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ABSTRACT Tattoos can serve as an essential source of biometric information for public security, aiding
in identifying suspects and victims. In order to automate tattoo classification, tasks like classification
require more detailed image content analysis, such as semantic segmentation. However, a dataset with
appropriate semantic segmentation annotations is currently lacking. Also, there are countless ways to
categorize tattoo classes, and many are not directly categorizable, either because they belong to a specific
artistic trait or characterize an object with previously undefined semantics. An effective way to overcome
these limitations is to build recognition systems based on open-set assumptions. Nevertheless, state-of-
the-art open set approaches are not directly applicable in tattoo semantic segmentation, mainly due to
the significant class imbalance (predominant background). To the best of our knowledge, this paper is
the first to explore semantic segmentation in closed and open-set scenarios for tattoos. In this sense, this
paper presents two key contributions: (i) a novel large-margin loss function and generalized open-set
classifier approach and (ii) an open-set tattoo semantic segmentation dataset with a publicly accessible
test set, enabling comparisons and future research in this area. The proposed approach outperforms other
methods, achieving 0.8013 of AUROC, 0.6318 of Macro F1, 0.4900 of mIoU, and notably 0.2753 of IoU
for the unknown class, demonstrating the feasibility of this approach for automatic tattoo analysis. The
paper also highlights key limitations and open research areas in this challenging field. Dataset and codes
are available at https://github.com/Brilhador/tssd2023.

INDEX TERMS open-world, open-set, semantic segmentation, large-margin learning, tattoo classifica-
tion.

I. INTRODUCTION
Tattoos are forms of human expression and are also con-
sidered an art. In their almost unique features, tattoos
go beyond artistic expressions and can serve as essential
sources of biometric information. Consequently, it can be
useful in identifying their bearers, mainly for public security
[1], [2] because tattoos can be used to identify not only
suspects but also victims [3], [4]. In addition, the subject
has raised studies on ethical and social issues that may
encompass the topic [5].

Compared to other biometrics, tattoos bring a series of
characteristics that make them very difficult to recognize.
Other biometrics usually have well-defined standards, robust
techniques, well-established methods for their treatment and
recognition, standardized data capture and storage, and other
factors that help their reliability and robustness. However,
tattoos still need to have such characteristics and require-
ments. Apart from the issues related to processing and
using general biometrics, tattoo recognition has a singular

complexity because it can be divided into several sub-
problems, each equally significant [6].

First, an image can be submitted to detect, locate, and
segment (outline or instance) the tattoo contained therein.
Subsequently, the image can be classified, de-identified,
or re-identified (image-to-image, sketch-to-image, partial,
or similar). After preprocessing an image, the best result
could be a well-segmented tattoo without any pollution or
background. Then, for all classification, de-identification, or
re-identification tasks, these images contain only the most
essential information to store and, later, process [6].

Nonetheless, tasks that consider the meaning of the
content of images, such as classification, may require a
more detailed separation of objects in a tattoo image, called
semantic segmentation [7]. At this point, a segmented tattoo
could identify and detach each object in the tattoo, after
which each could be analyzed separately. For instance,
security and biometric recognition systems could benefit
from tattoo semantic split at the pixel-level for fine-grained
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feature extraction by semantic classes, reduce false posi-
tives by precisely delineating the boundaries of biometrics
features, and allow selective anonymization of regions of an
image. Moreover, tattoo biometrics systems may require the
identification of multiple semantic classes in multiple areas
of the image, which can be performed accurately by tattoo
semantic segmentations.

Although this topic has been widely explored in studies
related to images and videos in many different areas, se-
mantic segmentation is still underexplored in the context
of tattoos. Several works only focus on tattoo classification
and detection [6], [8], and only a few researches deal with
segmentation [9], [10] without identifying the semantics of
the components that compose the tattoos.

One of the reasons that make semantic segmentation dif-
ficult is related to the complexity that tattooing can have. As
mentioned, tattoos are expressions of art, and their features
can be as varied as possible and imaginable. In this way, ob-
jects can be positioned very closely, mixed, overlapped, and
distorted, and abstract images can also be present, among
many other hindering factors [11]. Additionally, the lack
of public and comprehensive datasets makes it even more
challenging to develop efficient methods for segmentation.
Some recent works propose public datasets, such as [12]
and [13]. However, in the case of [13], using semi-synthetic
images without employing the semantics associated with
each class makes it difficult to generalize the proposed –
characteristic also observed in [12].

Still, in this context, it is essential to emphasize the
complexity and semantic variability of tattoo classes. Tattoo
categories can vary significantly, and some are not easily cat-
egorized due to their association with specific artistic styles
or objects with undefined semantics. The tattoo recognition
scenario, especially from a public safety perspective, is also
somewhat challenging, especially given the circumstances
in which the information is obtained and analyzed. It is not
uncommon for tattoo information to be obtained partially,
and, therefore, semantic segmentation has great relevance
in the identification process, as in the following scenarios:
(i) semantic segmentation can be used to create databases
with automatic textual annotations, as it is common for a
witness or victim to remember or have visual contact with
only parts of a tattoo of a wanted person, and, in this way,
from the description, it would be possible to identify tattoos
with those parts visualized; (ii) semantic segmentation is
important in the pre-processing of images in preparation
for information recognition processes, such as for partial
re-identification of tattoos, wherein an automatic process,
the segmented parts can be recovered separately in cases of
partial image collections [6].

An effective way to overcome these limitations is to
build recognition systems based on dynamic and open-set
perception. These systems are designed to handle objects
from unknown classes commonly encountered in real-world
applications. Open-set recognition has extensively studied
the ability to recognize new classes [14]. Open-set semantic

segmentation, in turn, is an approach that incorporates open-
set perception into semantic segmentation. The main differ-
ence with closed-set semantic segmentation is that open-
set semantic segmentation must correctly classify samples
belonging to known classes while rejecting those belonging
to unknown classes. In the context of this work, open-set
semantic segmentation can be an ally in improving databases
and models for identifying and classifying tattoo objects,
allowing the improvement of annotations and descriptions
of complex tattoos. Therefore, semantic segmentation must
also be seen as a middle process, not just as an end process
in the tattoo recognition roadmap.

Studies have explored the use of open-set semantic seg-
mentation in different applications [15], [16]. These studies
focus on adapting or building open-set classifiers to make
closed-set semantic segmentation models capable of recog-
nizing unknown classes. While the outcomes of these studies
are promising, the performance of these approaches is lim-
ited due to the low representation of the obtained features,
resulting in an “irregular” logit space with low discrimi-
nation among the classes. Recent research [17], [18] has
demonstrated that incorporating metric learning techniques
can enhance open-set recognition. Metric learning aids in
obtaining more discriminative features and building a logit
space that tightly clusters known classes while maintaining
a considerable distance from unknown classes. However, it
is essential to acknowledge that applying metric learning
in the context of semantic segmentation can be impractical.
This is primarily due to the exponential complexity of the
task, as calculating pairwise distances among logit vectors
of pixels becomes computationally expensive.

Recent studies have investigated the potential of large-
margin learning to acquire more discriminative fea-
tures, yielding improved outcomes in image classification
tasks [19]–[21]. Hence, strategies established on large-
margin learning present promising and viable alternatives
for building a well-defined logit space that enhances the
separation among decision boundaries of semantic classes.

Motivated by these results, our study explores the dis-
criminative capabilities of large-margin learning to produce
more distinctive features for tattoo semantic segmentation.
This approach effectively increases the spatial separation
among decision boundaries to different semantic classes,
forcing the build of ideal logit space as illustrated in
Figure 1b. Furthermore, this expanded separation among
decision boundaries will set the stage for accommodating
unknown classes in the future, enhancing the effectiveness
of tattoo semantic segmentation within an open-set scenario.
Visual comparisons depicting the differences in logit space
resulting from the presence of unknown classes can be
observed in Figure 1.

Given the limitations presented so far and the fact that,
to the extent of our knowledge, open-set classification has
not been used in the context of tattoo recognition and is
an open research gap, this work aims to propose a new
large-margin-based loss function adapted to the context of
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FIGURE 1. Closed set and open set in dense labeling scenarios. The label space represents the pixel-level predictions, and logit space refers to a subset of pixel
samples in a 2D manifold separated by labels and decision boundaries for each class. a) Closed set without the presence of unknown classes. b) Closed set with
the presence of unknown classes. These unknown classes result in misclassification, being segmented as known classes. c) Open set segmentation with “irregular”
logit space. The term “irregular” suggests undefined or overlapping decision boundaries among classes. d) Open set segmentation with “ideal” logit space. The
term “ideal” refers to well-defined decision regions between the classes and enough space (Open space) between them to include new classes [14], [18].

open set semantic segmentation in tattoos. This novel loss
function seeks to overeat the closed set segmentation results
and enable and increase the open set segmentation results
compared to other state-of-the-art semantic segmentation
loss functions. Furthermore, we propose using a publicly
available test dataset, with an annotation aimed at semantic
segmentation in an open-set context, whose high complexity
will serve as a benchmark for comparing methods in this
area. The main contributions of this paper are then summa-
rized as follows:

• Test set publicly available for the dataset, allowing
comparisons and future work in the open-set and
closed-set scenarios;

• Novel class semantic augmentation method to expand
the tattoo samples;

• Novel large-margin loss function for open-set tattoo
semantic segmentation to build more discriminative
features and handle the class imbalance;

• A generalized open-set classifier approach based on
open principal component scoring with incremental
learning called G-OpenIPCS;

• Detailed and in-depth comparison with different state-
of-the-art loss functions and open-set semantic segmen-
tation methods;

• Statement of the main challenges for the open-set tattoo
semantic segmentation.

This paper is organized as follows. Section II presents
related works, mainly including related datasets, tattoo
segmentation, and open-set semantic segmentation. Our
proposed methods, particularly the novel tattoo semantic
segmentation dataset, novel tattoo semantic augmentation
method, and the novel loss function and open set classifier,
are detailed in Section III. The experiment setup is discussed
in Section IV, with results, discussions, and comparisons
with state-of-the-art approaches presented in Section V.

Finally, Section VI shows the conclusions, with the open
challenges in open-set tattoo semantic segmentation dis-
cussed in Section VII.

II. RELATED WORKS
In order to present a general overview of the state-of-the-
art in the context of tattoo segmentation, we divided the
related works into three parts where this paper presents
main contributions: datasets, tattoo segmentation, and open
set semantic segmentation. The following subsections detail
each of these works, pointing out the innovative aspects of
this work on each front.

A. AVAILABLE DATASETS
Regarding the datasets, we chose to organize in the Table 1
a summary of the main characteristics of the most common
datasets in tattoo detection, classification, and segmentation
problems. These criteria include the number of samples,
public availability, and type of annotation (classification,
detection of objects with bounding box – BB, or segmen-
tation). Regarding the annotation focused on segmentation,
we also included whether it contains semantic segmentation.

TABLE 1. Tattoo datasets.

Ref. Total Public? Annot. Semantic?
[12] 7,526 No BB -
[9] 890 Yes Seg. No

[22] 5,740 Yes Class. -
[23] 5,000 Yes BB -
[24] 210 Yes Class. -
[13] 5,500 Yes Seg. No

Ours 2,106 315 Seg. Yes

In the case of [12], despite the relatively large number of
samples and an annotation focused on tattoo detection, the
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dataset is private, which makes comparisons, establishing
benchmarks, and analyzing new methods for the dataset
difficult. On the other hand, the dataset proposed in [23]
is publicly available and annotated only with BB, i.e., it
is not possible to use it in the context of segmentation.
The datasets proposed in [24] and [22], in turn, are focused
exclusively on classification and provide only one label for
each image or image patch, restricting their use to multi-
class classification problems, without the location of the
tattoo in the image.

[9] were the first to address tattoo segmentation. The
proposed method aimed to de-identify soft biometric identi-
fiers (tattoos) by discriminating tattoo and non-tattoo image
patches with a deep neural network. In this sense, the
proposed dataset presents a pixel-level annotation of the
presence or absence of a tattoo in the image. However,
the authors did not individualize the tattoo classes in the
proposed annotation. The same is observed in the dataset
presented in [13]. Furthermore, the authors presented a
proposal using semi-synthetic images. This characteristic
can sometimes lead to an image far from a real tattoo,
compromising the segmentation approach.

Our dataset, in turn, presents some original and innovative
features that can complement currently available datasets:
(i) Inclusion of a semantic segmentation annotation; (ii)
Several classes of tattoos in the same image, increasing
complexity; (iii) Quite varied sizes of tattoos and classes
of tattoos in the same image; and (iv) Tattoos in different
regions of the body, maintaining the variability that exists in
real situations. As will be detailed later, only the test set is
made publicly available since most of the images available
in these scenarios contain public use restrictions. However,
we believe that as it is the first dataset with semantic
annotation in segmentation, it will allow the comparison and
evaluation of different approaches to this problem, which is
significantly challenging.

B. TATTOO SEGMENTATION
Tattoo segmentation methods were presented in many stud-
ies, but their results were suppressed, maybe because seg-
mentation was not the main focus. Furthermore, as many
of them were carried out a long time ago, the research
did not address deep learning methods, for example, and
the methods cannot be directly compared with the approach
adopted here.

In such cases, authors have performed their researches
using methods based on: (i) Content-Base Image Retrieval
(CBIR) and Edge Direction Coherence Vector (EDCV) [25];
(ii) 3×3 Sobel filter [26], Active Contour CBIR (ACCBIR),
and Vector Field Convolution (VFC) [1]; (iii) a complex
system combining bottom-up and top-down priorities that
transfer tattoo segmentation to detection split-merge skin
detection, followed by figure-ground tattoo segmentation
[27]; (iv) LoG (Laplacian of Gaussian) and Sobel kernel
filters called quasi-connected components (QCC), using the
GrabCut algorithm to produce the final segmented tattoo

image [28]; (v) a negative image method with HSV (hue,
saturation, and value, or lighting) model [29]; (vi) identifi-
cation of pixels of skin in regions close to the tattoos and a
graph-cut model based on skin color and a visual bump map
[30], and (vii) a k-means cluster used in LAB color space to
detect the skin area with a morphology processing used to
smooth the clear graphic of the tattoo image segment [10].
The main limitation of these hand-crafted-based methods is
that the feature extractor may have adequate performance
for some classes and datasets but significantly lower perfor-
mance for others, with compromised generalization. This
is accentuated for datasets with greater variability in tattoo
images.

As far as our research has reached, only two studies
have used deep learning methods for the problem of tattoo
segmentation.

TABLE 2. Tattoo segmentation models.

Ref. Network Semantic? Open-Set?
[9] ConvNet No No
[31] AlexNet+VGG No No
[13] ViT-based No No

Ours SegFormer Yes Yes

Based on the study on CNNs, [9] used the structure
of a ConvNet network to train small pieces of images to
learn to identify which ones have or do not have pieces of
tattoos. After training the network, a sliding window was
passed through the image to be tested, and each segment of
the sliding window was tested as a piece with a tattoo or
not, marking the positive pieces. Parts with possible tattoos
would be segmented piece by piece at the end of the slide.

[31] proposed a continuation of work presented in
[9], this time testing three different networks for tattoo
segmentation: (i) an architecture consisting only of multiple
fully connected layers, without convolutional layers; (ii)
an architecture inspired by the AlexNet network; and (iii)
an architecture inspired by the VGGNet network. On the
other hand, state-of-the-art segmentation models based on
Vision Transformer (ViT) were evaluated in [13]; however,
the main idea of that work was the unsupervised tattoo
generator that allowed the creation of many semi-synthetic
images with tattooed subjects. Hence, as shown in Table 2,
related approaches used still needed to follow a semantic
segmentation methodology and did not use an open-set
semantic segmentation view, which is the focus of our
current study and detailed as follows.

C. OPEN-SET SEMANTIC SEGMENTATION
The success of the fully convolutional network (FCN) in
closed-set semantic segmentation [32] has led to the suc-
cessful implementation of various neural network models
for closed-set semantic segmentation on different applica-
tions [7]. However, these methods are unsuitable for open-
set scenarios, which are common in real-world computer
vision. This is because the closed-set perception fails when
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unknown classes from training are found in the test phase
[33]. Due to that, several proposals have been developed
for the open-set context in different applications, mainly au-
tonomous driving, remote sensing, and data collection [34].

For open-set semantic segmentation, the loss function
selection to guide the optimization process is an important
aspect of the achieved results [35]. In general, studies limit
themselves to using the successful and widely employed
cross-entropy loss (CE) [15], [16], [33], [36]–[40]. This
loss function measures the disparity between the predicted
values and the ground truth, guiding the model’s learning
process based on labeled data. Hence, the studies focus on
adapting or building open-set classifiers to make closed-
set semantic segmentation models capable of recognizing
unknown classes, even in label noise scenarios [41].

In this sense, metric learning has recently gained signif-
icant attention in addressing the open-set problem. Metric
learning is an approach based on learning a distance met-
ric that reinforces similarity between objects in the latent
space. It has been studied in various fields, such as image
classification [14], semantic segmentation [42], [43], and
zero-shot segmentation [44]. According to [42], the metric
learning strategy aims to direct the feature extraction process
to obtain a well-controlled latent space, maximizing inter-
class spacing and minimizing intra-class spacing based on
a distance metric. Thus, the unknown samples are repelled
into open space, as can be seen in Figure 4.

Similarly, the large-margin-based loss (LM) functions
[19]–[21] maximize the margins between classes by impos-
ing a regularization on the logit vectors of pixels to induce
an increased separation between the boundary regions of
the semantic classes. This strategy improves the general-
ization of models and provides open space between classes
that can be valuable in the context of open-set semantic
segmentation, allowing unknown samples to be projected
into these open spaces. Furthermore, the large-margin loss
adopts a more efficient training strategy than other metric
learning approaches, such as those involving cubic costs for
computing pairwise distances between the logit vectors of
pixels [45].

Recent studies [40], [46] have made improved open-set
semantic segmentation for autonomous driving applications
by employing negative auxiliary data. Unlike these stud-
ies, our approach uses no auxiliary data to enhance the
performance of open-set semantic segmentation. Table 3
summarizes the approaches used for open-set semantic
segmentation.

In the context of tattoo semantic segmentation, as stated
in the previous Section, to the extent of our knowledge,
no works focus on the open set context—the most closely
related works are [23] and [47]. [23] built a tattoo search
approach that can learn tattoo detection and compact rep-
resentation jointly in a single CNN via multi-task learning
is presented. However, the compactness proposed by the
authors is more focused on the compressive yet discrim-
inative feature learning for large-scale visual search and

TABLE 3. Open-set semantic segmentation approaches.

Ref. Loss Context Aux. data?
[15], [16], [36], [38], [39] CE Remote Sensing No

[33], [37] CE General No
[33] CE Synthetic Data No

[40], [46] CE Aut. Driving Yes
[42] Metric Aut. Driving No
[44] Metric General No
[43] Metric General No

Ours LM Tattoo No

instance retrieval applications, i.e., the efficiency of the
search procedure. Open-set classification is not presented,
and discussions of the proposed multi-task procedure are
not encouraged for other applications. While [47] presented
a classification method based on the Extreme Value Theory
for tattoo classification. However, the focus of the proposed
approach was the mid-level representations as a tool to
adjust the trade-off between accuracy and efficiency. Hence,
the results are mainly dedicated to real-world computer
vision systems, where high accuracy is maintained even
on commodity hardware with a low computational budget.
Details regarding open-set are also not addressed.

To the best of our knowledge, this is the first work to
explore tattoo semantic segmentation in closed and open-set
scenarios, establishing benchmarks for both conditions using
our publicly available test set. Our approach introduces the
large-margin loss function as an efficient learning strategy to
build a well-defined logit space and handle class imbalance,
using contemporary network architecture based on trans-
formers and presenting the generalist approach to integrating
a robust open-set classifier for semantic segmentation tasks.

III. PROPOSED METHODS
This section outlines the proposed methods. Firstly, in
Section III-A, a novel-built TSSD2023 dataset is presented.
Then, Section III-B introduces a novel tattoo semantic
augmentation to expand tattoo samples of the TSSD2023
dataset. Subsequently, in Section III-C, a novel large-margin
loss function is proposed to handle class imbalance and
enhance the discriminative of the classes in the TSSD2023
dataset. Lastly, in Section III-D, a generalized approach for
OpenIPCS is proposed for open-set semantic segmentation.

A. TATTOO SEMANTIC SEGMENTATION DATASET
Identifying the various things that make up a tattoo can be
defined as a semantic segmentation task. This process allows
machines to comprehend the meaning behind a tattoo better.
Its usefulness is particularly evident in security systems,
where it assists in identifying and monitoring individu-
als through surveillance systems, for instance, locating a
person based on a brief tattoo description. However, as
previously presented, current tattoo datasets are limited to
image classification [22], [24], object detection [12], [23], or
tattoo segmentation [9], [13], which only separate the tattoo
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from the background and fail to provide a comprehensive
understanding of the significance of the tattoos.

In this manner, we created the Tattoo Semantic Segmen-
tation Dataset (TSSD2023), respecting the copyrights of
image owners to the greatest extent possible. To build this
dataset, web scraping was conducted on Flickr 1. Numerous
terms related to tattoos were used as search queries on
the platform. Then, a visual inspection was performed by
humans to confirm whether the images obtained contained
tattoos and whether their content was suitable for sharing.
Finally, the licenses users attribute to these images when
sharing them on the platform were considered to define the
training, validation, and test sets.

As a result, the test dataset exclusively comprises images
for which sharing permissions had been granted. In contrast,
the training and validation datasets consist only of images
for which sharing was unauthorized. This division strategy
was adopted due to the limited availability of images with
public sharing licenses. Thus, the test sets will be publicly
available for comparison and development of future work.
However, the training and validation sets will be kept private
to ensure that none of the authors’ copyrights are infringed.

Figure 2 shows 33 classes2 for Known Known Class
(KKC) tattoos and 23 classes for Unknown Unknown Class
(UUC) tattoos selected for annotation in TSSD20233. The
motivation for choosing this split for KKC and UUC classes
was mainly based on the number of images available for
each semantic class. Classes with reduced representation in
the universe of available tattoos and, consequently, public
samples were selected exclusively to compose the UUCs due
to the impossibility of successfully training the segmentation
models on these classes. Furthermore, the proposed division
guarantees that the test semantic classes defined as UUC
are not found on the training and validation sets. Hence,
we consider the proposed division sufficient to evaluate the
open-set methods proposed in this work. Once the data were
divided, UUCs were chosen to form part of the test set for
open-set evaluation. This approach enabled the representa-
tion of similar and dissimilar semantic classes compared
to KKCs, allowing for evaluation in straightforward and
complex scenarios.

Each KKC class was meticulously labeled with unique
identifiers to enable the model to distinguish each object
semantically. In contrast, all UUC tattoos were assigned the
same “unknown” class label. Notably, all KKC classes are
represented in the training and validation sets and the test

1A photo and video hosting platform established in 2004. Available
in: https://flickr.com/

2The dataset also includes annotations for the ‘stem/branch’ and ‘rope’
classes, which were omitted from the analysis due to the limited number
of annotations.

3The closed-set approach assumes that the training and testing pixels
belong to the same label space (defined as KKCs), meaning that the train
and test sets contain the same classes. However, this assumption does not
hold in real-world scenarios, especially in earth observation applications.
During the prediction phase, the model may face pixels from classes not
seen during the training phase (UUCs). We direct the reader to [14] for a
deeper reading about these definitions.

set. However, UUC tattoos are exclusively found in the test
open-set. A human inspection process was also conducted
to ensure these open-set recognition conditions [14].

Table 4 presents four possible tattoo composition sit-
uations found in TSSD2023: (i) Single tattoo: only one
tattoo class is present in the image; (ii) Multiple tattoos:
multiple tattoo classes can be found in a single image;
(iii) Multiple tattoos (with overlap): similar to the previous
scenario, but the tattoos are overlapped with each other.
Due to this overlap, this scenario is more challenging
than the previous one [33]; and (iv) Tattoos (unlabeled)
as background: Tattoos (unlabeled) as background: Specific
tattoo classes were categorized as background classes due
to two primary reasons. First, this decision was necessary
because, at times, it was impossible to determine their spe-
cific semantic tattoo class. Second, due to a limited number
of available samples, assigning individual semantic labels
to these classes was not feasible. These situations provide a
comprehensive representation of tattoo compositions within
the dataset.

TABLE 4. Samples of the images and annotations of the TSSD2023 dataset.

Single
tattoo

Multiple
tattoos

Multiple
tattoos

(with overlap)

Tattoos
(unlabeled)

as background

In conclusion, TSSD2023 contains 2,106 tattoo images
without specific image resolution standards that have been
annotated at the pixel level. These images are divided into
the following subsets: 1,404 for training, 387 for validation,
and 254 for the closed-set test. Additionally, 61 images with
UUC tattoos are included to form the test open-set with
315 images. Figure 3 illustrates the distribution of pixel
percentages for each class within TSSD2023, demonstrating
that the dataset is notably imbalanced, particularly in the
background class, which accounts for an average of ≈
80% of pixels across the subsets. It is also important to
highlight that the unknown class represents approximately
3% of the pixels present in the test open-set. Samples
of images from TSSD2023 can be observed in Table 4,
showcasing tattoos presented in diverse scenarios, sizes,
styles, positions, and combinations. These variations aim to
maintain the variability of real-world situations.
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FIGURE 2. TSSD2023 Classes. KKCs tattoos correspond to the 33 labeled classes, while the UUCs tattoos are represented by the 23 classes defined as
“unknown” (black label). These classes can be viewed within a conceptual taxonomy, facilitating an understanding of the domain coverage provided by the dataset.
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FIGURE 3. The distribution of pixels per class and set. These values are organized based on their quantities in the training set. The values of background classes
were suppressed due to discrepancies with the other classes. The reference values for the background are 79.8% in training, 79.4% validation images, 81.4% test
closed-set images, and 81.7% test open-set images.

B. CLASS SEMANTIC AUGMENTATION
Motivated by the limited number of samples within
TSSD2023 compared to the extensive diversity of real-world
tattoos, this work introduces a novel data augmentation
named class semantic augmentation (CSA) to increase the
variety of tattoos contained in TSSD2023. This method ap-
plies pixel-level transformations to distinct classes, enabling
unique augmentation for different classes within an image,
as illustrated in Table 5. In this instance, the pixels of
the heart class go through different transformations of col-
orations, gray styles, and color tones, trying to approximate
the infinite possibilities of representing tattoos in the real
world from limited semantic data.

TABLE 5. Samples of the data augmentations on only the heart class, except
the mix column that applies the data augmentations on all semantic classes.

Original RGB
shift

Random
tune To gray Mix

Algorithm 1 details the proposed implementation of tattoo
semantic augmentation. The algorithm takes five parameters:
the input image X , the ground truth Y , a list of pixel-

level transformations to increase the variability of semantic
classes t, a list containing the probabilities of executing
each transformation p, and a list of semantic class indices
ic that remain unchanged during data augmentation. It is
important to note that the parameters p and ic are optional.
The algorithm first identifies the indices of semantic classes
within the image. Subsequently, it iterates through each
index, applying one of the transformations specified in t.
As shown in Table 5, a heart can be represented in various
ways while other classes remain unchanged. It demonstrates
that this semantic augmentation allows specific adjustments
for each class in the dataset, making it useful in various
application domains, such as autonomous driving [42] and
fashion images [48]. In addition, different pixel-level trans-
formations can be selected for more suitable application
contexts. For instance, the color of a flower may vary. At the
same time, the leaf and stem could be confined to modifying
the original color tones, preserving the real-world patterns.
On the other hand, all semantic classes in an image can be
changed without restrictions, as observed in the mix column
of Table 5 and as employed in this study. It is worth noting
that this augmentation technique is limited to pixel-level
transformations.

C. PROPOSED LOSS FUNCTION

Classical convolutional neural networks (CNNs) based se-
mantic segmentation networks [32] can be divided into two
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Algorithm 1: Class semantic augmentation.
Input: Image (X)
Input: Ground truth (Y )
Input: List of transforms (t)
Input: List of probability of choice (p)
Input: List of ignore classes (ic)
Output: Transformed image (X̂)

1: seg_ids = unique(Y )
2: seg_ids = remove_ic(seg_ids, ic)
3: X̂ = copy(X)
4: Foreach: i ∈ seg_ids do
5: y = new_array_zeros(Y.shape)
6: y[Y == i] = 1
7: T = random_choice(t, p)
8: X̂ = apply_transform(T, X̂, y)
9: end foreach

10: return X̂

parts: a feature extractor that includes several convolution
layers followed by max-pooling and activation function, and
the linear classifier f = W⊤x+b in the last fully-connected
layer applied on the feature vector x of the penultimate layer
for obtaining the logit vector f ∈ RC of each pixel of the
input image, in which C represents the number of classes.
To solve the overfitting problem and produce more discrim-
inative logit vectors f in training, classifier margin has been
exploited [19], [21], [49]. Following [50], the classification
margin is the difference between the predicted score fc∗
and target score fy , where y indicates the ground truth
class labels and c∗ = argmaxc ̸=yfc. Based on the margin
fy − fc∗ , the traditional classifier margin loss function can
be expressed as follows:

Lmargin = L

(
max
c ̸=y

fc − fy + ρ

)
, (1)

in which ρ is a boundary control parameter, usually ρ ≥ 0.
Thus, increasing the value of ρ results in a larger classifi-
cation distance between labels.

According to [20], the cross-entropy loss (LCE) can
partially encourage the development of a large-margin clas-
sifier within the CNNs. Based on this analysis, a sym-
metric Kullback-Leibler (KL) divergence term LLM was
introduced as a regularization component for LCE , inducing
a more large-margin classifier in the original LCE . The
combination was termed the large-margin cross-entropy loss
(LCE+LM ), and it is the formula is presented as follows:

LCE+LM = LCE + LLM , (2)

in which LCE is defined as:

LCE = −log py(f) = −log
exp(fy)∑C
c=1 exp(fc)

, (3)

and LLM is expressed as:

LLM =
λ

2

∑
c ̸=y

{
exp(fc)∑

c′ ̸=y exp(fc′)
− 1

C − 1

}

×log

{
exp(fc)∑

c′ ̸=y exp(fc′)

}
,

(4)

where λ is a regularization parameter. Increasing the value
of the λ enlarges the space between classes, thereby more
resistance faced by the learning objectives. The detailed
derivation has been explored in [19].

Considering the class imbalance between the background
and the foreground classes in the tattoo semantic segmen-
tation dataset, we modify the LCE+LM replacing the LCE

by the focal loss LFCL. This choice is based on the fact
that LFCL is a variant of the LCE that preserves the
discriminative capacity of the original loss while dealing
with the imbalance among the classes [51]. Thus, our
proposed large-margin focal loss (LFCL+LM ) is described
by:

LFCL+LM (ours) = LFCL + LLM , (5)

LFCL is defined as:

LFCL = α(1− py(f))
γ × log py(f). (6)

The LFCL applies a modulating term to the LCE to focus
learning on hard examples and down-weight the numerous
easy examples, where α control the class weights and γ
reduce the loss contribution from easy examples. Thus, we
obtain a loss that deals with imbalances between classes
while increasing the classification margin to improve the
discriminability of the trained model.

D. OPEN-SET CLASSIFIER FOR SEMANTIC
SEGMENTATION
In semantic segmentation networks, the logit vector f ∈
RC are commonly normalized using the softmax function
into a probability distribution for each class y ∈ {1, ..., C}
to perform the final classification of each pixel.Therefore,
the final classification of each pixel is defined as Ŷ close

f =
argmax py(f).

This learnable classifier cannot recognize UUC, making it
unsuitable for open-set recognition as it assigns all features
to KKCs [42]. Thus, open-set classifiers must be developed
to classify KKCs while recognizing UUCs accurately. Pre-
vious studies have investigated this development in semantic
segmentation task [16], [38], [42], [52]. Based on those
studies, one can present the general open set classifier as
follows:

Ŷ open
f =

{
CUUC max(py(f)) ⩽ λout,

Ŷ close
f max(py(f)) > λout.

(7)

where CUUC denotes the UUC, and λout the cutoff thresh-
old to determinate the UUC pixels.
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A recent study [38] presented an open-set classifier
method based on principal components analysis (PCA) on
the internal logic vectors of CNNs to provide an open-set
semantic segmentation, named Open Principal Component
Scoring with Incremental Learning (OpenIPCS). Its training
approach is efficient, which is crucial due to the exponential
nature of pixel-level classification compared to image clas-
sification. Furthermore, the study notes that OpenIPCS out-
performs open-set semantic segmentation strategies based
on probability maps by a significant margin.

OpenIPCS was inspired by the Conditional Gaussian
Distribution Learning (CGDL) proposed in [53], which is
a Variational Autoencoder (VAE) model for conditional
Gaussian distribution estimation, capable of learning con-
ditional distributions of KKC and rejecting UUC examples.
In distinction, the OpenIPCS replaced the VAE with PCA
and uses multiple internal activation layers to adjust the
generative model with validation samples only.

[54] showed that logit vectors get closer to the label
space as CNN layers deepen. Thus, in addition to the last
layer f , OpenIPCS considers the enabling aspects of the
previous layers f, f1, . . . , fL, in which L denotes the total
number of the CNNs layers. This approach combines low-
level and high-level semantic information, thus enhancing
the discrimination capability of the model.

Then, for each pixel, a corresponding feature vector
f̂train is built by concatenating the network’s internal logit
vectors f, f1, . . . , fL. Such a concatenation produces high-
dimensional and redundant features due to the hundreds or
thousands of activation channels present in the CNN and
the FCN layers [55], [56].

As described by [57], PCA can serve a dual purpose.
Apart from its primary role in reducing dimensionality, it
can also act as a probability density estimator with Gaussian
priors. These features allow OpenIPCs to use PCA as a
generative model (G) for UUC recognition while solving
the high-dimensionality problem of feature vectors.

This G is incrementally adjusted using only the validation
images. This process consists of adjusting the PCA with a
batch of samples from the validation set. The classification
step using the G consists of projecting the feature vector
f̂test of the test images in the latent space obtained by
adjusting the PCA on the validation images and performing
the inverse process to obtaining the f̂G

test. The difference
between the original feature vector f̂test and the f̂G

test is
calculated. Consequently, pixels of KKCs have low differ-
ence values, while pixels belonging to the UUCs have high
difference values. Thus, in accordance with [38], open-set
recognition from OpenIPCS can be achieved as follows:

Ŷ openipcs
f =

{
CUUC abs(f̂test − f̂G

test) > λout,

Ŷ close
f abs(f̂test − f̂G

test) ⩽ λout.
(8)

The λout do not represent equal statistical entities with
the Equation 7. Thus, as in [38], the λout value was defined
from preset values of True Positive Rate (TPR).

As outlined in [54], the deeper layers are closer to the
label space. Based on this analysis, this work proposes
a generalized version of OpenIPCS (G-OpenIPCS) that
focuses only on the last and penultimate layers of CNNs.
These layers contain more substantial semantic information,
which proves highly valuable for training OpenIPCS. Con-
sequently, it becomes possible to disregard the other network
layers within the CNNs. This aspect simplifies our approach
and is easy to incorporate into different network architec-
tures, unlike the original OpenIPCS building exclusively on
the FCN decoder.

IV. EXPERIMENTS SETUP
Due to the open-set recognition process being still depen-
dent on models built in a closed-set [33], [38], our exper-
iments are divided into three parts. First, in Section IV-A,
we compare our proposed loss function, described in Sec-
tion III-C, with other significant loss functions widely used
in semantic segmentation or recently introduced to improve
discriminability in deep neural networks. Subsequently, in
Section IV-B, we employ the proposed G-OpenIPCS ap-
proach detailed in Section III-D to evaluate the performance
of models trained with the loss functions from the previous
experiment in an open-set tattoo semantic segmentation
scenario. Finally, we compare the performance of our open-
set semantic segmentation approach with other state-of-
the-art open-set semantic segmentation methods. Figure 4
provides an overview of the proposed method. Each stage
of Figure 4 is detailed as follows.

A. CLOSED-SET SEMANTIC SEGMENTATION
Datasets. A total of 2,045 images from TSSD2023 were
used to train and evaluate the closed-set models. These
images follow the following division: 1,404 for training, 387
for validation, and 254 for closed set testing, as described
in Section III-A.
Pre-processing and Data augmentations. This step in-
volves a sequence of transformations to train and improve
the semantic segmentation network, motivated by the limited
dataset of training images available in TSSD2023 around
the high diversity of tattoos that virtually have no limits in
the real world. This process involves the following steps: a)
Implement a resizing operation, which can be either random
or center crop, or resize to get an image with a resolution of
224 × 224; b) Next, there is a 50% probability of applying
one of the geometric transformations to the image, including
horizontal and vertical flipping, shifting, scaling, or rotation.
These transformations have a scale and shift limit of 0.2, and
rotation is limited to a maximum of positive or negative
45 degrees; c) Executing the tattoo semantic augmentation
method proposed by this work, as described in more detail
below. This augmentation involves RGB shifting, conversion
to grayscale, and the application of random tone curve
transformations. Each of these transformations has a 25%
probability of being applied to each class within an image;
d) Subsequently, there is a 50% chance of applying certain
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FIGURE 4. Overview of the proposed methods. Closed-set segmentations are obtained from models trained by different loss functions. The proposed
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global modifications to the image. These modifications can
consist of random adjustments to brightness and contrast
with a limit of 0.3, Gaussian blur with a 5-neighbor mask, or
fancy PCA transformation; e) Next, coarse dropout transfor-
mation [58] with a maximum of 8 plots per image with the
maximum resolution of 32x32 is applied; f) Next, the images
are normalized using the mean and standard deviation values
obtained from the ImageNet [59]; g) Finally, there is a
50% probability of applying the CutMix transformation
[60] at the batch level to blend the images. All of these
transformations were applied or developed with the on of
the Albumentations library 4.
Implementation details. Due to recent advances presented
by the semantic segmentation networks based on trans-
formers [61]–[63], this work uses the SegFormer [63],
which consists of a hierarchical Transformer encoder with
lightweight multilayer perceptron (MLP) decoders. The
model was pre-trained on the ImageNet dataset [59] and
was acquired through the Hugging Face library 5. During
closed-set training, a batch size of 16 images on an RTX
3090 with 500 epochs was utilized, employing a patience
factor of 10 epochs. The Nadam optimizer [64] was used,
with an initial learning rate set at 0.0001 and a weight decay
coefficient of 0.00001.
Baseline loss functions. In order to investigate the perfor-
mance of large-margin focal loss (LLMFCL) in both closed-
set and open-set semantic segmentation, we conducted a
comparative study with five other loss functions: i) cross-
entropy loss (LCE) – it was selected because it is widely
used and a standard choice for semantic segmentation; ii)
focal loss (LFCL) [51] – this is a commonly used variation

4https://albumentations.ai/
5https://huggingface.co/

of cross-entropy that is effective in addressing class imbal-
ance; iii) Distance-based cross-entropy loss (LDCE) [65]
and iv) Distance-based cross-entropy loss combined with
Variance Loss (LDCE+V L) [42] were selected as they have
been proposed to enhance the results of open-set recognition
by increasing the inter-class distance and decreasing the
intra-class distance to produce more discriminative features;
v) label-distribution-aware margin loss (LLDAM ) [66] was
chosen as a key loss for long-tailed recognition. It increases
the margin for tail classes and decreases for main classes
based on class frequency; vi) dice similarity coefficient loss
(LDSC++) [67] recently introduced loss that combines the
robustness of the LDSC to class imbalance while penalizing
overconfident predictions, hence improving the performance
of semantic segmentation on out-of-distribution data; vii)
large-margin cross-entropy loss (LLMCE) [20] was chosen
because it has recently been proposed to improve the results
of closed-set classifiers by increasing the space between the
decision boundaries of each class. Moreover, we utilized
the LLMCE as a foundation to develop our proposed loss
function for the open-set tattoo semantic segmentation on a
scenario that presents various challenges, such as high intra-
class variability, class imbalance, and small tattoos, while
enhanced discriminative capabilities in closed-set and open-
set semantic segmentation. Table 6 presents the loss function
parameters used for model training.

Metrics. In order to assess the results of closed-set se-
mantic segmentation, followed by open-set segmentation,
we employed the following metrics. Firstly, we used the
Area Under the ROC Curve (AUROC) because it has been
recently utilized to assess open-set semantic segmentation
[38], [42]. This metric aids in measuring the model’s ability
to distinguish between classes, particularly with respect
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TABLE 6. Parameters
per each loss function
utilized for the model
training.

Ref. Loss Parameters
- LCE -

[51] LFCL α: 1.0, γ: 2.0
[65] LDCE T : 3
[66] LLDAM s: 30, λmax: 0.5
[20] LLMCE λ: 0.3
[42] LDCE+V L T : 3, λvl: 0.01
[67] LDSC++ γ: 2.0

Ours LLMFCL λ: 0.3, α: 1.0, γ: 2.0

to UUC. Secondly, the macro-averaged F1-Score (Macro
F1), recommended in previous works for open-class clas-
sification [68], [69]. It helps evaluate the model’s preci-
sion and recall of the segmented pixels. Lastly, the Mean
Intersection over Union (mIoU) is a standard metric for
semantic segmentation evaluation that provides an overview
of the model’s performance across all classes, including both
KKCs and UUC.

B. OPEN-SET SEMANTIC SEGMENTATION
Datasets. G-OpenIPCS was trained using just the 387
validation images. The test open-set with 315 images was
used to evaluate the proposed method, as detailed in Sec-
tion III-A.
Implementation details. For each model trained using the
evaluated loss functions in closed-set semantic segmenta-
tion, a G-OpenIPCS model was trained to perform semantic
segmentation in an open-set scenario. As depicted in Figure
4, our approach utilizes the last two connected layers of
the segmentation network to construct feature vectors for
each pixel. In the case of SegFormer, this feature vector
is equal to the number of KKCs plus the logit vector of
the inner layer, with a length of 768. Subsequently, we
defined 64 principal components for the adjustment in G-
OpenIPCS. It is worth noting that the feature vector size and
the number of principal components may vary depending
on the semantic segmentation model and the application
domain. Once G-OpenIPCS is trained, it becomes possible
to recognize UUCs by considering the discrepancy between
the raw feature vector and the projected feature vector, as
outlined in Equation 8.
Baseline. Initially, a comparative analysis of the open-
set semantic segmentation results was conducted using G-
OpenIPCS trained for each evaluated loss function. This
step serves to validate the performance of the proposed
loss function in the open-set scenario. Subsequently, our
approach was compared with other significant open-set
segmentation methods proposed in the state-of-the-art lit-
erature. These methods include OpenIPCS [38], Anoma-
lous Probability Map (APM) [42], Maximum Unnormalized
Logit (MaxLogit) [39], and Maximum Softmax Probability
(MSP) [43]. For these methods, training followed the same
configurations as described in Section IV-A, except that
only geometric transformations were applied. All networks
were pre-trained on the ImageNet dataset [59]. Specifically,
for DRN50+PSPNet [42] and RN101+PSPNet [39], images
were resized to dimensions of 250, 300, 350, 400, and 450,

with a down-sampling factor of 8 for DRN50. Additionally,
we implemented SoftMax-Thresholding (SoftMax-T) [38]
and OpenMax [36] as the baselines for our implementation.
As this is the first study on tattoo semantic segmentation
and without other tattoo semantic datasets, we only compare
our approach with state-of-the-art methods that do not use
auxiliary data to supply their open-set recognition models.
Finally, to demonstrate the generalization of our approach
with baselines, we replicated the experiments, replacing the
SegFormer with the Swin+UperNet model [70].
Cutoff thresholds. All the methods compared in Sec-
tion V-C require a cutoff threshold to distinguish between
KKC and UUC pixels. To realistically undertake an open-set
recognition task, these limits are defined empirically based
on the available KKCs during the validation data following
the conditions of the original papers. No information about
the UUCs is used to select the cutoff thresholds for the open-
set classifiers. For the proposed G-OpenIPCS, the preset
values of the cutoff thresholds (λout) are determined based
on TPR quantiles, as outlined in [38].
Metrics. To evaluate the semantic segmentation results in an
open set, we kept the AUROC, Macro F1, and mIoU used
in the experiment in a closed set, described in Section IV-A.
Additionally, we highlight the results involving UUCs.

V. RESULTS AND DISCUSSIONS
This section presents the results and discussions obtained
from our experiments. The purpose is to validate the im-
pact of the proposed Large-Margin Focal Loss on closed
and open-set tattoo semantic segmentation, in addition
to demonstrating the effectiveness of the proposed G-
OpenIPCS for open-set semantic segmentation. Initially, in
Section V-A, we present the results of the loss functions
evaluated in this work in a closed set scenario. Next,
in Section V-B, we evaluate the performance of models
trained using the proposed G-OpenIPCS method. Finally,
in Section V-C, we compare our proposed approach with
other state-of-the-art techniques.

A. CLOSED-SET SEMANTIC SEGMENTATION

This section focuses on evaluating the performance im-
pact of the proposed LLMFCL in a closed-set semantic
segmentation scenario. To demonstrate this, several loss
functions from the literature were compared, as described
in Section IV-A. Table 7 presents the overall results for all
evaluated loss functions in terms of AUROC, Macro F1, and
mIoU. When evaluating the performance of loss functions,
LLMFCL outperforms all other metrics in terms of Macro
F1 and maintains consistent results across AUROC and
mIoU. This makes LLMFCL a suitable choice for closed-
set semantic segmentation. However, LLDAM and LLMCE

exhibit an outperform over LLMFCL in terms of AUROC
and mIoU, respectively. Additionally, LFCL stood out by
producing results that closely resemble those of LLMFCL

and LLMFCL, despite not incorporating a large margin in
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TABLE 7. Comparison of the closed-set segmentation results
achieved per each loss function. Bold values indicate the best
overall results, including all loss functions. The results were
obtained using SegFormer.

Ref. Loss AUROC Macro F1 mIoU
- LCE .7966±.122 .6179±.224 .4805±.216

[51] LFCL .8024±.111 .6433±.213 .5053±.209
[65] LDCE .8030±.118 .6108±.219 .4724±.218
[66] LLDAM .8295±.105 .6497±.181 .5057±.191
[20] LLMCE .8110±.112 .6457±.217 .5097±.216
[42] LDCE+V L .7843±.120 .5933±.217 .4519±.205
[67] LDSC++ .8108±.108 .6303±.200 .4874±.196

Ours LLMFCL .8142±.102 .6514±.189 .5090±.194

its formulation. This emphasizes its capability to address
class imbalance encountered in TSSD2023.

On the other hand, LCE , LDSC++, and particularly
LDCE and LDCE+V L exhibit lower effectiveness compared
to the other loss functions. Among these less favorable
outcomes, LDCE+V L yielded the poorest results. This could
indicate that the significant variability present in TSSD2023
posed challenges for the metric learning process. Thus,
functions based on large-margin, such as proposed LLMFCL

and LLMCE , were demonstrated to be more effective for
closed-set semantic tattoo segmentations.

Table 8 presents the closed-set segmentation results cat-
egorized by class obtained from proposed LLMFCL. It
emphasizes the top 5 best and top 5 worst results, excluding
the background class. The top-5 best have high IoU val-
ues, indicating that the model’s segmentation performance
for these categories is particularly accurate. Additionally,
they exhibit relatively high AUROC and Macro F1 scores.
Notably, the classes within the top 5 best results do not
necessarily constitute the majority of pixel quantity in
TSSD2023, as illustrated in Figure 3. This suggests that the
excellent performance comes from other aspects, such as the
semantic dissimilarity of this set of tattoos to other classes,
and mainly due to the recurrence of these tattoos being tat-
tooed individually, without overlapping with other semantic
classes, as can be briefly observed in Table 9. In contrast,
the top 5 worst classes can be categorized as complementary
tattoos, meaning they are rarely encountered in isolation but
are typically accompanied by other predominantly dominant
tattoos in terms of pixel quantity. For instance, a crown is
almost always found with another element, such as a human
or animal face. Leaves often complement flowers and stems,
and water is nearly always associated with aquatic creatures
like fishes, sharks, and octopuses.

In outline, LLMFCL showed considerable impact in the
closed-set semantic segmentation, presenting the best results
overall. However, aspects can still be considered to improve
performance in closed-set segmentation. In addition to deal-
ing with class imbalance, it is still necessary to deal with the
overlap between semantic classes, improving the accuracy of
segmentations, especially in complementary tattoo classes.
This will be detailed in Section VII.

B. OPEN-SET SEMANTIC SEGMENTATION
This section evaluates the impact on the performance of
the proposed LLMFCL in an open-set scenario. Table 10

TABLE 8. Closed-set segmentation results separated by classes obtained
from the SegFormer trained using the proposed LLMFCL. The results were
sorted in descending order of mIoU↑ values. The top-5 best classes are
highlighted in green , while the top-5 worst classes are highlighted in red .

Class AUROC Macro F1 mIoU ↑
background 0.8886 0.9669 0.9359

tiger 0.9632 0.8656 0.7631
octopus 0.9102 0.8552 0.7470
snake 0.9270 0.8451 0.7318
key 0.9136 0.8290 0.7079
owl 0.8813 0.8287 0.7076

butterfly 0.8729 0.8164 0.6897
lion 0.8714 0.8106 0.6816
star 0.8787 0.8028 0.6706
dog 0.8863 0.7868 0.6485

scorpion 0.9149 0.7586 0.6110
flower 0.8212 0.7412 0.5888

fox 0.8302 0.7083 0.5483
fish 0.8278 0.7042 0.5435

shark 0.8604 0.6978 0.5359
gun 0.8507 0.6914 0.5284
cat 0.7772 0.6878 0.5241

anchor 0.8192 0.6565 0.4886
bird 0.7641 0.6490 0.4804

diamond 0.8530 0.6280 0.4577
mermaid 0.9150 0.6256 0.4551

eagle 0.8788 0.6180 0.4472
spide 0.8606 0.5998 0.4283
heart 0.7696 0.5809 0.4093

ribbon 0.7572 0.5496 0.3789
wolf 0.8008 0.5403 0.3702
skull 0.7562 0.5393 0.3693
shield 0.7086 0.5375 0.3675
crown 0.7241 0.4718 0.3087
leaf 0.6564 0.4310 0.2747

water 0.6409 0.3939 0.2452
knife 0.5633 0.1796 0.0987
fire 0.5262 0.0989 0.0520
all 0.8142 0.6514 0.5090

compares the open-set segmentation results obtained using
various loss functions, all evaluated using the proposed G-
OpenIPCS method. Among the loss functions, LLMFCL

achieves the highest AUROC score of 0.8013, Macro F1
with 0.6318, and also outperforms the mIoU score with
0.4900. These results indicate that LLMFCL is the most
effective loss function in terms of overall performance. Con-
sidering only UUC, although LCE has the best performance
in terms of AUROC (UUC). LLMFCL remains competitive
in this metric while providing superior performance in terms
of the F1-Score (UUC) and mIoU (UUC).

Table 11 presents an evaluation of class-level performance
from open-set semantic segmentation results from proposed
LLMFCL. The top-5 best practically remained the same as
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TABLE 9. Visual result samples of open-set semantic segmentation for each loss function. UUCs are depicted as black pixels. The respective colors for other
semantic classes can be found in Figure 2. The UUC has been highlighted in yellow , while the top-5 best classes are highlighted in green , and the top-5 worst

classes are highlighted in red . The results were obtained using SegFormer and proposed G-OpenIPCS.

Class Image Mask LCE LFCL LDCE LLDAM LLMCE LDCE+V L LDSC++ LLMFCL
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TABLE 10. Comparison of the
open-set segmentation results
achieved per each loss function. All
results are obtained on SegFormer
and the proposed G-OpenIPCS
method. Bold values indicate the best
overall results, including all loss
functions.

Ref. Loss AUROC AUROC
UUC Macro F1 F1 Score

UUC mIoU IoU
UUC

- LCE .7737±.122 .8204 .5892±.234 .3759 .4525±.220 .2314
[51] LFCL .7865±.112 .7212 .5919±.216 .2886 .4505±.207 .1686
[65] LDCE .7827±.119 .7333 .5770±.215 .3782 .4357±.209 .2332
[66] LLDAM .8077±.118 .4977 .5851±.202 .0428 .4399±.193 .0219
[20] LLMCE .7975±.111 .6916 .6070±.209 .4052 .4650±.204 .2541
[42] LDCE+V L .7693±.116 .7345 .5681±.214 .3903 .4254±.201 .2425
[67] LDSC++ .7939±.110 .6353 .5822±.203 .2605 .4375±.197 .1497

Ours LLMFCL .8013±.104 .7827 .6318±.201 .4318 .4900±.201 .2753
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the closed-set results, which is natural given the dependence
of the closed-set model of the proposed approach on open-
set recognition. However, the ‘star’ class was an exception,
replacing the ‘snake’ class among the top 5 in terms of
IoU. This is probably due to the low similarity of the
‘star’ class to the other semantic classes in TSSD2023,
which practically maintained the performance obtained in
the closed set. Classes that show more significant similarity
to other classes, regardless of whether a KKC or a UUC,
become more challenging for open-set segmentation, as
they generate considerable uncertainty for the segmentation
model.

This case of declining performance owing to class sim-
ilarity is also evident among the top 5 worst classes.
Classes such as ‘leaf’, ‘water’, ‘knife’, and ‘fire’ remained
in this category, underscoring their significant reliance on
the closed-set model. However, there was an exception
in the ‘wolf’ class, which, despite its poor performance
in the closed set, experienced a deterioration after open-
set segmentation. This decline is attributed to its semantic
similarity with other KKC animals, such as ‘dog’ and ‘fox’,
and its resemblance to UUCs, particularly in bear tattoos.
This provides misclassifications, as depicted in Figure 2.

Furthermore, KKCs can face challenges due to the high
semantic variability exhibited within tattoos of the same
class, arising from the infinite possibilities for represent-
ing an object through tattoos. For illustration, consider
the representation of a ‘cat’ in various styles, such as
cartoonish, realistic, stick-figure, geometric, and so on. It
becomes exceedingly challenging to group all these diverse
representations to ensure no shape is mistakenly isolated as
an outlier and segmented as part of the unknown-unknown
class (UUC). We endeavored to construct a robust data
augmentation pipeline to address this limitation, as we
believe it offers a potential solution (detailed in Section VII).

Regarding the UUC, the results obtained using LLMFCL

remain somewhat limited but show great promise. Notably,
the UUC exhibited superior results in terms of IoU and F1-
Score when compared to the top 5 worst classes. However,
in terms of AUROC, 12 KKCs are surpassed.

In conclusion, utilizing the proposed LLMFCL in con-
junction with the G-OpenIPCS achieves the best overall re-
sults in open-set segmentation tasks. Its robust segmentation
performance, capable of effectively distinguishing between
UUCs and KKCs, makes it a promising choice for challeng-
ing scenarios with high semantic variability between classes.
However, it is essential to note that there are still tough
situations and areas where further improvements are needed
in the context of open-set segmentation for TSSD2023.

C. COMPARISON WITH OTHERS OPEN-SET SEMANTIC
SEGMENTATION METHODS
Table 12 comprehensively compares different state-of-the-
art open-set semantic segmentation methods, including the
proposed approach, and two more baselines: SoftMax-T and
OpenMax. The proposed approach using LLMFCL and G-

TABLE 11. Open-set segmentation results are separated by classes obtained
from the SegFormer trained using the proposed LLMFCL. All results are
obtained on the proposed G-OpenIPCS method. The results were sorted in
descending order of mIoU↑ values. The UUC has been highlighted in yellow ,

while the top-5 best classes are highlighted in green , and the top-5 worst

classes are highlighted in red .

Class AUROC Macro F1 mIoU ↑
background 0.9025 0.9643 0.9310

tiger 0.9599 0.8828 0.7901
key 0.9118 0.8589 0.7527

octopus 0.8978 0.8417 0.7267
owl 0.8777 0.8205 0.6956
star 0.8594 0.8188 0.6932

snake 0.9177 0.8080 0.6779
butterfly 0.8714 0.8064 0.6756

dog 0.8584 0.7690 0.6247
scorpion 0.8940 0.7424 0.5903
diamond 0.8420 0.7195 0.5619

lion 0.8449 0.7192 0.5615
fox 0.8279 0.7124 0.5533

flower 0.7971 0.7043 0.5435
fish 0.8221 0.6991 0.5374
gun 0.8430 0.6972 0.5351
cat 0.7758 0.6965 0.5344

shark 0.8604 0.6798 0.5150
mermaid 0.9158 0.6754 0.5099

bird 0.7631 0.6544 0.4863
anchor 0.8075 0.6431 0.4740
eagle 0.8780 0.5941 0.4226
skull 0.7502 0.5733 0.4019
shield 0.7063 0.5429 0.3725
spide 0.8202 0.5420 0.3718

ribbon 0.7594 0.5402 0.3700
crown 0.7121 0.4761 0.3124
heart 0.6827 0.4573 0.2964

unknown 0.7827 0.4318 0.2753
wolf 0.7600 0.4178 0.2641
leaf 0.6462 0.4068 0.2553

water 0.6416 0.4017 0.2513
knife 0.5426 0.1322 0.0708
fire 0.5134 0.0520 0.0267
all 0.8013 0.6318 0.4900

OpenIPCS stands out as the best-performing method. It
achieves the highest AUROC, Macro F1, mIoU, and IoU
(UUC) values, indicating its superiority in open-set tattoo
semantic segmentation. The scores obtained for AUROC
of 0.8013, Macro F1 of 0.6318, mIoU of 0.4900, and
IoU (UUC) of 0.2753 are significant compared to other
approaches in the literature. However, the performance
difference is less to the baselines, except for the values
obtained from IoU to UUC. This indicates that the proposed
approach produces more accurate and visually coherent
segmentation results.

In comparison to the original OpenIPCS, it is essential to
emphasize the strengths that make our approach superior.
The original OpenIPCS relies on an FCN decoder that
combines multiple layers from various levels of the network
to construct the feature vector. In contrast, our G-OpenIPCS
approach follows a more straightforward and intuitive path,
considering that the critical features for class discrimination
are primarily situated in the latter layers of the segmenta-
tion network. This approach leads to improved results and
avoids the potential scrambling of high-level and low-level
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TABLE 12. Comparison
between the proposed
approach and state-of-the-art
open-set semantic
segmentation techniques.
Bold values indicate the best
overall results, including all
methods.

Ref. Loss Network Open Set
Classifier AUROC Macro F1 mIoU IoU

UUC

Baseline LCE SegFormer SoftMax-T .7855±.126 .5782±.229 .4398±.216 .1350
Baseline LCE SegFormer OpenMax .7785±.123 .5781±.227 .4389±.212 .1611
Baseline LCE Swin+UPerNet SoftMax-T .7234±.095 .4852±.198 .3428±.188 .1145
Baseline LCE Swin+UPerNet OpenMax .7134±.095 .4736±.197 .3325±.181 .1258

[38] LCE DN121+FCN OpenIPCS .6523±.098 .3596±.217 .2422±.183 .0632
[38] LCE WRN50+FCN OpenIPCS .6695±.098 .3983±.214 .2722±.185 .0470
[42] LDCE+V L DRN50+PSPNet APM .7123±.139 .4290±.284 .3152±.244 .1657
[39] LCE RN101+PSPNet MaxLogit .7358±.139 .5173±.293 .4031±.268 .1439
[43] LCE+PC RN50+DeepLabV3+ MaxLogit .7048±.105 .4471±.211 .3126±.191 .1327
[43] LCE+PC RN50+DeepLabV3+ MSP .7401±.097 .4694±.207 .3157±.190 .1354

Ours LLMFCL SegFormer G-OpenIPCS .8013±.104 .6318±.201 .4900±.201 .2753
Ours LLMFCL Swin+UPerNet* G-OpenIPCS .7921±.116 .5927±.211 .4518±.213 .1981

* Evaluation of the generalization of the proposed method using Swin+UPerNet [62], [70].

information that can occur when using multiple layers, as
in the original OpenIPCS.

Due to this more streamlined design choice, our approach
integrates with other modern segmentation architectures,
such as transform-based structures. For instance, we em-
ployed the SegFormer and Swin+UperNet networks, outper-
forming FCN-based models in open-set tattoo semantic seg-
mentation. Notably, the combination using the SegFormer
outperforms other methods by a significant margin. This
underscores that our design choice directly enhances perfor-
mance, especially considering the high reliance on features
in open-set segmentation models [42].

Moreover, it is worth noting that the original OpenIPCS
is built upon LCE . While this loss function consistently
delivers results in closed-set semantic segmentation, the
challenge of open-set segmentation demands segmentation
models with a heightened discriminative capacity, which is
precisely what our proposed LLMFCL aims to enhance.

D. ABLATION STUDIES OF THE DATA AUGMENTATION
COMPONENTS

We performed an ablation study to examine the impact
of various data augmentation techniques on our approach
to open-set recognition for tattoo semantic segmentation.
These techniques were divided into four categories, as
explained in Section IV-A: geometric, image adjustments,
dropout, and our proposed CSA method. We also included
a no-augmentation experiment as a baseline for comparison.

The results in Table 13 indicate that our approach per-
forms better when all data augmentation methods are com-
bined. Among these methods, image adjustments consis-
tently showed performance gains in mIoU and IoU for UUC.
The other approaches, including geometric and proposed
CSA, improved the values of IoU for UUC, while the
dropout method improved the mIoU. Notably, the proposed
CSA significantly improved performance when combined
with the other three methods. In summary, our approach is
appropriate for effective open-set tattoo semantic segmenta-
tion.

E. EVALUATION OF THE PERFORMANCE IN THE
CLOSED-SET TATTOO SEGMENTATION SCENARIO

Semantic segmentation focuses on recognizing specific
classes of tattoos, such as cats, dogs, stars, and others. Tattoo
segmentation only aims to isolate the tattoo region from
the background. This distinction is beneficial in situations
that do not require detailed semantic information about
tattoos. However, it may be interesting that our approach
also behaves adequately in closed-set tattoo segmentation
scenarios. Thus, we evaluated the performance of our pro-
posed approach in a closed tattoo segmentation scenario
using the DeMSI dataset [9], where tattoos were manually
annotated without any semantic differentiation. In addition
to measuring the IoU for tattoos, we also evaluate the
False Positive Rate (FPR), which indicates the proportion of
background pixels incorrectly classified as tattoos, and the
False Negative Rate (FNR), which means the proportion of
tattoo pixels incorrectly classified as background.

The quantitative results are presented in Table 14. We
observed a degradation in the performance of the proposed
approach when directly applying the model trained on
TSSD2023 and converting the multiclass output to a binary
output. This degradation is primarily reflected in the FNR
values, indicating that many tattoo pixels were misclassified
as background. We attribute this behavior to the labeling
design used in TSSD2023. The primary factor is the detailed
annotations in TSSD2023, designed to accurately classify
the pixel classes, as seen in Table 4. For example, the shark’s
mouth was separated from the shadow of the tattoo. In
contrast, DeMSI does not provide refined annotations for
tattoos, leading to multiple background pixels being incor-
rectly annotated as part of a tattoo, as shown in Table 15.
The second factor relates to tattoo classes with insufficient
semantic samples, such as dragons, letters, and spider webs,
which were excluded in TSSD2023 and are ignored by our
approach, as seen by the text tattoo in Table 15. Due to
these differences in annotation design between DeMSI and
TSSD2023 datasets, performance degradation occurs when
directly applying our approach.

To alleviate the performance degradation caused by an-
notation differences between the datasets, we fine-tuned the
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TABLE 13. Evaluation of the effect of data
augmentation components. The results were
obtained using proposed LLMFCL, SegFormer,
and proposed G-OPenIPCS.

No Aug. Geometric Image
Adjustments Dropout CSA

(Ours) mIoU IoU
UUC

✓ 0.4556±.186 0.1547
✓ 0.4320±.182 0.1797

✓ 0.4814±.203 0.1884
✓ 0.4959±.189 0.1538

✓ 0.4576±.203 0.1770
✓ ✓ ✓ 0.4733±.196 0.2303
✓ ✓ ✓ ✓ 0.4900±.201 0.2753

TABLE 14. Evaluation of the performance on the DeMSI dataset in the
closed-set tattoo segmentation scenario. The results were obtained using the
proposed LLMFCL and SegFormer.

Fine-tuned IoU
Tattoo FPR FNR

0.3878 0.0234 0.5784
✓ 0.8232 0.0278 0.0945

SegFormer network’s last layer using the DeMSI dataset.
For the fit, was used 60% of the images for training and 40%
for testing as proposed by [13]. After this adjustment, our
approach proved effective for performing closed-set tattoo
segmentation, as evidenced by the significantly reduced
FNR values in Table 14. Visually, the improvement in
segmentation quality before and after fine-tuning can be
observed in Table 15.
TABLE 15. Visual result samples of closed-set tattoo segmentation on the
DeMSI dataset. The tattoo and background pixels are depicted as black and
white, respectively. The results were obtained using the proposed LLMFCL

and SegFormer.

Image

Mask

Fine-Tuned

No
Fine-Tuned

VI. CONCLUSIONS
This paper built a novo tattoo semantic segmentation dataset
called TSSD2023, introducing an unexplored and challeng-
ing problem in semantic tattoo recognition. This dataset can
serve as a valuable basis for future research.

Furthermore, the paper has presented the proposed Large-
Margin Focal Loss (LLMFCL) to enhance tattoo seman-
tic segmentation outcomes in both closed and open-set
scenarios. In the closed-set scenario, LLMFCL performed
competitively and outperformed other evaluated loss func-
tions in terms of Macro F1, demonstrating its suitability
for closed-set semantic segmentation. An in-depth analysis
at the class level revealed that superior performance is
generally observed in classes depicted by high semantic
dissimilarity and minimal overlap with other tattoos within
an image. Conversely, the most challenging classes rarely

appear in isolation, often serving as complementary com-
ponents to other tattoos. In the open-set scenario, this paper
proposes a generalized approach for the OpenIPCS method
named G-OpenIPCS that facilitates the integration of this
open-set classifier with more modern segmentation network
architectures, such as transform-based networks. Using G-
OpenIPCS, we compared the performance of different loss
functions with the proposed LLMFCL, which showed higher
scores regarding AUROC, Macro F1, and overall mIoU.
When considering only the UUCs, LLMFCL performed
competitively in AUROC while outperforming F1-Score
and IoU. This highlights its effectiveness in the domain of
open-set tattoo semantic segmentation. A more thorough
examination revealed that classes bearing high similarity
to other classes, overlapped, and with limited samples, it
represented the significant challenges for open-set tattoo
semantic segmentation.

It is worth noting that when a semantic tattoo class has
high variability, segmentation errors can occur due to false
outliers. To address this issue, we propose a new data aug-
mentation technique named Class Semantic Augmentation
(CSA) that increases the available semantic information of
classes for better model generalization. Nevertheless, there
are opportunities for further advancements in this research
area.

When comparing our approach, which combines
LLMFCL, SegFormer, and G-OpenIPCS, with other state-
of-the-art methods for open-set tattoo semantic segmenta-
tion, our approach consistently attains the highest overall
results. It surpasses the performance of other state-of-the-art
methods, underscoring its potential for addressing challeng-
ing scenarios in open-set semantic tattoo segmentation.

Furthermore, our approach applicability extends beyond
the domain of tattoo segmentation, and it holds the potential
to enhance open-set semantic segmentation in various other
application domains. Finally, it is essential to note that while
our approach demonstrates promise, there remains room
for further improvements in specific areas. This includes
improving the handling of class imbalance, class overlap,
high intra-class semantic variability, and, in some cases,
high inter-class similarity, detailed as follows.

VII. CHALLENGES IN OPEN SET TATTOO SEMANTIC
SEGMENTATION
Although the approach discussed here is promising and
with results superior to state-of-the-art methods for open-
set semantic segmentation, in the context of tattoos, we can
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observe numerous difficulties and open points for this line
of research. Below, we detail some of those that we consider
most relevant in the proposed context:

A. SEMANTIC SHIFT
Semantic shift is caused by classes that influence model
predictions due to their semantic similarity to other classes,
causing segmentation errors [33], [37]. This semantic shift
can be caused in three different ways in the tattoo dataset.
The first is the presence of invisible objects in the back-
ground class that are similar to known and unknown classes.
The background class is a large grouping of objects rel-
atively irrelevant to the application. However, tattoos are
semantically very similar to illustrations projected onto
different surfaces. For example, a skull on a tattoo artist’s
chair can be easily identified as a tattoo, generating a
misclassification. Furthermore, due to the great difficulty in
annotating a large volume of tattoos for semantic segmen-
tation, some tattoos are “ignored” in the labeling process
and noted as belonging to the background class, which can
cause misclassifications.

The second comprises objects of known classes are simi-
lar to each other. Some semantic classes are similar to others
within the set of known classes. For example, the ‘wolf’,
‘dog’, and ‘fox’ classes belong to the same animal family,
thus presenting similar characteristics that even humans may
find difficult to distinguish. This high similarity makes the
process of recognition by the segmentation model difficult,
which can, in some cases, generate classification errors.
Furthermore, this semantic similarity can extend to small
parts of the tattoos, which can cause small segmentation
errors. Finally, the third includes objects of unknown classes
similar to known classes. This challenge is similar to the
previous one but more demanding. The segmentation model
must be trained to produce robust decision boundaries to
separate known data from each other and separate it from
unknown data. While in the previous problem, it is only
necessary to distinguish among known classes.

A possible way to alleviate these factors’ influence is to
make a descriptive note of the tattoo using natural language.
This can help identify tattoos more effectively, avoiding
reducing the artistic feature of a tattoo to a set of labels.

B. INTRA-CLASS VARIABILITY
An open challange is also related to objects from known
classes with different characteristics from the group of
objects from the same semantic class. Because tattoos are a
form of artistic expression based on drawings, the number of
designs that can be thought of to create a tattoo is practically
unlimited. This infinite universe of possibilities makes each
tattoo unique, with the variability of tattoos present in the
real world being practically immeasurable. When defining a
semantic class for a set of objects, we intuitively state that
these objects are similar, which is generally true. However,
concerning tattoos, it is possible that despite belonging to
the same semantic class, practically none of the patterns are

identically replicated between tattoos. In some cases, the
patterns are so different between objects of the known class
that the segmentation model segments the known tattoo as
belonging to the unknown class.

C. OBJECTS OF KNOWN AND UNKNOWN CLASSES
SEGMENTED WITH LOW PRECISION
This challenge incorporates several subproblems encoun-
tered in closed-set segmentation and also in open-set seg-
mentation. In segmenting closed sets, the models suffer
from the subproblem of overlap between objects, mak-
ing it difficult to separate the boundaries between objects
accurately. Another common subproblem is small objects
present in images, generally classified as objects from other
classes, such as the background class. The open-set semantic
segmentation task inherits all these subproblems. However,
in open-set segmentation, we still have the challenge of ac-
curately classifying regions of completely unknown objects
while dealing with the subproblems derived from closed-set
segmentation.

D. DATA AUGMENTATION FOR SEMANTIC
SEGMENTATION
The data augmentation proposal presented here may be
promising for incorporating more data into tattoo datasets,
the annotation of which is costly and time-consuming. A
possible path is to combine the approach presented in [13]
with the data augmentation ideas proposed in this paper in
order to create greater variability of classes and examples,
including data in an open set, to enable the training of
more complex models and, consequently, increase final
performance.

E. COMPUTATIONAL COMPLEXITY
We understand that a detailed analysis of computational
complexity must be conducted for certain applications,
mainly involving embedded systems. This analysis must
include the training and deployment of the model according
to the target device. Specific architectures for this type of
application can also be evaluated, as demonstrated in [71].

REFERENCES
[1] S. T. Acton and A. Rossi, “Matching and retrieval of tattoo images: Active

contour CBIR and glocal image features,” in Proceedings of the IEEE
Southwest Symposium on Image Analysis and Interpretation, 2008, pp.
21–24.

[2] T. Harbert, “FBI wants better automated image analysis for tattoos
[news],” IEEE Spectrum, vol. 52, no. 9, pp. 13–16, 2015.

[3] J.-E. Lee, R. Jin, and A. K. Jain, “Rank-based distance metric learning: An
application to image retrieval,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[4] S. Fang, J. Coverdale, P. Nguyen, and M. Gordon, “Tattoo recognition in
screening for victims of human trafficking,” Journal of Nervous & Mental
Disease, vol. 206, no. 10, pp. 824–827, 2018.

[5] F. Bacchini and L. Lorusso, “A tattoo is not a face. ethical aspects of tattoo-
based biometrics,” Journal of Information, Communication and Ethics in
Society, vol. 16, no. 2, pp. 110–122, 2017.

[6] R. T. Da Silva and H. S. Lopes, “A transfer learning approach for the
tattoo classification problem,” in 2022 IEEE Latin American Conference
on Computational Intelligence (LA-CCI). IEEE, 2022, pp. 1–6.

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3438557

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[7] Y. Mo, Y. Wu, X. Yang, F. Liu, and Y. Liao, “Review the state-of-
the-art technologies of semantic segmentation based on deep learning,”
Neurocomputing, vol. 493, pp. 626–646, 2022.

[8] C. Jiawang and Z. Yuan, “Tattoo recognition based on triplet GAN,” in
Proceedings pf 37th Chinese Control Conference. IEEE, 2018, pp. 9595–
9597.
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