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Abstract—Nonintrusive load monitoring (NILM) is a rel-
evant tool for improving energy consumption habits, con-
tributing to energy conservation and distribution system
planning. In recent years, high-frequency strategies using
deep learning have been presented in the literature, achieving
the state-of-the-art results for detection, feature extraction,
and classification of aggregated electrical loads, particularly
with the architecture defined as deep neural network model
for detection, feature extraction, and multilabel classification
(DeepDFML). DeepDFML used a deep convolutional network
(DCN) whose trained weights were shared for different output
fully connected networks. The performance of DeepDFML
depended on the availability of data and data augmentation
(DA) strategies. Given this scenario, we propose the ST-NILM, a new integrated architecture based on the scattering
transform (ST). ST-NILM has a DCN with analytical wavelet-based nontrained weights, shared with fully connected
output networks that perform event detection and multilabel classification of aggregate loads. We compared ST-NILM
and DeepDFML for the LIT-SYN dataset. ST-NILM achieved equivalent detection results to DeepDFML for two and three
aggregated loads and performed better for single loads. The hardware implementation shows that ST-NILM consumes
less memory, less GPU load, and substantially less computational effort than DeepDFML. ST-NILM presents comparable
or even superior results than other state-of-the-art deep-learning-based methods.

Index Terms— Deep learning, multilabel classification, nonintrusive load monitoring (NILM), wavelet scattering.

I. INTRODUCTION

NONINTRUSIVE load monitoring (NILM), initially pre-
sented by [1], consists in extracting information from

each appliance in a house, by observing electrical quantities
(voltage, current, or power) aggregated to the energy input.
In the NILM approach, individual consumption information
is obtained for each appliance without using sensors for each
piece of equipment. Separate information may provide con-
sumers with: 1) knowledge of their own consumption habits;
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2) analyze consumption in real-time and in historical series;
3) prospect future consumption; and 4) plan and distribute the
use of more powerful loads (electric heating, air conditioning,
etc.). As a result of this, one could save energy consumption.
Two important tasks regarding NILM are: disaggregation and
classification. The disaggregation separates each load curve
(typically, current or power) from an aggregated single signal
(in most cases located at the switchboard). The classification
corresponds to identifying which appliances are turned on/off
and when these events happened from the analysis of the single
aggregated electrical signal.

One of the most relevant stages of feature extraction is
defining the power signature (PS). PS is a particular repre-
sentation that characterizes the behavior of each appliance
based on their features, and it depends on the feature extrac-
tor chosen. The first PSs considered only changes (events)
that occurred after a time interval in the aggregate power
curve that was in a steady-state. These approaches were
limited to linear loads and restricted to loads with an oper-
ating regime with varying power (electric irons, heaters,
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etc.). However, using these early methods was challenging
for determining the PS of switched or nonlinear electronic
circuits [2].

In addition to the above-mentioned early methods, the
PS can be obtained through the features extracted from the
electrical time signal (voltage, current, or energy). Ibrahim
et al. [3] classified NILM methods into model-based or
data-driven. Based on the idea proposed in [4], one can cat-
egorize the feature extractors for data-driven NILM methods
into: conventional physical definitions (CPDs), time–frequency
analysis (TFA), and voltage–current (V –I )1 trajectories. More
recently, deep convolutional network (DCN) model-based
NILM methods have gained attention in the recent years
because the extracted features are highly discriminative, and
they are not engineered (no need for preknowledge about the
appliances) [5].

The DCN methods are composed of convolutional neural
networks (CNNs). CNNs have convolutional filters whose
weights are trained. This training process requires large
amounts of data and computational power. Furthermore, the
structure of DCN topologies is generally determined empiri-
cally, and their coefficients have no physical meaning. On the
other hand, in [6], the scattering transform (ST) was proposed,
which is a time-shifting-invariant and stable to small time-
warping operator. The ST is similar to CNN [7], sharing
its advantages (high discriminability), but with the following
advantages: 1) there is no need for weight training; 2) the
ST coefficients have physical meaning (location in time and
frequency), which is particularly interesting in the NILM
problem; and 3) as a consequence of the coefficients not being
trained, ST needs less training data than CNN.

The above-mentioned advantages of DCN methods com-
bined with the ST encouraged us to propose a framework for
extracting features from high-frequency NILM signals, using a
new architecture with the ST replacing the CNN in a multitask
application, called ST-NILM. Hence, the main contributions of
this article are given below.

1) We propose a single framework that integrates detection
and classification of aggregated loads.

2) Our proposal uses a convolutional network that does not
need a training step, thus requiring less data and no need
for data augmentation (DA) approaches.

3) Unlike other state-of-the-art approaches, our proposal
uses a multilabel nontrainable feature extraction frame-
work to disaggregate and classify multiple aggregated
loads.

4) The architecture of the proposed convolutional network
is determined analytically through the selection of the
appropriate ST parameters for NILM.

5) Our proposal requires less computational cost than the
state-of-the-art methods, with superior results for most
cases.

6) An ablation study on ST-NILM parameters that evaluates
the impact of varying the ST parameters on the classifi-
cation and detection of electrical loads.

1We represent electrical current with the capital letter “I” to maintain
compatibility with related literature.

7) An embedded version of our proposed framework was
also developed for demonstrating its feasibility for a real-
time application.

The remaining of this article is organized as follows. We
present the related works in Section II. We introduce ST-NILM
in Section III, highlighting all the steps that compose it.
We show the preprocessing process in Section III-A and
present the scattering network (and its parameterization) in
Section III-B. We detail the dataset used in Section IV. The
results obtained are shown in Section V, including an abla-
tion study on the ST-NILM parameters and the embedded
implementation of our proposed framework. Finally, general
conclusions and future works are presented in Section VI.

II. RELATED WORKS

DCN architectures are categorized according to the data
sampling frequency. Several works use low-frequency datasets
(sampling frequency below 3 Hz) to train CNN architectures
for disaggregation or NILM classification [8], [9], [10], [11],
[12], [13]. High-frequency strategies, main focus of this work,
using DCN can also be found in [14], [15], [16], [17], [18],
[19], [20], [21], [22], and [23].

In different feature extraction methods, a 2-D feature image
is generated from the 1-D NILM signal, allowing the use of
well-known image processing and deep learning techniques for
NILM classification. In [14], the 2-D image was generated by
a time–frequency short-time Fourier transform (STFT). The
spectrogram was applied as the input of a CNN, particularly
designed for that work. The good location both in time and
frequency allowed to deal with nonstationary multicomponent
signals, but some classification accuracy results were below
the average of other methods, i.e., around 70% for the PLAID
dataset. A similar approach is presented in [15], in which
spectrograms obtained from an STFT were used as input of
the CNN. The strategy was devised to filter out background
noise caused by other loads in the target load. In [16], the 2-D
representation was weighted pixelated V –I images, obtained
from the normalized V –I curve in steady-state. The image
was then inserted as the entry of a CNN, which performs the
classification. The overall FScore was also below the average
of the other compared methods (<78%), and the authors
needed to use two datasets together (PLAID and WHITED)
to reach those results. Mulinari et al. [24] proposed to use
the 2-D Fourier transform to extract features from the V –I
curve of electric loads. FScores of up to 97.7% were achieved
by [24], but the proposed method did not contemplate load
detection and disaggregation.

Two multilabel approaches were presented in [17] and [18].
Both have the advantages of being multilabel classification
strategies, presented as alternative approaches to the traditional
2-D image applied to the input of a CNN. In [17], a transition
event is first located, followed by the Fryze power theory in
the aggregated current to extract the features together with a
similarity matrix based on the Euclidean distance to reinforce
the discriminability. A 2-D image is then generated, being the
input of a CNN with multilabel classification. In [18], on the
other hand, a multilabel approach was proposed to improve
the classification of loads of the same type but different
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brands. Given one cycle of the voltage and current, a weighted
recurrent graph (WRG) generates a 2-D image for posterior
classification. Accuracy results were better than other baseline
methods that produce 2-D images from V –I trajectories, but
still lower than those presented in [17] (both for the PLAID
dataset). Moreover, the results of [18] were obtained from
submetered data (i.e., not aggregated).

Accuracy results above 98% were obtained in [19], which
presented a technique called 2-D phase encoding (2DPEP) to
generate a 2-D image from the NILM signal. Using time-
domain feature extractors, the authors overcame the state-
of-the-art classification metrics for several distinct datasets
based on sliding windows. Despite these promising results,
Himeur et al. [19] had a high dependency on the event
detection algorithm and the proposed approach used other
classification methods based on classical machine learning,
increasing the complexity. Chen et al. [25] proposed both
temporal and spectral to define a dual PS for each load.
Each PS, represented as 2-D image, enters a DCN structure
followed by a fully connected network. The FScore results
overcame the V –I method, but the authors did not compare
these results with another CNN-based approach. Furthermore,
the proposal of [25] was time-shifting-covariant.

In [20], a discrete wavelet transform to obtain a 2-D image
from the aggregated current signal is proposed. The authors
used the image as an input to a sequence-to-sequence CNN.
The wavelet transform has the advantage of time-warping
stability, but the data used in [20] were submetered, and not
naturally aggregated. The same limitation is found in [20]
and [21]. Particularly, Moranin et al. [21] used a deep con-
volutional autoencoder to extract features from individual
hospital loads. Nevertheless, there is no disaggregation since
the CNN input is obtained from a submetering network.
In [22], a multiagent strategy was proposed to improve NILM
classification, achieving accuracy results above 95% on the
LIT-dataset. Although this result was superior to the related
literature, applying the multiagent strategy in realistic cases
may be compromised due to the high computational com-
plexity. Mukaroh et al. [23] also presented a CNN-based
classification model for NILM, reaching 92% global accuracy
on the LIT-dataset, but with limitations in the feature extraction
for loads with similar transitory shapes.

A real-time CNN-based method proposed in [26] reached
up to 99.2% accuracy, with a 100-Hz sampling frequency data.
This method uses a three-stage structure: 1) event detection;
2) CNN classification; and 3) power estimation, applying
machine learning to detect the turn-on events and an heuristic
algorithm to estimate the real-time power. However, there were
some limitations, such as: 1) authors used a private dataset,
which reduces reproducibility; 2) only three appliances of
greater power consumption were used in the tests; and 3) the
algorithm had problems in identifying loads with steep step-up
transients.

Gomes and Pereira [27] applied a pinball loss function
(PB) to different DCN architectures and compared the results
with the mean squared error (MSE) loss function. The authors
performed experiments with manually summed data and native
aggregated data. Both with pinball loss function and MSE,

all the results were better with the sum of loads. As the
DCN was not time-shifting-invariant, Gomes and Pereira
[27] reported problems with time-shifting signals. Jia et al.
[28] extracted features with bidirectional dilated convolution
networks, increasing the length of receptive fields. Although
the results outperformed other methods, the authors did not
address the computational cost of training, and the noncausal
attribute of the extractor did not allow real-time application.
Both [29] and [30] applied long short term memory (LSTM) to
disaggregate NILM loads. Hwang and Kang [29] and Laouali
et al. [30] presented promising applications for real-time.
However, the lack of reproducibility of the private dataset
of [30], the average FScore below 90% of [30], and the
low-frequency data features’ discriminability are challenging
to overcome.

Mallat [6] proposed the ST to define a time–frequency
representation of a 1-D signal. ST has an architecture anal-
ogous to a CNN. However, in the ST, the filter coefficients
are not trained but are analytically determined using wavelets.
In addition, the structure of the ST (number of layers and
convolutional filters) can also be determined analytically. As
a consequence, ST needs less training data than CNN for
classification tasks [7], [31]. ST is invariant to time-shifting
and stable to time-warping, and these properties are par-
ticularly interesting for classifying electrical charges [32].
Some classical feature spectral extraction methods, such as
the STFT [33], were time-shifting-invariant representations
but were not stable to time-warping [6]. Methods based
on Mel-Spetrograms [34] extracted features more closely
related to human perception of sound, but their particular
filter bank structure may not adequately represent electrical
signals. Two reassignable synchrosqueezing approaches were
presented by [35] and [36]. Daubechies et al. [35] proposed the
synchrosqueeed wavelet transform (SSWT), which was based
on the continuous wavelet transform (CWT). They added CWT
components with the same instantaneous frequency to obtain
a more focused representation. The method [35] considerably
decreased the dimensionality of the CWT representation but
depended on prior knowledge of the nature of the input
signal. In addition, unlike ST, SSWT method [35] was a time-
shifting-variant representation. Oberlin et al. [36] proposed a
synchrosqueezing method based on the STFT, named Fourier-
based synchrosqueezing transform (FSST). The approach
of [36] outperformed the existing TFA techniques in terms of
its ability to extract detailed information about the frequency
content of a signal. However, unlike ST, FSST was not stable
to time-warping. Michau et al. [37] proposed the denoising
sparse wavelet network (DeSpaWN) method, composed of a
cascade architecture using a deep learning framework. The
DeSpaWN method, unlike SSWT [35], did not need a prior,
as the coefficients were learned, and hard-thresholding allowed
for a sparse representation. DeSpaWN, however, requires
training a reduced number of parameters, unlike ST.

Several authors have used ST in areas other than NILM.
For instance, Wang et al. [38] proposed a framework for
recognizing musical performance techniques, reaching Global
FScores up to 79.9%. Souli et al. [39] extracted features with
ST and used a DCN to classify voices, reaching the state-
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of-the-art accuracy results of up to 99.62%. de Aguiar et al.
[7] and Aguiar et al. [32] proposed approaches based on ST
to extract features and classify NILM signals. Aguiar et al.
[32] evaluated the performance of ST under nonideal dataset
conditions: subsampling, reduced number of examples, and
reduced number of measurements. The results outperformed
the DWT and V –I methods for most of the analyzed scenarios,
but the authors did not propose an event detection method.

Finally, the deep neural network model for detection,
feature extraction, and multilabel classification (DeepDFML)-
NILM [40] uses a DCN for detection, feature extraction,
and multilabel classification of high-frequency NILM signals
for the publicly available LIT-dataset. The detection results
were above 90% for most cases, while the classification
accuracies were comparable with other state-of-the-art works
(around 97%). However, due to the high number of parameters,
the proposed method requires DA strategies, in addition to
significantly increasing the computational complexity.

Despite the relatively good results presented so far, some
of the main limitations with the architectures based on DCN
applied to NILM are given below.

1) The proposed architectures generally do not integrate
detection, disaggregation, and classification, i.e., the net-
work performs only one or two of these tasks —with the
exception of DeepDFML [40].

2) As they use deep learning techniques, these solutions
demand a large amount of data for training, since the
computational effort grows with the increase in the
number of coefficients (weights) of learned convolutional
filters. The ST, on the other hand, contributes to reducing
the computational effort, by replacing the convolutional
weights by analytical wavelet coefficients. Hence, this
work proposes an original and unified architecture for
high-frequency NILM signals, combining the advantages
of ST with DCN approaches for signal detection (identi-
fication) and classification.

III. PROPOSED ST-NILM
Since our approach is based on the DeepDFML [40],

we first present in this section a brief overview of that
architecture. The DeepDFML was inspired by YOLO [41], and
it detects the instant in time when each electrical load is turned
on or off and predicts the combination of loads present in
the input signal. The architecture of DeepDFML has a shared
network with five layers and several learned coefficients. The
size of the convolutional filters, the number of layers, the pool
size, and all other parameters were empirically determined.

We present DeepDFML in Fig. 1(b). The DeepDFML
method has a shared convolutional network after the prepro-
cessing stage and three subnetworks (one for each task) at the
output. Two subnetworks deal with classification tasks (event
type and load identification). The event-type subnetwork per-
forms the binary classification of the turn-on or turn-off
event of an appliance. The load identification subnetwork
performs the multilabel binary classification of the aggregated
appliances in the input sample. The event sample detection
subnetwork deals with a regression task, and its output is a real

number from 0 to 1 that informs the event’s position inside a
grid time interval.

Fig. 1(a) shows the proposed ST-NILM architecture. In the
ST-NILM, we replace the shared DCN of the DeepDFML with
the scattering network. The scattering network is also a con-
volutional network but, unlike CNN, the filters are fixed, not
learned. Fig. 1 shows the proposed ST-NILM architecture. The
most relevant differences between our proposal (ST-NILM)
and DeepDFML-NILM are given below.

1) ST-NILM does not have trained weights on the shared
convolutional network [named scattering network in
Fig. 1(a)].

2) The determination of the scattering network weights
is analytical (determined, in our proposal, by Morlet
wavelets) and, therefore, it is possible to calculate them a
priori; we perform load detection through the event-type
classification network. This network detects whether the
load has been turned on or off within a grid interval
(less than 166 ms). We consider this detection resolution
sufficient, so we do not use DeepDFML’s event sample
detection network on ST-NILM.

We detail all the parts that compose the proposed architec-
ture as follows.2

A. Preprocessing
In ST-NILM, we use the same preprocessing strategy used

in DeepDFML-NILM. To illustrate the preprocessing strategy
proposed in [40] and used for ST-NILM, we present the block
diagram of Fig. 2.

In Fig. 2, the green blocks represent the original time
series samples contained in the LIT-SYN subset, and the red
blocks represent the preprocessing stage. To facilitate direct
results’ comparisons, we apply the data segmentation proposed
in [40]. In this strategy, the original LIT-SYN subset signals
are cut into smaller sections containing centered segments
of approximately 50 cycles of 60 Hz plus two unmapped
margins (15% of the centered segment at each edge of the
whole segment). The cutoff points of the original signals come
from the electrical loads connection annotations contained in
the original subset. Each output segment of the cutting block
must have at least one turn-on event. The 50-cycle segments
go through a grid separation block (Fig. 2), which divides
them into five regions of 10 cycles, each called grids. From
the labels and events’ annotations originally contained in the
dataset, we determine multitask labels for each of the grids as
follows.

1) Event-Type Label: 3-bit binary one-hot encoding that
determines whether a load has turned on or off in the
range of a grid;

2) Multilabel Classification: Binary one-hot encoding that
indicates which loads are connected in the range of a
grid.

B. Scattering Network
The proposed method replaces the shared deep CNN applied

in [40] with the scattering network, which has no learned

2All the codes for ST-NILM are publicly available at https://github.com/
LucasNolasco/ST-NILM
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Fig. 1. (a) Proposed ST-NILM and (b) DeepDFML architectures: the proposed ST-NILM architecture is inspired by DeepDFML, but by replacing
the shared convolutional network of (b) by the scattering network of (b) we also adapt the fully connected network for event-type classification to
obtain better results. (a) Proposed ST-NILM. (b) DeepDFML, proposed by [40].

Fig. 2. Preprocessing strategy applied to ST-NILM and proposed in [40].

coefficients. The path of the input signal in the scattering
network block follows: 1) ST; 2) windowed average; and
3) flatten. We will address each of these steps as follows.

1) Scattering Transform: The ST has a structure similar
to the DCN and represents the modulus and mean of a
CWT. ST uses functional blocks that calculate the modulus of
convolutional operations between wavelets and n-dimensional
signals. For the case of the present work, we will use 1-D
signals at the input of the ST.

Let a time-domain electrical current signal. Guth et al.
[42] showed that phase collapse improves the classification
performance of convolutional networks in which there are
time-shifting-invariant classes (1-D case). Phase collapse is
the phase information elimination performed by some nonlin-
earity. The ST performs phase collapse explicitly through the
modulus applied to the convolution of the time-domain signal
of the wavelet [42]. Real-valued CNNs, for example, perform
phase collapse implicitly [42].

Each building block of ST is composed of a convolution
structure + modulus + average. This structure is very similar
to a DCN, which generally has the association of convolu-
tion + nonlinearity + pooling. ST uses modulus operation for
the following reasons [6].

1) Modulus extracts the envelope of a complex signal, which
partly explains the time-shifting invariance. Consider the
modulus of the convolution of the signal x = x[n] with

the wavelet 9[n], given by |x ∗ 9|. Then
∫
(|x ∗ 9|))dt

is the L1-norm, which is time-shifting-invariant.
2) The modulus is a contractive operator, increasing feature

space discriminability. Mallat [6] showed that the modu-
lus operator is the only possible nonlinearity choice with
these characteristics.

Now we will define the main parameters of the ST: the
bandwidth and central frequencies of the filters, the number
of wavelets per octave Q, the maximum scale (J ), and the
order (m) (or the number of filter banks).

1) Choosing the number of wavelets per octave Q: The
more wavelets per octave, the greater the number of ST
coefficients, and the more selective the filters. Studies in
the literature using ST chose Q values between 8 and 12.
We chose Q = 10 for the ST-NILM.

2) Choosing maximum scale J: We choose J based on
the nature of the harmonic content of electrical signals.
Consider a discrete signal x[n], with sampling frequency
fs and a total number of samples equal to T . So, the
highest representable frequency, by Nyquist’s theorem,
is ( fs/2). Because of that, the maximum frequency scale
( fmax) analyzed must represent a frequency lower than
half the sampling frequency. Considering a previous
ablation study based on the classification performance
and reduced number of coefficients, we choose J = 10,
so that the the largest filter will be concentrated in a time
interval of size 210 samples. Ramírez-Ramírez et al. [43]
showed that the harmonic distortion of the combination
of residential loads for frequencies greater than 1020 Hz
(order 17) represents less than 4% of the distortion found,
for example, at 180 Hz (order 3). With that in mind,
we consider the choice of J = 10 reasonable for our
application in electrical signals.

3) Choosing order m: Literature shows that the scattering
coefficients (S) with two layers already represent up
to 98% of the energy of the input signal, and all the
second-order coefficients together represent only 20% of
the first-order coefficients’ total energy [44]. In addition,
equivalent electrical appliances classification results were
presented in [45] for m = 1 and m = 2. We chose m = 1,

Authorized licensed use limited to: Universidade Tecnologica Federal do Parana. Downloaded on April 03,2024 at 13:53:21 UTC from IEEE Xplore.  Restrictions apply. 



DE AGUIAR et al.: ST-NILM: A WAVELET SCATTERING-BASED ARCHITECTURE 10545

Fig. 3. Grids division for windowed average.

considering that the ST with m = 1 has fewer coefficients
than the ST with m = 2, resulting in less computational
effort.

2) Windowed Average: We use a windowed average to select
the features shared by the two output deep networks. The first-
order coefficients of the ST, in each path, are signals located
in time, given by

Sk
i = |xi ∗ 91,k | ∗ 8J . (1)

Fig. 3 shows the division for windowed average. Let N be
the number of samples of Sk

i . We divide the range n ∈ [0, N ]

into five integer parts (gk
i,1 . . . gk

i,5), centered on the same
range. The remaining samples from this entire division were
at the ends of the range, and we named them unmapped region
(represented with lk

i , rk
i ). The idea is to combine the result of

the ST using the same grid division applied by DeepDFML
when encoding the model outputs.

Next, the average of each lk
i , rk

i , and gk
i,n segments is

calculated. We define f k
n =

¯gk
i,n , f k

i,l =
¯lk
i , and f k

i,r =
¯rk
i ,

and therefore, the selected features for each wavelet are

S f k
i =

[
f k
i,l f k

i,1 · · · f k
i,5 f k

i,r
]
. (2)

3) Event-Type Classification and Load Classification Net-
works: The event-type classification network determines what
type of event is found within a grid’s time interval using
one-hot encoding on a multiclass classification task. The input
signal for this task is derived from the differences between
consecutive grid interval averages. We define the differences
for the kth wavelet filter and the i th sample as

Dk
i =



dk
i,0

dk
i,1

dk
i,2

dk
i,3

dk
i,4

dk
i,5

dk
i,6


=



f k
i,1 − f k

i,l
f k
i,2 − f k

i,l
f k
i,3 − f k

i,1
f k
i,4 − f k

i,2
f k
i,5 − f k

i,3
f k
i,r − f k

i,4
f k
i,r − f k

i,5


. (3)

For the event-type classification, the feature set is formed
by concatenating the coefficients Dk

i , k = [0 . . . K ] such that
K is the total number of wavelets with order less than or equal
to one. A flatten layer is applied to Dk

i to obtain a 1-D vector
with all the selected features.

The output for this subtask has dimension (ngrids × 3),
where ngrids is the number of grids, and 3 is the number
of possibilities for classifying events: 1 for turn-on, 2 for
turn-off, and 0 for a false event. This subtask network uses
a sigmoid layer as an activation function and the categorical

cross-entropy as a loss function. This cost function, in turn,
takes the following form:

CCE = −

M∑
i=1

p (xi ) · log q (xi ) (4)

in which M is the total number of examples, p(xi ) is the
expected probability of xi to be from the class being analyzed,
and q(xi ) is the probability found by the model.

In addition, there is a load classification network, which
serves to determine which loads are present in the sample
to be classified. This network represents a multilabel classifi-
cation task, which allows the identification of multiple loads
simultaneously. The input signal of this network is the set of
concatenated coefficients S f k

i , given by applying a flatten layer
to S f k

i to obtain a 1D vector with all the selected features.
The output has dimension (ngrid × nloads), where ngrids is
the number of grids obtained from the windowed average,
and nloads = 26 is the number of electrical appliances in
the LIT-SYN dataset. Since a multilabel classification was
implemented, sigmoid was chosen as the activation function
using the binary cross-entropy as a loss function. This cost
function takes the following form:

BCE=−
1
M

M∑
i=1

p (xi ) log q (xi )+(1 − p (xi )) log (1−q (xi )) .

(5)

It is worth noting that this subtask did not require weighting
to improve the classification performance.

Sections V-A and V-B provide a more detailed explanation
of the training and evaluation processes.

IV. DATASET

We chose the dataset for the experiments, considering the
application in real homes. Since turning on multiple appliances
simultaneously in real-world homes is expected, we need
a high-frequency dataset with as many aggregate loads as
possible. With this, we can adequately train the ST-NILM
with the annotated data. The dataset used in this work was
created by the Laboratory for Innovation and Technology
in Embedded Systems (LIT),3 and it is composed of three
subsets [46]: Natural, Simulated, and Synthetic. Here, we use
the Synthetic subset for the following reasons: 1) the subset
contains annotated samples of up to eight aggregate loads;
2) the Natural subset was not available by the time this work
was done; 3) the Simulated subset does not contain real-world
data; and 4) the Synthetic subset contains real-world data, from
real-world appliances, with precise annotations.

The Synthetic subset (LIT-SYN) is regarding to acquisitions
collected from a bench, in which real loads are connected, but
the network loads’ switching instant is controlled. This set con-
tains 1664 waveform acquisitions sampled at 15.36 kHz and
12 bits using the National Instruments (NI) MyRio embedded
module, with precisely annotated (< 5 ms) switching events
and synchronized voltage and current waveforms. All the

3http://dainf.ct.utfpr.edu.br/ douglas/LIT_Dataset
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files were recorded using the NI technical data management
streaming (TDMS) and, then, converted into binary MATLAB
files (MAT) for manipulation in Python environment. This
procedure and the data acquisition are fully detailed in [46].
The aggregated ac grid voltage and current acquisitions define
different subsets of LIT-SYN, depending on the number of
simultaneous loads in the waveform: with single loads (LIT-
SYN-1), two loads (LIT-SYN-2), three loads (LIT-SYN-3),
and eight loads (LIT-SYN-8).

V. RESULTS

This section presents the results obtained with ST-NILM,
comparing them with DeepDFML and related works. In
addition, we present the procedures adopted for the experi-
ments and a discussion of the results obtained. For all the
implemented baselines, we use the LIT-SYN-1, LIT-SYN-2,
LIT-SYN-3, and LIT-SYN-8 subsets. All these subsets present
the same sampling rate [46].

A. Experimental Setup
The dataset was divided into training and test sets, with a

holdout test set containing 10% of the data. For training, with
90% of the entire dataset, we used a ten-fold cross-validation
procedure. The model was trained for each fold considering
a validation subset with 10% of the training subset size. The
best model was chosen considering the average between the
F1 scores for binary classification on the validation subsets for
each fold.

Three detection metrics were used, based on [40], as
follows.

1) PCon = (Aon/Non) (percentage of correction of an ON
event for a given method), such that Aon is the number
of correct ON detections and Non is the total number of
turning on events.

2) PCoff = (Aoff/Noff) (percentage of correction detection
of an OFF event for a given method), such that Aoff is
the number of correct OFF detections and Noff is the total
number of turning off events.

3) PCav = (PCon + PCoff/2) (the arithmetic mean of
PCon and PCoff), which indicates the average detection
performance.

For classification, we use the F1-Macro metric, given by

F1-Macro =
1
Y

Y∑
i=1

2 · tpi

2 · tpi + f pi + f ni
(6)

where tpi and f pi are the number of true positives and false
positives for appliance i , respectively, and f ni is the number
of false negatives.

B. Results Using a Reduced LIT-SYN Dataset
We present both the detection and classification metrics

considering reduced subsets for the training step. We perform
the analyzes on reduced datasets for the following reasons:
1) in real-world cases of disaggregation, the amount of data
can be limited, so an analysis of the performance of the
NILM techniques under these conditions is necessary; 2) to
the best of our knowledge, related works do not address the

effect of reducing the number of examples on the performance
of NILM strategies; and 3) methods with better performance
with reduced datasets tend to be more easily implemented in
real-time.

We create additional training examples for DA tests using
the high accuracy NILM detector (HAND) method [47].
These additional examples correspond to previously obtained
false-positive and false-negative detections that can help the
learning process and increase the computational cost.

Table I shows the detection metrics for the reduced subset
scenarios for training, and without DA. The detection metrics
are comparable between ST-NILM and DeepDFML for large
training sets (100% and 75%). For reduced training sets
(50% and 25%), ST-NILM outperforms DeepDFML on all
the calculated detection metrics. We also inserted in Table I
the metrics obtained with DeepDFML with DA. ST-NILM,
even without DA, obtained detection results equivalent to
DeepDFML with DA (maximum difference in the PC metric
of 4.8%).

Fig. 4 shows the classification results obtained for reduced
training datasets, comparing ST-NILM, DeepDFML [40],
in addition to two baselines using STFT [33] and Mel-
Spectrogram [34] instead of ST as feature extractors. From
each time-series example, we use frames with 512 samples,
separated by steps of 1024 samples for both STFT and Mel-
Spectrogram and 128 frequency bins with an upper frequency
limit of 7800 Hz for Mel-Spectrogram. We choose these
parameters based on two analyses: the number of coeffi-
cients comparable with ST-NILM and the best classification
performance among several sets of parameters. Note that
the classification metrics are better for ST-NILM in all
nondata-augmented scenarios with reduced training dataset.
For comparison purposes, we also insert in Fig. 4 the FScore-
Macro obtained with DeepDFML with DA. The classification
result obtained with ST-NILM without DA is equivalent or
higher to that obtained by DeepDFML with DA for the
scenarios with more training examples (maximum difference
of 2%) and lower (difference of 14.58%) for the scenario
with 25% of training data. The detection performance using
the spectral extractors STFT [33] and Mel-Spectrogram [34]
was low (reached a maximum of PCav = 52%, similar to
the values found by [22]), and for this reason, we chose
not to include them as detection performance baselines in
Tables I and II.

C. Comparison With Related Works
The most similar architecture to ST-NILM is

DeepDFML [40] and, therefore, it was used as the primary
baseline for comparing results. This section also compares
the results obtained with other related works. The best
results achieved by DeepDFML considered a DA strategy to
expand the training set. This strategy increased the overall
complexity of the model. On the other hand, our proposed
method, ST-NILM, does not need DA. We present in Table II
the detection results comparing ST-NILM with DeepDFML
in all the subsets of the LIT-SYN dataset, also considering
scenarios with and without DA. The results of Table II show
that: 1) the best ST-NILM results are achieved without DA;
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TABLE I
DETECTION RESULTS FOR REDUCED TRAINING SUBSETS

TABLE II
COMPARISON OF DETECTION RESULTS BETWEEN METHODS CONSIDERING EACH SUBSET OF THE LIT-SYN DATASET

Fig. 4. Classification results: F1-Macro results for reduced training subset scenarios.

2) ST-NILM detection results are more affected using DA
than DeepDFML; 3) ST-NILM without DA is better than
DeepDFML without DA, i.e., PCav is higher, for tripe loads
(LIT-SYN-3); 4) Except for LIT-SYN-2, the metric PCon
obtained by ST-NILM without DA outperforms DeepDFML
with DA for all other subsets; and 5) notwithstanding,
ST-NILM without DA surpassed DeepDFLM and correctly
detected all the events for LIT-SYN-1. For LIT-SYN-2 and
LIT-SYN-3, the detection performances of ST-NILM and
DeepDFLM were equivalent (maximum variation of 5.3%).
For LIT-SYN-8 (the case with more aggregated loads),
ST-NILM detected better turn-on events and, conversely,
DeepDFML was better for turn-off events.

Table III presents a comparison between our work and
the main state-of-the-art methods, taking into account the
following criteria: 1) the maximum number of multiple loads,
which is the maximum number of appliances added together in

a single aggregated signal used for the proposed framework;
2) whether the method considers multilabel classification or
not; 3) whether the method uses DA or not, which directly
impacts the overall complexity of the proposal; 4) whether the
method is embedded or not, which indicates the feasibility of
real-time implementation; and 5) a classification or disaggrega-
tion metric. Table III shows that ST-NILM is the only method
(among the analyzed methods) with an embedded application
that performs multilabel disaggregation with FScore above
95%, without using DA.

D. Ablation Study on ST-NILM Parameters
To verify the impact of the variation in parameters m, J ,

and Q on the ST-NILM performance, we perform a series
of training processes with different combinations of these
parameters. We reproduced all the experiments previously
presented with m = 1, now with m = 2, with Kymatio
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TABLE III
COMPARISONS WITH STATE-OF-THE-ART METHODS. THE ✓SYMBOL INDICATES THAT THE METHOD HAS THE RELATED CHARACTERISTIC AND

THE ✗SYMBOL INDICATES THAT THE METHOD DOES NOT HAVE THAT CHARACTERISTIC

library [48]. For m = 2, for each time series, we extract the
features considering the following.

1) For the classification model, we use the averages of
each first-order grid as features. For the detection model,
we apply a flatten layer, as in Fig. 1, and concatenate the
difference between the averages of each first-order grid
and second-order grid, in all subbands.

2) We apply the same fully connected layers used for m = 1
in the tests for m = 2.

3) For m = 2, we assume one wavelet per octave in the
second-order filter bank and Q filters per octave in the
first-order filter bank. For m = 1, we assume Q wavelets
per octave in the first-order filter bank.

4) We used the same classification metrics for m = 1 and
m = 2.

Fig. 5 presents the classification and detection results
obtained by tests with parametric variation. Comparing the
classification results in Fig. 5(a) and (b), we note that the
F1-Macro is not significantly impacted when choosing m − 2
instead of m = 1 (maximum variation less than 1.8%). We
also note that the average classification performance is better
for J = 10 than for J = 12 (3.2% higher F1-Macro average
value) and that parameter Q has more impact on classification
performance for J = 12 than for J = 10. The detection results
presented in Fig. 5(c) and (d) show that the J parameter is
the most impactful for the detection since the average PCav

drops more than 25% when exchanging J = 10 for J = 12.
Furthermore, the variance of PCav with different Q is greater
with J = 12 than with J = 10. We noted that the metrics
PCav are better for J = 10 in most analyzed scenarios.
Finally, the analysis of the results leads us to conclude that:
1) increasing the value of J does not necessarily improve
the classification performance and aggravates the detection
performance and 2) using m = 2 instead of m = 1 does not
result in significant improvement in classification performance
and deteriorates detection performance.

E. Embedded System
With the objective of evaluating the practical implemen-

tation of the proposed method, a subject also underexplored

Fig. 5. (a) Classification and (b) detection results considering different
ST parameters. Note that classification results do not variate signifi-
cantly by increasing J. Detection metric PCav deterioration, on the other
hand, is much more evident when exchanging J = 10 by J = 12.
(a) F1-Macro for J = 10 with different Q values. (b) F1-Macro for J = 12
with different Q values. (c) PCav for J = 10 with different Q values.
(d) PCav for J = 12 with different Q values.

in the literature (Table III), ST-NILM was tested on a Jetson
NVIDIA TX1 to evaluate its performance in an embedded
system environment. This platform has a 256-core GPU,
a four-core ARM Cortex-A57 CPU, and 4 GB of RAM under a
Linux operating system. The inference performance, presented
in Table IV, was obtained from an average of 841 examples.
Compared with DeepDFML, ST-NILM had lower RAM usage
(62.7% vs 94.8%), lower GPU load, and substantially fewer
floating point operations (0.264 GFLOPS for ST-NILM and
7.643 GFLOPS for DeepDFLM).
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TABLE IV
RESOURCES CONSUMPTION ON THE EMBEDDED SYSTEM

VI. CONCLUSION

In this article, we presented a DNN architecture to classify
electrical signals in a unified way. The proposed network,
ST-NILM is based on the DeepDFML architecture, which
has a shared CNN with many learned parameters. However,
ST-NILM has an untrained shared convolutional network
based on ST that has analytically computed filters given by
wavelets.

We tested ST-NILM with the LIT-SYN dataset and repeated
the same tests with the DeepDFML architecture for com-
parison purposes. Classification results with smaller datasets
were substantially better for ST-NILM than DeepDFML.
Furthermore, classification results show that ST-NILM, even
without DA, outperforms DeepDFML with DA. The good
classification performance of ST-NILM, unlike DeepDFML,
is not dependent on DA. The improvements in classification
performance over DeepDFML can be explained by the fact that
there is no need for the scattering network to learn the filter
coefficients, only the output networks. The lack of training in
the convolutional network contributed to the ST-NILM obtain-
ing better results than DeepDFML for smaller training sets.
ST-NILM achieved detection results equivalent to DeepDFML
for LIT-SYN2 and LIT-SYN-3, and performed better for
single loads (LIT-SYN-1). The resources used by the hardware
implementation showed that ST-NILM consumes less memory,
less GPU load, and consumes substantially less computational
effort. The results obtained for the embedded system with
LIT-SYN (a real-world dataset) indicate that future tests with
ST-NILM and real-time data can be promising.

As future works, we intend to do the below.
1) Improve the GPU implementation of ST-NILM.
2) Improve the feature selection techniques, to improve

PCoff in the case of more aggregate loads.
3) Improve the classification and detection comparisons with

other time–frequency-based feature extractors.
4) Evaluate the ST-NILM with other real-world datasets.
5) Evaluate the ST-NILM with real-time data.
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