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Abstract— Electrical switching devices control and protect systems at various
voltages. Monitoring them ensures safety and reliability. This study introduces
a method to instrument and analyze these devices, using ABB AX40 AC con-
tactors and Fiber Bragg Grating (FBG) sensors. The dynamic strain sensing
of the FBG was used for acquiring signals for the analysis of the switching
event. The devices were subjected to three simulated fault conditions: the
inner contact blockage, pressure spring wear-off, and load contact wear-
off. For recognizing the degradation patterns of the mechanisms, the data
acquired during the switching events were submitted to several steps, such
as data augmentation, feature selection, and classification. With a Support
Vector Machine as the classifier, a score of 80% for fault detection in training
and validation was achieved. Within this detection, a score of 80.2% for fault
classification was achieved. Regarding the repeatability test data set, it was able to achieve results of fault detection of
72.1% and within this detection, a score of 85% for fault classification was achieved. We also used both, the CN2 Rule
classifier and the Decision Tree classifier, to extract human-comprehensible information from the frequency spectrum
features. The results presented in this paper suggest the suitability of FBG and machine learning methods for the
predictive maintenance of switching devices and the importance of repeatability for future field applications.

Index Terms— Contactors, fiber Bragg grating, fault detection, support vector machine, feature selection

I. INTRODUCTION

SWITCHING devices are essential elements of electrical
systems, mainly in the industrial and distribution areas.

Although electromechanical switching equipments have an es-
timated lifespan, they might malfunction before the predicted
end of life. Such a problem may lead to profit losses, fatal
accidents, and a drop in electric distribution quality. Some
of the main reasons for malfunctions are the carbon deposit
obstructing the inner contacts [1], core or contact blockage,
voltage sag, and contact bounce [2]. To ensure the optimal
operation of those equipments, sensors can be used to monitor
their condition.

Measurement systems for monitoring vibration pattern sig-
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nals during a switching event are already in use in equipments,
such as On Load Tap Changers (OLTC) transformers and
circuit breakers [3], [4]. Most of these systems use electrical
accelerometers for measuring vibrations. Usually, such sensors
are non-invasive, and data collected from them are analyzed in
the time domain or time-frequency domain so that the switch-
ing conditions can be inferred [5].The common electronic
sensors, however, are prone to interference from electromag-
netic sources prevalent in these installations [6]. Hence, fiber
optic sensors such as Fiber Bragg Grating (FBG) emerge as a
superior alternative, offering immunity to electromagnetic dis-
turbances and durability in harsh environments, such as marine
settings. This makes FBGs an increasingly attractive choice for
implementation in various electrical circuits and equipment,
extending their utility beyond traditional applications [7]–[9].

An FBG is a periodic modulation of the refractive index
of the optical fiber core that reflects part of the incident light
spectrum. This reflection band is centered at the Bragg wave-
length and its value is susceptible to mechanical deformations
and temperature changes [10], [11].

The FBGs, in general, have proven their effectiveness in
several applications of modern electrical machines. They be-
come a highly attractive component to be used as a sensor
element in the environment of electrical circuits [12]. However,
their use in switching equipment is of recent application. Some
previous papers address applications for classifying different
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operational states in low-voltage electromechanical relays and
contactors. For instance, in Tapia et al. [2], the temperature and
dynamic strain measurements on an electromagnetic AC con-
tactor using FBG sensors were presented. Besides the no-fault
condition, authors studied the dynamic strain measurement
for three switching conditions of the contactor: with voltage
sag, with an obstacle in the air gap, and without shading
ring. The authors reported results in the frequency spectrum,
indicating a peak of 120 Hz for the first two fault conditions
and predominant components from 0 to 70 Hz range for the
contactor without shading ring.

More specific works involving DC relays and FBGs include:
Dureck et al. [13], and Benetti et al. [14] who proposed a
real-time monitoring system for the switching conditions of a
contactor. Different voltage loss conditions were applied to the
equipment, and the system was capable of classifying the data
with only two signal features, by using a Support Vector Ma-
chine (SVM). Other studies of similar applications for circuit
breakers also showed that SVM is an interesting classification
method for this purpose [15], [16]. To study the features of
the signals of the switching event, the frequency spectrum is
currently addressed based on the research cited above using
FBGs [2], [13], [14] or other measurement systems such as
electrical accelerometers in OLTCs [4]. Therefore, both Power
Spectrum Density (PSD) and Fast Fourier Transform (FFT) are
suitable to be used.

In Benetti et al. [17], different operating conditions were
analyzed in the main internal components. We have applied
two distinct methods: The first calculates the PSD components
and the switching time, and the second obtains the wavelet
scattering transform coefficients, showing that it is possible
to detect normal and critical states with good reproducibility
when using the same contactor and sensor for measurements.

In this paper, we introduce a real-time health monitoring
system, specifically designed for AC contactors, with a strong
emphasis on its wide generalization capability, particularly
for field applications. Utilizing FBG sensors, chosen for their
highlighted capabilities, and applying machine learning algo-
rithms, this work aims to increase the generalization of the
proposed diagnostic system to assist maintenance engineering
in defect detection. One of the main advantages of the pro-
posed analysis methods is the improvement in adaptability for
measurements with a new contactor and assemblies.

To train the diagnostic system’s machine learning, four
operational state conditions were applied to the contactor. With
the goal of ensuring the method’s generalization, a test group
was created, distinct from the training group, but maintaining
the established standards. The proposed system was rigorously
tested in a controlled environment, subjecting it to various
conditions that faithfully replicate real-world field scenarios.
Furthermore, a descriptive classification study was conducted
with the explicit aim of deriving easily interpretable classifica-
tion rules. These rules not only enhance the understanding of
how contactor faults influence the frequency spectrum of the
acquired signal but also highlight the practicality and potential
for real-world deployment that the system offers.

This paper has been organized as follows. Section II
presents the proposed methodology composed of the exper-

imental setup of the contactor and the FBG sensor, includ-
ing the acquisition of signal data. Next, feature extraction
algorithms were used for those signals. Section III presents
and discusses the results achieved in this paper. Finally,
Section IV concludes the work by presenting the contributions
and possible proposals for future research.

II. MATERIALS AND METHODS

A. Experimental Setup

The tests were carried out with two AC contactors, model
ABB AX40. The operation of this equipment consists of
an electromechanical force generated by a coil connected
to a 220V AC source. This force attracts the movable core
to its fixed part, closing the load contacts. Since it is an
AC contactor, shading rings are required to hold the core
in position during the negative cycles of the current. When
the source is off, the return spring brings the movable core
to its original position opening the load contacts [18]. The
mechanism of this contactor is better represented in Figure 1.

Movable Core

Fixed Core

Coil

Pressure Spring

Movable Contacts

Fixed Contacts

Shading Rings

Return Spring

Fig. 1. Schematic representation of the ABB AX40 mechanism.

For both contactors, a pre-tensioned FBG was fixed to a
cleaned region of the case by using a cyanoacrylate-based glue
to capture the mechanical vibration of the closing contacts.
Pre-tensioning enables the detection of compression and ten-
sion movements without damaging the FBG during the various
assemblies required. The change in the central wavelength of
the Bragg reflection in a Fiber Bragg Grating (FBG) can be
described as (1):

∆λb = Kϵ∆ϵ +KT∆T (1)

.
In (1), the Bragg wavelength shift (∆λb) is influenced by

both the strain variation (∆ϵ) and the temperature change
(∆T ). The terms Kϵ and KT represent coefficients that
account for these effects. The coefficient Kϵ, known as the
strain coefficient, has a typical value of around 1.2 pm/µϵ
in the 1.5 µm spectrum region, reflecting the relationship
between strain and the resulting wavelength shift. Conversely,
the coefficient KT corresponds to the temperature coefficient,
approximately 10 pm/K. This coefficient is derived from the
thermal properties of the optical fiber used in the FBG setup



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MÊS 20XX) 3

[19]. Additionally, while temperature variation occurs rapidly
inside the contactor, it is much slower in the enclosure where
the sensor is installed. Therefore, in terms of the propagation
of mechanical waves, the temperature fluctuation is a relative
slow event, in the order of tens of minutes, when compared
to the mechanical waves propagating through solid materials,
which are in the order of a couple of seconds. Also, the ex-
tracted features and the proposed algorithm is better optimized
for vibration signals, consequently, the temperature influence
on the Bragg wavelength variation is neglectable. The setup
is presented in Figure 2.

Fig. 2. Experimental setup for the experiments.

The optical fiber used was the GF1 Thorlabs type. Two
FBGs were employed separately, one for each contactor. The
first FBG had Bragg wavelength of 1552 nm, a reflectivity
of approximately 95%, and a full-width at half maximum
bandwidth of 0.5 nm. The other FBG had Bragg wavelength
of 1532 nm, a reflectivity of approximately 80%, and a half-
height bandwidth of 0.6 nm. To acquire the signals, the optical
interrogator I-MON 256, by Ibsen Photonics, was used. The
acquisition rate was set at 4kHz and 20 µs of exposure time.
A sample of the wavelength variation by the vibration of the
closing contacts with no fault applied is presented in Figure 3,
the switching event is centered at the 0.5 second mark.
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Fig. 3. Sample of the contactor with no fault measured by the FBG.

The accurate placement of FBG sensors is essential for
precisely measuring the deformations caused by the dynamic
excitation during the collision of moving parts against the

static base structure of an AC contactor during its switching
process. When the contactor closes, the kinetic energy of the
moving parts is transformed into heat, noise, vibration, and de-
formation, until a stable closed state is reached [20], [21]. The
FBG sensor was strategically placed on the contactor’s surface
to accurately capture the level of deformation experienced by
the structure and be far from the heat point inside the device.
This placement was based on expectations of maximum strain
in the stationary base structure of the contactor, as indicated
by the simulation of its first and second vibrational modes
(Figure 4), conducted using Altair Software.

Fig. 4. Simulation of the firt and second vibrational mode of the ABB
AX40 contactor given by strain energy density [kg/(mm·s2)].

For this simulation, the mesh was created using Altair
HyperWorks, and the analysis was performed with Altair Op-
tistruct, with subsequent post-processing in Altair HyperView.
The mesh comprised 423,900 tetrahedral CTETRA elements
with a 1 mm size, ensuring quality with an aspect ratio greater
than 5 and a skew angle less than 60 degrees. This setup
was chosen after a mesh sensitivity analysis indicated that
a 1 mm element size could capture deformations with less
than 1% error in simulation results, a finding that was further
validated by a comparative analysis using a finer 0.5 mm
element, which only caused changes in the second decimal
place of the results. The type of analysis conducted was a
modal analysis. Additionally, when placing the FBG sensor
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on the side of the AC contactor’s structure, considerations
were made for the ease of maintenance of both the sensor
and the contactor, ensuring that the sensor’s position did not
interfere with the electrical wiring layout of the panel and the
contactor’s installation.

B. Datasets

The test procedure acquired 4 classes of data: 118 samples
of the contactor at normal state (Class 0), 93 with pressure
spring wear-off (Class 1), 93 with load contact wear-off (Class
2), and 80 with inner contact blockage (Class 3). All these
samples were divided between the contactor (C1 or C2), being
fixed or screwed to the electrical panel, and the test round (R1,
R2, or R3). The variability of the FBG sensor, the contactor,
fixation, and test round provide better generalization and re-
peatability for further analysis. Once all the data was acquired,
the data set was split between train, testing, and validation.
The train set is used to train the classifier, the validation set is
used during training to evaluate the convergence and generality
capability of the classifier, and the test set is used after training
to evaluate the predictive quality of the classifier. Table I shows
more details of the data sets.

TABLE I
DATA SET SHOWING THE NUMBER OF SAMPLES FOR EACH CLASS,

CONTACTOR (C = {1, 2}) AND ROUND (R = {1, 2, 3}). THE DATA

SET IS DIVIDED INTO TRAINING (UPPER TABLE), VALIDATION (LOWER

TABLE, LEFT) AND TEST (LOWER TABLE, RIGHT).

The disparity in data group sizes does not impact the
outcomes, thanks to the effective evaluative metric employed.
Moreover, the limited data for Class 3 is a consequence
of its significant difference observed in comparison to other
classes, hence there is no need for large quantities of data for
something highly distinguishable.

Actually, the original training data set was quite small. This
was due to the difficulty in applying the faults and acquiring
the data. In order to circumvent such limitations, we used
a data-augmentation procedure. Data-augmentation consists
in including specific small transformations to the input data
(including several types of noise), in order to create diversity
and make the classifier more robust. Such a procedure has been
proved to increase the classifier’s efficiency in many scenarios
[22].

For data-augmentation, the original 264 training signals
were submitted to a procedure for synthesizing more data.

First, another 264 signals were generated, using variable noise
and gain, and a small chance of hyperbolic tangent and pitch
distortion. Next, 264 more signals were generated, now with
higher variable noise, linear growth, and also a small chance of
distortion. This linear growth simulates external temperature
variation. Therefore, a total of 792 signals were used as
training data.

The data set was divided into three root classes, as follows:
Main Class 0 is the no-fault class, Main Class 1 is the mild
fault class, composed of the classes of worn springs and worn
contacts, and Main Class 2 is the serious fault class, composed
by the core blockage class. If a mild fault is identified, a binary
classification within the light faults must be made to find out
if the cause is contact or spring wear-off. This type of analysis
by layers allows the activation of maintenance teams even in
cases of inaccuracies about the exact class of fault designated.

C. Feature Extraction and Classification Algorithms

All the signals, both original and augmented, were submit-
ted to two feature extraction algorithms. The first one includes
power and spectral features by using PSD combined with FFT.
The signals were normalized and processed, after that, for each
50 Hz of a sliding window, the mean value of the PSD and
the maximum value of the FFT were extracted, generating
80 features. For this procedure, we used MATLAB version
R2020b software.

The other feature extraction algorithm used was the Time
Series Feature Extraction Library (TSFEL) [23]. This is a
Python library capable of computing over 60 different types
of features extracted from temporal, statistical, and spectral
domains. It aims to support a fast exploratory analysis, and it
has already been used in data sets from wearable accelerometer
sensors for human activity recognition. For our data set, a total
of 390 features were extracted from each signal.

Since many features were generated from the signals and,
possibly, many of them may not be useful for the classification
algorithm, the next step is a feature selection procedure. The
goal here is to select the most discriminatory features so as to
improve the classification rate.

There are two families of methods for feature selection:
filter and wrapper methods. Filter methods are fast and easy
since they select a number of features based on some user-
defined criteria [24]. In this work, the Best ReliefF Ratio
(BRR) criterion was chosen using the Orange software [25].

Another used filter method was based on the Physical
Analysis (PA) of the signals and the contactor construction.
This is an analysis that takes advantage of all PSD and FFT
features subjected to classifiers based on decision rules to
obtain human-comprehensible interpretability of the switching
event, this being a reason why the PA did not address aspects
of the TSFEL. This is a more subjective filter method based on
interpreting the physical importance of the studied frequencies.

Regarding the wrapper methods, they use a classifier to
test a given subset of features, which, in turn, are selected
from the original set. Despite being more computationally
expensive, wrapper methods usually obtain better results than
filter methods [26]. In this paper, we used the Sequential
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Forward Floating Selection (SFFS) method, which is a tool
based on the Sequential Forward Selection (SFS), correcting
wrong decisions made in the previous steps to optimize the
solution [27].

For all the feature selection algorithms used in this paper,
the SVM classifier, using the Radial Basis Function Kernel
function (RBF) and cross-validation of 10 folds, is proposed.
The SVM is a robust algorithm used for classification and
regression tasks. Its primary objective is to distinguish between
different classes in a dataset by finding the optimal hyperplane
that maximizes the margin, or separation distance, between
these classes [28]. This margin is defined by the distance be-
tween the nearest points (support vectors) of different classes
that lie along the hyperplane’s boundaries. The RBF Kernel
function is given by (2):

KRBF (Xi, Xj) = e

(
−

∥Xi−Xj∥
2

2σ2

)
, (2)

where the relation between Xi and Xj represents the Eu-
clidean distance of two data points. This distance is inversely
related to σ2, the variance, which is a crucial hyper-parameter
in the model [29]. Importantly, hyper-parameters like σ in the
RBF Kernel can be fine-tuned to better suit the training and
validation groups, enhancing the model’s performance. This
tuning process involves adjusting these parameters to find the
best balance between bias and variance, thereby improving
the classifier’s ability to generalize from the training data to
unseen data.

For algorithm evaluation, cross-validation is crucial. It splits
the training dataset into several smaller subsets or folds,
ensuring a more robust and generalized performance from the
classifier. Given the imbalance in our dataset, the F1 score is
preferred over accuracy for evaluating the three Main Classes.
The F1 score is more effective in contexts with uneven class
distributions, as it provides a balanced measure of precision
and recall. However, for the balanced mild fault classes,
accuracy is a suitable metric due to the uniform distribution
of samples across these classes.

Regarding the usage of PA, 12 main features were identified
to define the 3 Main Classes, achieving an F1 macro score
of 0.738 for the training data set. As for the training group
of 2 mild fault classes, only 4 main features were used,
and it achieved an accuracy of 0.802. The study to obtain
such attributes was mainly based on the CN2 Rule (CN2R)
and Decision Tree (DT) classifiers using all PSD and FFT
attributes with the intention of extracting logical rules to know
how the faults occurring in the contactor affect the frequency
spectrum of the acquired signal. It is important to note that the
main classifier is still the SVM due to better results in general
with previous sampling tests.

The CN2R works by selecting the most informative features
in the data set and creating rules based on those attributes
with the corresponding value of the output variable. Once a
rule has been created, the algorithm removes the data that
satisfy the rule from the data set, and the process is repeated
on the remaining data until a stopping condition is achieved.
Regarding DT, it works by recursively partitioning the data set
into subsets based on the values of the input features. At each

decision node, the algorithm selects the best attribute to split
the data set based on a certain criterion, such as ReliefF. The
feature that maximizes the criterion is chosen to split the data
set into two or more subsets, in this paper, we used two. This
process is repeated on each subset until a stopping criterion is
achieved.

Using the mild fault classes as an example, in order to better
understand how this method works, a critical analysis can be
made based on the most influential rules of the CN2R as shown
in Table II and the first four layers of the DT presented in
Figure 5.

TABLE II
MOST INFLUENTIAL RULES OF THE MILD FAULT CLASSES.

IF Condition Class 1 Class 2
TRUE 189 189

PSD4 ≤ −88.9 AND PSD16 ≥ −98.8 69 0
PSD5 ≥ −81.5 AND PSD3 ≥ −79.3 0 45

PSD5 ≥ −82.3 0 43
PSD1 ≥ −74.5 34 0

PSD5 ≥ −81.5 AND PSD4 ≥ −76.4 0 27
PSD1 ≥ −77.9 20 0

PSD2 ≤ −83.3 AND PSD20 ≥ −102.6 16 0

Class 1 = 189
Class 2 = 189

PSD4 ≤ -90.4 
86/0

PSD4 > -90.4 
103/189

PSD2 ≤ -75.2 
59/185

PSD2 > -75.2 
44/4

PSD5 ≤ -82.1 
53/72

PSD5 > -82.1
6/113

F30 ≤ 1493
39/0

F30 > 1493
5/4

Fig. 5. First four layers of the decision tree of the mild fault classes.

One can see a PSD variation from 0 to 250 Hz (PSD1
to PSD5) and 1000 to 1050 Hz (PSD20), indicating that
the difference between the two event signals occurs mainly
in these frequency ranges. In addition, an analysis of the
distribution of frequency peaks by the FFT shows a shift of the
peak frequency of 60 Hz, characteristic of a healthy contactor
(F2), indicating a possible contact bounce for worn contact
cases. This implies at least seven potential features to be used
with the RBF SVM to classify mild faults.

Regarding BRR and SFFS, to choose the ideal number of
features, it is necessary to make a relationship between the
training success metric and the percentage of total features
used. The percentage of total attributes and the metric scores
using RBF SVM by features extractor and selector are pre-
sented in Figure 6 and Figure 7.
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Fig. 6. F1 macro scores of the training data set of the 3 Main Classes
using both feature selection methods.
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Fig. 7. Accuracy scores of the training data set of the two mild fault
classes using both feature selection methods.

One can observe the similarity of the results from both
feature selection methods and feature extractor algorithms.
From the graphs presented, it is evident that the first graph
shows good metric stability with 30% to 80% of the features
for the SFFS. However, the use of 30% of the features
significantly reduces the computational load when applying
machine learning algorithms. As for the second graph, the
SFFS method remains relatively stable throughout its course.
Nonetheless, for standardization purposes and considering that
the computational burden remains low, maintaining 30% of the
features was deemed appropriate in all cases of SFFS. This
ensures a balance between efficiency and effectiveness in the
feature selection process. As for BRR, the ideal percentage
remains 30% for the second layer of the classifier, however in
the first layer it was necessary to use 40% of the features.

III. RESULTS AND DISCUSSIONS

After choosing the number of features among the five
options presented for each layer of the classifier, fine-tuning
the hyperparameters of the SVM was implemented to achieve
the best possible results in the training and validation data set.
The preliminary results are presented in Figure 8 and Figure 9.
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Fig. 8. F1 macro scores of the training and validation data set of the
three Main Classes.
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Fig. 9. Accuracy scores of the training and validation data set of the
mild fault classes.

Based on the findings presented in the training and valida-
tion groups, all methods demonstrate potential for application,
as evidenced by the high and comparable scores for both
classifications. Regarding the classification of mild faults, the
outcomes were superior, suggesting that the algorithms may
have greater proficiency in distinguishing between two minor
faults than in differentiating between the no-fault class and the
mild faults class. However, as shown in Figure 10, when the
classifier is applied to the repeatability test group, the metric
values have considerable inconsistency.
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Fig. 10. Metric scores of the repeatability test.

Therefore, for the layer of three Main Classes of the SVM,
the usage of TSFEL together with BRR proved to be viable
with a better generalization and less overfit. However, the
results of the class without faults and the class with mild
defects still have some overlap due to the small degree of
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the applied conditions. This can be deducted by the confusion
matrix of the training data set in Figure 11.

Class 0 1 2 ∑

190 72 2 264

77 297 4 378

2 4 144 150

∑ 269 373 150 792

Predicted
A
ct
u
al

Fig. 11. Confusion matrix of the training data set using 3 Main Classes.

Nevertheless, the algorithm fulfills its purpose of alerting
teams to severe and minor faults. Regarding the second layer
of the algorithm, the differentiation of just two classes proves
more promising with a physical analysis of the switching
event. Therefore, the identification of the light fault is given
by PA with features of PSD and FFT.

Furthermore, PA can help identify factors such as a peak
frequency at 120Hz due to contact bounce during switching
attempts and a higher spectral density at low frequencies,
noticeable in the core blockage class. The other three original
classes were more challenging to define, with notable subtle
changes involving the PSD ranges between 0 and 250 Hz, 750
and 850 Hz, and 1000 and 1250 Hz. Other factors, such as
a shift in the lower peak frequencies with the worn contact
class, are of interest as they may indicate a contact bounce,
as previously reported. By isolating the classes of slightly
worn springs and contacts, the difference in the mentioned
frequency bands is more noticeable, being able to differentiate
these subtle events more clearly than BRR and SFFS.

The variations in PSD amplitude and frequency shift iden-
tified by the PSD and FFT method suggest a change in the
deformation of the contactor base structure acquired by the
FBG sensor for each failure class when compared to the
contactor at a normal state. A more significant change in
deformation and higher strain rates was noticeable in the core
blockage class because BRR and SFFS easily identified it.
Mild faults were better captured using PA, which implies
minor deformation changes and lower strain rates than those
generated by the core blockage class.

The final results of the developed contactor fault classifica-
tion algorithm are presented in Figure 12.
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Fig. 12. Metric scores of the pattern recognition system

This system presents reliability above 80% for training

and validation of the two layers of the SVM classifier. It is
also observed that the study of features and the combination
of multiple attributes extractors and selectors using different
physical parameters allowed a better test repeatability. Hence,
the results obtained with the test data set do not present
a significant overfit of the classifier, achieving scores above
70%.

Unlike our earlier studies [17] and those by Tahvilzadeh
et al [30], this research focuses on a pragmatic and tangible
methodology for fault detection in electrical switching devices.
However, conducting a direct numerical comparison with
these studies is impractical due to differences in datasets.
Our older dataset lacks the variability necessary for broader
generalization and applicability in diverse test scenarios [17].

In our current approach, we emphasize a broader range of
case variabilities, incorporating data from various assemblies
and contactors. Key to our methodology are the data augmen-
tation technique and feature selection via attribute analysis.
These are pivotal in practical scenarios where repetitive inva-
sive data collection is often not viable, and the inherent random
variabilities within the system pose a challenge to comprehend.

While our accuracy is somewhat low, this approach al-
lows for better generalization and adaptation to the variable
complexities of real-world signal acquisition in electrical
environments.The accuracy might possibly be enhanced by
incorporating a greater diversity of data and additional decision
layers. However, there is always a limit to this enhancement
to avoid overfitting and compromising the model’s ability to
generalize. Furthermore, our study also focuses on extracting
meaningful physical information from the contactor’s classi-
fication attributes, contributing to a deeper understanding of
the fault detection process. Therefore, our research offers a
practical and valuable perspective on applying FBG technol-
ogy for detecting faults in electrical contactors in real-world
environments. In such a scenario, accuracy may be strongly
influenced by various challenging variables.

FBGs also proved to be reliable sensors for monitoring
systems. Using only one external sensor, it was possible to
achieve relevant results, with room for improvement in future
invasive applications.

IV. CONCLUSIONS

This paper complements previous studies on the viability
of a machine learning system using FBG as a sensor element
to determine the operating conditions of switching equipment.
Filter methods for attribute selection and feature extraction via
PSD and FFT proved to be a reliable source of information
to understand the physics of the contactor and optimize the
pattern recognition system. Also, the procedure led to a similar
performance of the commonly used feature extractor TSFEL.
The results between training, validation, and repeatability test
data sets are well balanced with minor classification overfit
despite some overlapping data due to the light grade of the
faults.

The repeatability study was important for future field appli-
cations since minor physical variations will eventually happen.
The developed system proved to be effective using SVM
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as a classifier and a single FBG as a sensor element. This
research also has the potential to be expanded to an invasive
monitoring system in other switching equipment due to the
sensor characteristics. The sensitivity between different stages
of degradation will be evaluated for an anomaly detection
system. The usage of other methods, such as Empirical Mode
Decomposition or Hilbert Spectrum will be focused on future
works.
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