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Abstract—This project aims to explore action recognition
through a deep learning model generated by Convolutional
Neural Networks, establishing the foundation for human-robot
interaction in a scenario where Unmanned Aerial Vehicles
(UAV) are controlled exclusively by visual commands. The model
analyzes images captured by an onboard camera using and
classifies them into nine categories. Each category issues a specific
command based on human actions performed by individuals
properly equipped with personal protective equipment. The
results demonstrate the feasibility of the proposed approach,
opening room for improvements aiming its use in more complex
scenarios.

I. INTRODUCTION

Even before the Industrial Revolution, literature fantasized
about artificial beings coexisting with humans. The term
”robot” itself came from the Czech word ”robota,” originated
from a 1920 tail. “R.U.R”, by Karel Čapek depicted ”robota”
as a humanoid created for servitude [1]. With the growing
evolution of cinema, interest in the theme spread and fueled
human creativity regarding the possibilities of automation.
As technology advances and robots become increasingly inte-
grated into our society, human-robot interaction will continue
to play an important role in a wide range of fields, from
healthcare and education to industry and entertainment. With
this understanding, the amount of research is growing not only
on ways to communicate effectively with machines but also on
more practical, intuitive, and accessible control alternatives.

Aiming to stimulate research in the field of human-robot
interactions and the development of autonomous and intelli-
gent UAVs, the Flying Robot Trial League [2] of RoboCup
Brazil has devised a challenge for the national competition
that involves controlling a UAV using only visual commands:
The robots must land on two fixed suspended bases and four
mobile bases placed in the arena.

The UAV focus of this project is a quadcopter, commonly
known as a drone. Figure 1 shows the 4 movements of a
quadcopter:

• Yaw is the rotation around the frame’s center of mass.
• Pitch is the horizontal movement forward/backward.
• Roll is the horizontal movement to the right/left.
• Throttle is the vertical movement up/down.
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Fig. 1: UAV movements [3]

Fig. 2: Table of gestures to be recognized by the model with
their respective commands.

We propose an approach to pilot the UAV (i.e., control its
movement) by using visual command as depicted in Figure
2. In other words, the operator performs a gesture, and the
UAV moves according to the visual command it identifies.
The focus is on the following movements: ascend, descend,
move right, move left, move forward, and move backward
(Yaw will not be considered). We created a computer vision
system based on YOLOv8 that detects visual command and
provides input to a PID system that controls UAV movement
accordingly. The results are encouraging and indicate that the
proposed approach is feasible, as the vision system achieved
a precision of 95,83% in 9 classification classes (i.e, visual
commands).

This paper is organized as follows: Section II analyses
the related work. Section III discusses the construction of
the dataset and the tools used for its processing; Section IV
presents the results and discusses some improvements; Finally,
Section V draws some conclusions and discusses limitations
and the future work.
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II. RELATED WORK

Since the 1960s, object detection in images has been a core
focus of computer vision, laying the foundation for many
artificial intelligence systems. Over time, various methods
have been developed to detect and classify object categories.
However, when applied to aerial vehicles, object detection
becomes more challenging due to factors like limited aerial
datasets and the inherent complexity of human actions, which
are difficult to model accurately. These issues compound
the challenges already faced by machine learning and deep
learning models in achieving precise action recognition.

One notable study in human action recognition using aerial
datasets is [4], which achieved an accuracy of 87.80% using
a Multilayer Perceptron (MLP) and 87.77% using a Support
Vector Machine (SVM). Five other classifiers used in the study
showed significantly lower performance. Another approach,
highlighted in [5], reached 95% accuracy by classifying key-
points extracted from videos using CNNs, although it required
high computational power.

In more recent developments, as detailed in [6], a fast DNN
object detector and a custom LDES-ODDA visual tracker were
combined in a unified detection-and-tracking system, alternat-
ing between detection and tracking tasks. This approach yields
a bounding box around the detected human, which is then used
for gesture recognition and human state estimation. Following
this, a 2D skeleton representing visible body joints in pixel
coordinates is extracted using an enhanced multi-branch CNN
model, as described in [7].

III. METODOLOGY

A. Dataset

1) Collecting Data: Let us consider that the robot is not in
a controlled environment. To ensure that the dataset encom-
passes a wide variety of examples and relevant use cases, the
video collection was done with the following conditions:

• Recordings at 30 frames per second;
• Different camera resolutions;
• Various filming angles;
• Distinct lighting conditions;
• Indoor environments;
• Outdoor environments;
• Controller using PPE;
• Controller without PPE;
• Backgrounds with movement;
• Backgrounds without people.
Since this is an experimental dataset, it is not publicly

available due to privacy and ethical regulations concerning
image authorization and sensitive data [8]. Initially, videos
were recorded with all six positions of interest, along with an
additional one that associates the drone with a stop command.
This position involves the operator standing with their arms
close to their body. Additionally, two more categories were
added for observational analysis: ”w ppe” represents every-
body that is not wearing personal protective equipment, and
”x” represents any frame where the operator is performing an

action not previously listed. As mentioned, the three added
classes (stopped, x, and w ppe) are for analytical purposes,
and the intent is for none of these to send movement com-
mands to the drone.

2) Manual preprocessing: These videos were divided into
short clips and labeled with the corresponding actions (1-
backward, 2-down, 3-forward, 4-left, 5-right, 6-stopped, 7-up,
8-w pee, 9-x). Since YOLOv8 [9] (the method used) does
not require a model trained on video files for accurate real-
time recognition, to reduce computational load and data size, a
Python script was programmed using the OpenCV [10] library
to extract the last frames from all videos containing actions.
Figure 3 shows a flowchart of all processes executed up to the
final dataset.

Fig. 3: Dataset Preparation Flowchart

3) Classification and Division: To properly label the im-
ages, the Roboflow platform was used. To ensure a balanced
set of examples, the nine classes were individually labeled and
split into 70% training, 20% validation, and 10% test sets.
Only after this all the sets (training, validation, and test) were
combined. Figure 4 shows the state of the dataset at the end
of this process.

4) Preprocessing: The goal of pre-processing is to reduce
training time and improve performance by transforming the
dataset images. To ensure consistency, it is necessary for
the data to be normalized. In this dataset, the following
transformations were applied to all images:

• Conversion to ”.jpg” format to ensure data consistency;
• Resizing to a width of 320 pixels while keeping the

height variable to maintain aspect ratio and normalize
the dataset. See Figure 5;

• Auto-orientation to ensure that inferences use the image
metadata, capturing orientation information at the time of
capture;

Here, the term ”real-time” is used in the popular sense to refer to an online
or instant-response system.
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Fig. 4: Sample of the dataset after bounding box labeling

• Auto-contrast applies contrast based on the image his-
togram to improve normalization and line detection under
adverse lighting conditions. See Figure 6.

Fig. 5: The left chart represents the average dimensions
of the images before normalization (1280x720). The right
chart represents the average dimensions of the images after
preprocessing (320x180).

5) Data Augmentation: Data Augmentation is a data en-
hancement technique where transformations or variations are
applied to existing images in the training set to create new
examples. These techniques can help improve model general-
ization and reduce overfitting. Below are the strategies adopted
to augment the datasets for this project:

• Grayscale. Converts 15% of the training images to
grayscale, which reduces the model’s emphasis on color
as a signal.

• Hue. Randomly alters the colors of an image between -
15º and 15º, ensuring that the model does not memorize
the colors of objects in the scene. This helps the model
recognize objects even if the color of the operator’s
protective equipment changes.

• Saturation. Randomly adjusts the color saturation be-
tween -15% and 15% so that the model performs better
even with slight color changes.

• Brightness. Varies the brightness of the image between
-15% and +15% to help the model be more resistant to
changes in lighting and camera settings.

Fig. 6: Two examples used in training. The top image is the
original, and just below is the normalized image with auto-
contrast using the equalizer adjustment.

• Exposure. Varies the exposure of the image between -
15% and +15% to help the model be more resilient to
lighting changes and camera settings.

• Blur. Adds random Gaussian blur between 0 and 1.5
pixels to help the model be more resilient to focus
changes in the camera.

• Noise. Adds ”salt and pepper” noise to 1.49% of the
pixels to help the model be more resistant to noise that
might decrease image readability.

After all processes, the final dataset consists of 1,175
images, with 1,029 for training, 97 for validation, and 49 for
testing (see Table I and Figure 7).

TABLE I: Classes banlance

Class Sample
stoped 320
w ppe 311

up 86
x 84

backward 82
right 76
left 75

forward 72
down 69

B. Training

For the final application of this project, reducing computa-
tional costs for energy savings and achieving high accuracy are
the primary justifications for the choice of model. As stated,
this project is based on a method for which all versions have
been considered state-of-the-art at the time of their release.

1) YOLOv1: YOLO (You Only Look Once) [12] is a
computer vision tool launched in 2015 for object detection.
The premise of the method is to use a convolutional neural
network to extract features by looking at the image only
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Fig. 7: classes heatmaps

once (single pass). The YOLO architecture consists of a
single-path CNN (Convolutional Neural Network) that uses
1×1 convolutions followed by 3×3 convolutions and two final
fully connected layers (where the output is interpreted). The
activation function applied in all layers is Leaky ReLU [13],
except in the final layer, where a linear activation function is
used. Starting from SSE (sum of squared errors) due to its
optimization convenience, the creators noticed that the model
suffered from instability. This was because the loss function
equally weighted the localization error with the classification
error, and the cell scores approached zero since many of them
did not contain any objects. To address this, the loss function
was adapted, resulting in:

λcoord

S2∑
i=0

B∑
j=0

⊮obj
ij

[
(xi − x̂i)

2
+ (yi − ŷi)

2
]

+ λcoord
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i=0

B∑
j=0

⊮obj
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[(√
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√
ŵi

)2
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√
ĥi

)2
]

+
S2∑
i=0

B∑
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⊮obj
ij

(
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)2

+ λnoobj

S2∑
i=0

B∑
j=0

⊮noobj
ij

(
Ci − Ĉi

)2

+

S2∑
i=0

⊮obj
i

∑
c∈ classes

(pi(c)− p̂i(c))
2

(1)

2) YOLOv8: As of the start of this project, the latest version
of YOLO was v8, so this is the architecture we will be working
with. An official paper has not yet been released, but the
Ultralytics documentation [14] is quite detailed. Regarding
accuracy, Binary Cross-Validation is widely recommended in
the literature to reduce multi-class classification errors. In this
model, the loss function operates according to the following
equation:

L =
λbox

Npos

∑
x,y

⊮c∗x,y

1− qx,y +

∥∥∥bx,y − b̂x,y

∥∥∥2
2

ρ2
+ αx,yνx,y


+

λcls

Npos

∑
x,y

∑
c∈classes

yc log (ŷc) + (1− yc) log (1− ŷc)

+
λdfl

Npos

∑
x,y

⊮c∗x,y

[
−
(
q(x,y)+1 − qx,y

)
log (q̂x,y)

+
(
qx,y − q(x,y)−1

)
log

(
q̂(x,y)+1

)]
(2)

Each cell determines its best candidate for predicting the
object’s bounding box. This loss function includes the CIoU
loss as the box loss, the standard binary cross-entropy for
multi-label classification as the classification loss (allowing
each cell to predict more than one class), and the distribution
focal loss. In terms of speed, YOLOv8, unlike its predecessors,
uses anchor-free detection to enhance generalization. Anchor-
based detection reduces learning speed on custom datasets due
to pre-defined anchor boxes, which may negatively impact this
project. Anchor-free detection allows the model to predict the
center point of an object directly, reducing the number of
bounding box predictions, accelerating Non-Maximum Sup-
pression (NMS), a preprocessing step that eliminates inaccu-
rate predictions [15].

Given its functionality, Ultralytics has provided five
YOLOv8 models with different initial weights to be adapted
according to the developer’s needs. Observing Figure 8 about
these models, we can infer that the 8n-cls performs worse than
the 8x-cls in terms of accuracy but excels in speed due to its
optimization. For comparison, both extreme models (8n-cls
and 8x-cls) were trained in classification mode.

Fig. 8: Pre-trained Classification Models [14]

The two equivalent models (8n and 8x) were also trained
for the detection mode. Although this requires a higher com-
putational cost than the classification models: see the ”FLOPs”
column in Figures 8 and 9; the output of bounding boxes may
be useful in the future for camera position control.

IV. RESULTS AND DISCUSSIONS

Inferences from the first two models, one for testing and
one for classification, showed confusion between ”left” and
”right” as well as between ”up” and ”down.” This information
is supported by the normalized confusion matrix shown in
Figure 10b.

This is because YOLOv8, by default, performs data aug-
mentation before training by rotating images horizontally and

47Authorized licensed use limited to: Universidade Tecnologica Federal do Parana. Downloaded on September 02,2025 at 16:34:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9: Pre-trained detection models. [14]

vertically. To correct these errors, undesirable parameters such
as ”fliplr” and ”translate” were disabled in subsequent train-
ings, along with ”erasing” (which removes part of the image).
On the other hand, ”scale” was increased to adapt the model to
perceive images at different distances, as classification errors
were also observed when the operator was farther from the
camera.

Minimizing false detections is a priority in a scenario
involving drones and humans. For safety, it is acceptable for
the machine to remain static if it does not identify a command,
but it is not acceptable for it to move involuntarily, potentially
causing a critical accident. For this reason, the metric of
interest is ”precision,” aiming to minimize false positives. The
”cls” was adjusted to ”1” to ensure that classification precision
has a greater impact than the bounding box location in the
loss function. Training parameter adjustments can be seen in
Table II.

TABLE II: Arguments for Training the Models

Arg Config

mode train
epochs 80
patience 15
val True
translate 0
fliplr 0
scale 1.0
erasing 0
cls 1

The precision of the initial models 8x and 8n-cls were
0.86887 and 0.91667, respectively. Following parameter ad-
justments, the results are presented in Table III.

TABLE III: Models Accuracy

Model Accuracy

YOLOv8n-cls 0,9325
YOLOv8x-cls 0,9583
YOLOv8n 0,9027
YOLOv8x 0,9104

The analysis of the test videos shows quite satisfactory
results, with no significant failures occurring among the six
main commands. Misclassifications in the test samples mainly
involve ”stopped,” ”x,” and ”w pee.” These classifications are

(a) YOLOv8n-cls. (b) YOLOv8x-cls.

(c) YOLOv8n. (d) YOLOv8x.

Fig. 10: Confusion Matrices

not considered commands for the machine. By narrowing the
model to validate only 6 out of the 9 classifications, a precision
of approximately 0.98 is expected.

Confusion matrices for the 4 models are shown in Figure 10.
The results for the best classification and regression models
are depicted in Figures 11 and 12, respectively.

Fig. 11: YOLOv8x-cls metrics.

V. CONCLUSION

The results of the final models demonstrated satisfactory
accuracy, with precision values ranging from 0.9027 to 0.9583.
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Fig. 12: YOLOv8x metrics.

Analysis of the test videos confirmed the models’ effectiveness
in classifying the six main commands, with minimal occur-
rences of significant errors.

It is also important to note that, regardless of the model’s
precision, a good project practice will be to add a filter as
a redundancy measure between the inference result and the
input to the machine’s control system.

Although the models achieved promising results, there is
still room for ongoing improvements, especially in reducing
incorrect inferences and optimizing the overall system perfor-
mance. However, the obtained results represent a significant
advancement in the field of human-robot interactions and the
practical application of autonomous and intelligent UAVs.

Ultimately, this work contributes not only to the advance-
ment of drone technology controlled by visual commands but
also to the growing integration of machines into society and
the development of safe and reliable autonomous systems.
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