprocessing module to eliminate noise and
minimize the data transmitted in the video. Subsequently,
they retrieved information from the noise-free video through
a server-side enhancement module. Several strategies were
proposed in this context.

8 RQ4: What datasets are available
for training and evaluating models
and frameworks?

The availability of suitable datasets is crucial for advancing
research in querying large volumes of video data, particularly
for the training and evaluation of machine learning models
and frameworks. Table 6, presented in this article, provides
an overview of the datasets identified in the reviewed litera-
ture.
Characteristics and Sources of Datasets
A substantial portion of these datasets consists of YouTube

streams. These videos encompass various sources, such as:

• Traffic Intersections: Used for analyzing vehicle flow
and detecting anomalies.

• Surveillance Cameras: Employed in security scenarios,
enabling the detection and tracking of people and vehi-
cles.

• News Channels: Offer varied content for activity and
event recognition.

Challenges and Needs Regarding Datasets
Despite the variety of available datasets, this section high-

lights significant challenges regarding their accessibility and
practical use. A major limitation identified is the reliance
on private or restricted datasets in many studies, which com-
promises reproducibility. However, to enable benchmarking
and fair comparisons, the use of publicly available datasets
is essential.
This underscores the critical need to:

• Increase the availability of public and labeled datasets:
This would facilitate the validation and comparison of
new approaches within a standardized environment.

• Standardize data formats and annotations: This would
promote interoperability and reduce the effort required
for pre-processing.

• Encourage collaboration in dataset creation: This
would help address more diverse and complex scenar-
ios, overcoming limitations in training data.

Overcoming these challenges is fundamental to advancing
research and developing more robust and efficient systems
for querying large video databases.

9 Conclusion, trends and challenges
This is the first research on query video analytics, also called
query video streams, a niche with many approaches and con-
tributions that differ from other video processing methods.
To carry out this research, this SLR presents several relevant
works published in 99 studies from early 2014 to 2024.
As a result of this large volume of information, it is possi-

ble to summarize the following trends and challenges:
Standardization and Query Interfaces

• Lack of a standard video querying language: De-
spite various initiatives to develop video querying lan-
guages, none have achieved widespread adoption. Cur-
rently, there is no standardized, ANSI-SQL-like lan-
guage specifically designed for querying video content.

• High-level querying interfaces: Recent research ex-
plores the use of modern human-computer interaction
concepts to develop intuitive interfaces that enable users
to declare queries and receive responses efficiently.

Processing Location and Infrastructure Constraints

• Edge-first processing paradigms: Emerging ap-
proaches increasingly avoid transferring data between
edge nodes and the cloud, due to high-speed internet re-
quirements and latency issues. Furthermore, many IoT
devices are now capable of performing advanced tasks
locally.
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Table 6. Datasets used for video querying

Dataset Classes or event pattern Available data
Jackson-town-square [Kang et al., 2017] Vehicles Complete dataset and annotations
Coral [Kang et al., 2017] People Complete dataset and annotations
Jackson hole [Hole, 2018] People, vehicles Live video streaming only
Taipei [Technologies, 2019] People, vehicles Live video streaming only
Lausanne [de Lausanne, 2020] People Live video streaming only
Oxford [School, 2018] People Live video streaming only
Alburn [of Auburn, 2023] People, vehicles Live video streaming only
Kabukicho [Kabukicho, 2020] People, vehicles Live video streaming only
Amsterdam [Lemmer, 2019] People, vehicles Live video streaming only
HMDB [Kuehne et al., 2011] Horse, bike Human actions
UCF-101 [Soomro et al., 2012] Horse, bike Action recognition data set
UT-Interaction [Ryoo et al., 2010] Handshaking, punching Human-human interactions
SBU Kinectic [Yun et al., 2012] Handshaking, punching Humans performing interaction activities
DETRAC [Wen et al., 2020] High volume traffic Multi-object detection and multi-object

tracking benchmark
Street scene [Ramachandra and Jones,
2020]

Jaywalking Various videos

VIRAT [Oh et al., 2011] Parking lot status Activity detection in multi-camera environ-
ments

PEXELS [Pexels, 2021] Vehicles Image and video database
Caltech Vision Group [Caltech, 2016] People Images for 101 categories with about 40 to

800 images per category
PETS [Patino et al., 2016] People, vehicles Surveillance systems
TRECVID [National Institute of Standards
and Technology, 2016]

People Video retrieval evaluation

DukeMTMC [Ristani et al., 2016] People Video tracking, person re-identification, and
low-resolution facial recognition

Xipg [Xipg, 2021] People Video test media
MOT16 [MOT2016, 2022] Pedrestrians, vehicles Multiple object tracking
Urban tracker [Jodoin et al., 2014] Vehicles Multiple object tracking in urban mixed traf-

fic

• Resource-intensive pipelines and optimization
needs: Video query pipelines require significant GPU,
CPU, memory, and network resources. Therefore,
algorithms focused on filtering activities and data
retrieval must be further developed to alleviate existing
bottlenecks.

Real-Time and Scalable Processing

• Real-time query processing and adaptive models:
There is a rising demand for query languages that sup-
port live video streams rather than solely historical data.
Online learning algorithms are also essential to address
concept drift and enable continuous model adaptation.

• In-memory computation and search space reduc-
tion: To manage large-scale video data efficiently, min-
imizing read/write operations to databases is critical. In-
novative algorithms and protocols are needed to reduce
computational costs and improve search efficiency.

Machine Learning Models and Data Availability

• Cost-effective model generation: Ground truth model
generation remains expensive at scale. New libraries
aim to automate the creation of lightweight and context-
aware models.

• Support from oracle users: Incorporating expert users
who can annotate events or identify emerging classes
can enhance the accuracy and responsiveness of detec-
tion models.

• Need for labeled datasets and reproducibility: Many
studies rely on private or inaccessible datasets, hinder-
ing reproducibility. Benchmarking and fair compar-
isons require publicly available datasets.

Privacy, Language, and Implementation Concerns

• Privacy-preserving video processing: Privacy con-
cerns are growing due to recent legal frameworks, yet
research addressing these challenges remains limited.

• Programming language limitations: Python is widely
used in video processing pipelines, but it may intro-
duce performance bottlenecks compared to more effi-
cient languages such as C++ or Java.

In short, these are the main gaps found:
High Computational and Infrastructure Costs

• Video processing remains a resource-intensive task,
with numerous studies reporting high computational
and operational costs [Kang et al., 2017; Hung et al.,
2018; Wang et al., 2018; Kang et al., 2019a; Kraft et al.,
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2020; Lai et al., 2021; Hwang et al., 2022; Li et al.,
2023b; Khani et al., 2023].

• Both relational and graph-based databases contribute
to system overhead. Relational models incur signifi-
cant costs due to triggers, stored procedures, and trans-
actional guarantees [Collins, 2020; Stonebraker et al.,
2020; Sipser, 2020; Chao et al., 2023], while graph
databases, although flexible for representing video se-
mantics, also demand substantial resources [Poms et al.,
2018a; Qin et al., 2021; Yadav et al., 2021; Yadav,
2021].

Query Language and Programming Challenges

• The lack of a standardized query language tailored for
video data severely hinders interoperability and scala-
bility, highlighting the need for a solution akin to ANSI
SQL for structured data.

• Additionally, current deployment strategies rely heavily
on complex imperative programming paradigms, which
complicates the development and maintenance of video
query pipelines [Kang et al., 2019a; Kang, 2022].

Query Latency and Spatiotemporal Complexity

• High latency remains a critical challenge in video query
processing, particularly for real-time or interactive sys-
tems [Hsieh et al., 2018; Yadav, 2019; Chao et al., 2020;
Hsieh, 2019; Chao et al., 2023].

• Furthermore, the complexity of detecting and retrieving
spatiotemporal events imposes an additional burden, of-
ten requiring sophisticated indexing and eventmodeling
techniques [Yadav and Curry, 2019a; Yadav, 2021].

Finally, this study provides a set of guidelines to aid read-
ers in understanding the broader context of the field, synthe-
sizing key approaches, emerging trends, and prevailing chal-
lenges through a comprehensive analysis of the existing lit-
erature.
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