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Abstract
Open-world recognition (OWR) is an important field of research that strives to develop machine learning models capable of 
identifying and learning new classes as they appear. Concurrently, human action recognition (HAR) has received increasing 
attention from the research community. We approach Open-World HAR in the unsupervised setting. In unsupervised OWR, 
class labels are available for the initial classes but not for new ones. Hence, we propose a clustering method to label unknown 
classes automatically for incremental learning (IL). Our framework consists of an Initial Learning phase for initializing the 
models, an open-set recognition phase for identifying unknown classes, an Automatic Clustering phase for estimating the 
number of clusters and generating labels, and an IL phase for incorporating new knowledge. The proposed framework was 
evaluated at each phase separately in eleven experimental settings of the UCF-101 dataset. We also presented parameter 
sensitivity studies of the main parameters and visual analysis of misclassified videos, revealing interesting visual similarities 
between overlapped classes. Experiments have shown promising results in all phases of Open-World HAR, even without 
labels, which closely resembles real-world problems.
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1  Introduction

Recent advances in image and video recognition have suc-
cessfully solved many problems in the supervised learning 
scenario. However, these problems usually make two unre-
alistic assumptions in real-world scenarios. The first is the 
closed-world assumption. Conventional models can only 
recognize classes seen during the training phase. This short-
coming often hinders the model’s ability to solve real-world 
problems in evolving environments. The second assumption 
is the availability of labeled data. Applications such as social 
media, entertainment, and security continuously generate 
a massive volume of unlabeled video data. This raises the 

need for models that can learn with raw data not previously 
labeled.

In light of the requirements for solving real-world prob-
lems, Open-World Recognition (OWR) has recently become 
a hot topic in machine learning [1–3]. Open-World models 
automatically discover and learn new classes while also pre-
serving past knowledge. According to [1], an OWR model 
requires three main components. The first is a multi-class 
Open-Set Recognition function capable of classifying known 
classes and detecting new classes. Subsequently, a labeling 
process is required for the unknown classes. Some recent 
works have used a human oracle, annotated data, or assumed 
the number of clusters is known in advance [1, 4]. Regard-
ing the supervision in this step, [5] defined the Open-World 
Unsupervised Learner, an Open-World model that does 
not use labeled data for discovering new classes. The third 
component is an Incremental Learning (IL) function. IL is 
concerned with learning new classes while preserving the 
knowledge acquired before. This function needs to be scal-
able in terms of time and memory consumption.

Most recent works have approached Human Action 
Recognition (HAR) from the closed-world scenario [6–8]. 
However, HAR is a natural candidate for OWR because new 
human actions may arise in the real-world. Hence, it would 
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not be possible to create, in advance, a dataset containing 
all human actions.

The model proposed in this work meets all the require-
ments for an Open-World, Unsupervised Learner in videos. 
This task is accomplished in four main phases shown in 
Fig. 1. In phase 1, our model performs the initial training. 
The model uses a standard supervised learning approach 
to learn the initial classes. Phase 2 introduces new classes 
to the problem. In this phase, we perform Open-Set Rec-
ognition (OSR). OSR is concerned with classifying known 
classes while rejecting unknown classes. In this work, OSR 
is a subtask of OWR. Once unknown videos are detected, 
our model automatically estimates the number of categories 
in the new data. This step is performed in phase 3 using 
a hierarchical agglomerative clustering algorithm. Finally, 
with the labels automatically assigned, the model executes 
IL. This stage is the fourth and final phase of our proposed 
model. The model repeats phases 2, 3, and 4 when a new 
task (set of classes) is introduced.

This article extends and generalizes our two previous 
works, which addressed OSR  [9] and IL in HAR  [10]. 
Our video feature learning model based on metric learn-
ing was introduced in [9]. The model uses the I3D [6] as 
the backbone convolutional network and a Triplet Network 
that minimizes the cosine triplet loss. The I3D outputs 
fixed representations that feed the Triplet Network, which 
learns dynamic representations using new data and a few 
exemplars. The I3D features are said to be fixed because the 

model is trained only once during the initial training phase, 
while the Triplet Network is updated multiple times based 
on cluster assignments. To perform IL, we employ the Dual-
Memory Extreme Vector Machine (DM-EVM) [10], which 
is a variation of the original EVM proposed by [11]. Unlike 
the original EVM, the DM-EVM can perform IL on dynamic 
representations.

Following the extension of previous works, it is worth 
mentioning the operation of our approach in an actual open-
world scenario. Indeed, the model performs a sequence of 
(Open-Set Recognition, Unsupervised Clustering, and 
Incremental Learning) that must be initiated whenever new 
classes are introduced. This model design is based on the 
assumption of a continuous data stream, where these steps 
are executed in cycles to discover and learn new classes 
continuously. While the process may not follow a specific 
"trigger," our model is structured for scenarios with regu-
lar monitoring for new incoming data, allowing it to adapt 
and learn from them spontaneously. This continuous cycle 
provides a dynamic capability that aligns with the changing 
nature of real-world scenarios.

By leveraging the models mentioned above, we assem-
ble a framework that can perform OWR in videos without 
supervision after the initial training phase. Despite the high 
degree of difficulty posed by the problem, our model has 
shown promising performance. To our knowledge, ours is 
the first model to perform unsupervised Open-World HAR. 
We provide a test protocol that evaluates the models at 

Fig. 1   Overview of the proposed model for solving OWR in videos. 
The model contains four phases: Initial Training, Open-Set Recogni-
tion, Unsupervised Clustering, and Incremental Learning. In phase 1, 
the initial classes “Haircut” and “Kayaking” are learned in a stand-
ard supervised training procedure. In phase 2, unlabeled videos from 
unknown classes are introduced to the problem. They are represented 
as “?”. The model identifies videos from unknown classes by per-

forming Open-Set Recognition. In phase 3, the unknown data is auto-
matically clustered. The actual number of clusters is not provided in 
advance. In phase 4, the model incrementally learns the two newly 
discovered classes (“Biking” and “Golfing”). Phases 2, 3, and 4 may 
be repeated to include new classes. The representations and frames 
used in the figure are illustrative. Figure best viewed in color
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different stages using Open-set, clustering, and IL meas-
ures. We perform parameter sensitivity studies for the main 
parameters of our method. We also present a visual analysis 
of misclassified videos, revealing interesting relationships 
between classes.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related works. Section 3 presents the pro-
posed methods in detail. Section 4 presents the experimental 
settings and the results. Section 5 presents the parameter 
sensitivity studies regarding the main parameters responsible 
for the performance of our model. Section 6 presents a vis-
ual analysis at the frame level of some classification errors. 
Finally, Sect. 7 presents our conclusions and future works.

2 � Related works

This Section presents a literature review of the areas 
involved in Open-World Video Recognition. First, we would 
like to briefly review relevant works in video classification. 
Next, we present OSR, IL, and OWR reviews.

2.1 � Video classification

Convolutional Neural Networks (CNNs) have successfully 
been used to solve several interesting problems related to 
image processing [12–14]. However, most of these models 
were devised for non-temporal data and did not present a 
similar performance in video classification [15].

Unlike image classification, video classification models 
must consider spatiotemporal relationships between objects 
and actors. Donahue et al. [16] approached this problem by 
adding recurrent layers on top of the CNN as a temporal 
dimension. However, [6] pointed out that this approach may 
fail at capturing small motions, require more data, and are 
more likely to overfit.

Another strategy for video classification was the Two-
Stream networks [17]. These models provided the network 
with an additional pre-computed Optical Flow channel. This 
concept was widely employed in the video classification lit-
erature [15, 18, 19].

Later, [20] proposed the 3D CNN to learn spatial and 
temporal features from a sequence of frames. Since then, 
3D CNNs have become the state-of-the-art for video clas-
sification [7, 8, 21–26].

Carreira and Zisserman [6] raised an essential issue that 
3D CNNs have a much higher number of parameters (com-
pared with regular CNNs); thus, requiring more data and 
computational effort to be trained. The authors introduced 
the Kinetics dataset and the Inflated 3D Convolutional Neu-
ral Network (I3D). The I3D has since been highly used in 
video classification tasks [7, 8] due to its ability to generalize 
well to other datasets.

Gao et al. [27] proposed the attention-based graph con-
volution-guided third-order hourglass network (AGTH-Net) 
for sports video classification. Jing et al. [28] proposed the 
VideoSSL model for semi-supervised video classification. 
In a related area, [29] presented the Ordered Temporal 
Alignment Module (OTAM) for few-shot learning in video 
classification.

In [30], the authors presented a method for video-based 
action recognition using an incremental learning approach 
that leverages a combination of network sharing and knowl-
edge distillation. This approach was designed to prevent 
catastrophic forgetting, a common problem in incremental 
learning models. Their work aimed to handle new classes 
without needing the data from previous ones. The algo-
rithm was evaluated on multiple standard datasets, includ-
ing UCF101, HMDB51, and Kinetics-400. However, our 
approach diverges significantly from this methodology. 
Primarily, our proposed approach focuses on an unsuper-
vised paradigm for Open World Recognition, which is a 
much broader task than incremental learning. This choice 
eliminates the requirement for labeled data after the initial 
training, which is usually needed in incremental learning 
settings. Furthermore, our work proposes a different strategy 
for introducing new classes. Instead of initializing new clas-
sifiers using previous ones, our model focuses on determin-
ing the number of clusters from new, unknown classes and 
incrementally learning these new classes in a subsequent 
step.

2.2 � Open‑set recognition

Unlike the literature about video classification under the 
closed-world assumption, few works have approached the 
video classification problem from the open-set perspec-
tive. In [31], for instance, the authors investigated domain 
adaptation strategies applied to images and video HAR. The 
domain adaptation task refers to transferring knowledge 
from a source distribution to a different target distribution. 
In this case, the target distribution contains previously una-
vailable classes in the source data, making it an open-set 
problem. The authors used features extracted from the I3D 
model trained on Kinetics for video classification and intro-
duced the ATI model for performing domain adaptation and 
classification.

In [32], the researchers also used I3D features for novelty 
detection in HAR and proposed a voting-based system for 
detecting unknown classes. Similarly, in [33], the authors 
performed open-set driver activity recognition using the I3D 
as the feature extractor and softmax confidence for recogniz-
ing unknown samples. Although softmax was not designed 
for open-set recognition, the authors proposed Dropout Sam-
pling Statistics and Uncertainty-based Selective Voting to 
produce robust probability distributions at the output layer. 
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On the other hand, [34] employed micro-Doppler signatures 
for recognizing human activities. These authors introduced 
the Open-GAN model, which automatically generates fake 
unknown input samples for training.

In [35], the authors performed open-set face recognition 
in videos using handcrafted features and a fuzzy Adaptive 
Resonance Theory Map (ARTMAP) neural network. Dif-
ferently, [36] proposed a Class-Conditional Extreme Value 
Theory classifier for open-set unsupervised video domain 
adaptation. The authors extracted frame level features using 
2D CNNs and averaged the features in the temporal dimen-
sion. Wang et al. [37] also tackled the open-set video domain 
adaptation problem. The authors proposed the Dual Metric 
Discriminator (DMD), which measures similarities between 
samples from the source and target domains. This method 
combines pre-trained classifiers with prototypical optimal 
transport. Also, [38] proposed the Deep Evidential Action 
Recognition (DEAR) model that can extend closed-world 
architectures to open-set recognition. The authors also pro-
posed two modules, the Evidential Uncertainty Calibration 
(EUC) and the Contrastive Evidential Debiasing (CED), 
which mitigate over-confident predictions and static bias.

Despite achieving state-of-the-art results for the proposed 
tasks, a limitation common to all works cited above is the 
absence of steps related to open-world classification, such as 
detecting new classes and incremental learning. In addition, 
the cited works did not explore metric learning character-
istics during the open set step, which may hinder the full 
implementation of open-world recognition. In this sense, 
our previous work [9] focused on the feature learning pro-
cess and showed that cosine metric learning performed by 
a Triplet Network improved the performance on Open-Set 
HAR. However, we also did not address issues of detection 
of new classes and incremental learning, leaving open the 
proposition of these tasks in the context of the open world.

2.3 � Incremental learning

IL has been introduced as a problem in the early stages of 
Artificial Neural Networks [39], and is still a relevant prob-
lem in recent literature [40, 41].

The ability to learn new classes without forgetting pre-
existing ones is often addressed in IL models. Catastrophic 
Forgetting and Intransigence  [42, 43] are concepts that 
address the stability versus the plasticity of a network’s 
knowledge. Since there is usually a trade-off between allevi-
ating Catastrophic Forgetting or Intransigence, many models 
in the current literature require the user to choose which one 
to prioritize. This choice is typically through the selection 
of hyperparameters.

Task-recency bias is another common problem in IL 
models. This problem refers to the propensity of models to 
classify data as one of the classes learned in the most recent 
incremental training sessions [40].

IL models were divided into three main categories 
according to their strategy to tackle the abovementioned 
challenges. According to [41], these categories are replay, 
regularization, and parameter isolation methods.

Replay methods use a small memory to store exemplars 
of previously learned classes. These exemplars are used in 
the incremental training stage along with the new classes. 
This strategy helps the network maintain past knowledge 
while learning new classes. Incremental Classifier and Rep-
resentation Learning (iCaRL) [44] was the first method to 
use replay in Class Incremental Learning. Later, several 
works showed that replay could mitigate task-recency bias 
and alleviate Forgetting [45–49]. Since replay methods have 
an additional storage cost, some methods employ feature 
rehearsal [40]. This method stores only feature representa-
tions of exemplars instead of raw data. This is especially 
important in video classification because of the elevated 
storage cost compared to images. In [10], feature rehearsal 
was successfully used for IL in videos with a low memory 
cost.

Regularization methods control Forgetting by introduc-
ing new terms in the loss function that prevent significant 
weights from changing excessively. Elastic Weight Consoli-
dation (EWC)  [50] introduced this concept by slowing down 
the training of significant weights for previous tasks. Path 
Integral [51], Memory Aware Synapses (MAS) [52], and 
Riemannian Walk (RWalk) [43] estimated the importance 
of each network parameter to prevent Forgetting. Other reg-
ularization methods use knowledge distillation to transfer 
knowledge from an old model to a new model. Learning 
Without Forgetting (LWF) [53] used a modified distilla-
tion loss to maintain weights close to their original values. 
Recently, [54] proposed a knowledge distillation model for 
incremental semantic segmentation.

Parameter Isolation methods mitigate Forgetting by 
learning a different model for each task. The main draw-
back of this category is that it often requires the task-id to 
be provided during the inference phase. Piggyback [55] and 
Ternary Feature Masks (TFM) [56] computed task-specific 
masks over network weights and features. Some methods 
grow different network branches to accommodate new 
tasks. For instance, Progressive Neural Networks (PNN) 
[57] created a copy of the network at each new task. Other 
growing network structures were presented in Progress and 
Compress [58] and Expert Gate [59]. More recently, [60] 
presented the SpaceNet, which does not require the task-id 
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to be given and creates space for new classes using sparse 
adaptive training.

Only some works have approached HAR in the IL sce-
nario. Most of the works performed HAR in outdated small 
and controlled datasets. Ma et al. [61] presented the Grow 
When Required network (GWR). GWR learned classes 
incrementally using features from videos extracted at the 
frame level. The experiments were performed on two simple 
datasets: KTH [62], which contains only six classes, and 
Weizmann [63], which contains ten classes. Reddy et al. 
[64] used a feature tree for HAR in KTH the IXMAS [65] 
dataset with eleven classes. Tang et al. [66] performed online 
learning HAR over video data streams. Other older works 
perform Incremental HAR at the frame level but did not 
use current measures, such as Forgetting and Intransigence 
[67–70].

2.4 � Open‑world recognition

OWR has received increasing attention in recent years [1, 
71]. The applications include face recognition and person 
re-identification [72–74], robotics [75], object detection [4], 
semantic segmentation  [76], multi-modal human-robot 
interaction [77], and zero-shot learning [78]. Some works 
approached OWR from a traditional image classification 
perspective. Openmix [79] mixed labeled and unlabeled 
data at the visual level to increase unsupervised cluster-
ing performance. Liu et al. [80] introduced the Open Long 
Tailed Recognition model (OLTR), which uses dynamic 
meta-embedding for OWR in images. Jafarzadeh et al. [81] 
discussed the Open-World reliability problem and proposed 
automatic reliability assessment policies.

The most similar works to ours regarding Open-World 
HAR were the Open Deep Network (ODN) [82] and later 
the Prototype-based Open Deep Network (P-ODN) [83]. 
The ODN introduced a model based on Emphasis Initiali-
zation and Allometry Training for classifying human actions 
in an open-world scenario. P-ODN introduced the proto-
type and radius modules that assist in the feature learning 
process. Those works differ from ours in several ways. Our 
task-oriented open-world evaluation protocol allows for a 
deeper performance analysis of each task. While [82, 83] 
only present the classification accuracy, we provide a more 
comprehensive array of classification measures that were 
shown to be essential in the IL literature [43]. Another dif-
ference is that the ODN and P-ODN used a human observer 
to label unknown classes, while our method automatically 
estimates the number of clusters and their label assignments. 
In this sense, our model approaches the problem of unsuper-
vised open-world video recognition, while ODN approaches 
a supervised version of the problem. Thus, both models are 
not directly comparable.

3 � The proposed method

An overview of the proposed method is shown in Fig. 2. 
The I3D and the Triplet Network are trained in a supervised 
manner in the initial training phase. The models are also 
used in the following phases for extracting video features. 
When new classes are introduced, they go through the Dual-
Memory EVM, which performs OSR. The rejected samples 
are automatically clustered using the Hierarchical Agglom-
erative model. The labels assigned by the clustering model 
and the previous EVs are used to form hard and semi-hard 
triplets, which fine-tune the Triplet Network. Finally, the 
updated feature representations and clustering assignments 
increment the Dual-Memory EVM. Each process stage is 
detailed as follows, starting with the dataset description. All 
the codes are made publicly available.1

The initial training process initializes the three main 
models of our method: (i) the I3D, (ii) the Triplet Network, 
and (iii) the DM-EVM. This is the only stage that uses the 
true labels of the dataset. All those stages are based on our 
previous works [9, 10]. However, we did not address a com-
plete open-world perspective in those works, i.e., incremen-
tal learning with new class addition. Hence, this work is a 
complete proposal for HAR using videos in the context of 
open-world recognition.

The Inflated 3D Convolutional Neural Network (I3D) was 
proposed by [6] for the video classification task. It was intro-
duced along with the Kinetics dataset, which allowed the 
I3D to achieve state-of-the-art performance on video clas-
sification. The I3D is trained using standard softmax cross-
entropy loss. Our work used that model as the backbone for 

Fig. 2   Overview of the proposed method. The left panel shows the 
modules involved in the initial training phase and feature extraction. 
The right panel shows the modules involved in the OSR, automatic 
clustering, and IL phases

1  https://​github.​com/​mathe​usgut​oski/​unsup​ervis​ed-​openw​orld-​video-​
class​ifica​tion.

https://github.com/matheusgutoski/unsupervised-openworld-video-classification
https://github.com/matheusgutoski/unsupervised-openworld-video-classification
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video feature extraction. However, our method is compatible 
with any other video classification network.

In the sequence, the triplet network is employed. The Tri-
plet Network is a deep Metric Learning (ML) model first 
introduced by [84] for learning facial representations. ML 
aims to learn representations such that the distance between 
points has a semantic meaning. The Triplet Network receives 
its name for its architecture, which contains three inputs: 
Anchor, Positive, and Negative. Both the Anchor (a) and 
Positive (p) are points from the same class, while the Nega-
tive (n) is a point from a different class. Our model inputs 
the feature representations obtained from the I3D instead of 
raw video frames. This makes the training and fine-tuning 
process much faster. Given N (a, p, n) triplets, the Triplet 
Loss function LΘ is:

in which i is the index, g is the Triplet Network, g(xa) , g(xp) , 
g(xn) are the Anchor, Positive, and Negative output embed-
dings, � is the margin, and + indicates LΘ ≥ 0 . Θ represents 
the cosine distance between two feature representations. The 
cosine distance Θ between two vectors d and e is defined as:

The Extreme Value Machine (EVM) [11] is an OSR model 
capable of performing IL. In recent work, we introduced 
a variation of the EVM called Dual-Memory EVM (DM-
EVM) [10]. Unlike the original EVM, the DM-EVM is 
capable of IL with dynamical feature representations. It 
performs this task by storing an additional representation of 
each Extreme Vector compared to the original EVM. This 
representation corresponds to the fixed I3D features, later 
included in the triplet mining pool to fine-tune the Triplet 
Network and update the Extreme Vectors’ dynamical fea-
tures. For a more in-depth explanation of the DM-EVM, 
refer to [10].

Subsequently, the OSR process begins with the arrival 
of a new task. First, the I3D and Triplet representations 
were obtained by forwarding the new videos through the 
trained models. The DM-EVM used the representations 
to determine whether each video belongs to known or 
unknown classes. The rejected videos are sent to the clus-
tering phase.

The automatic clustering method used in this work is 
based on Ward’s algorithm for hierarchical agglomerative 
clustering [85]. Ward’s method merges clusters by mini-
mizing variance. Consider a hierarchical clustering with an 
observation set � with a predefined dissimilarity measure 
(e.g., Euclidean distance measure). Set each observation 
i, j, k ∈ � as a singleton cluster. Agglomerate the closest 

(1)LΘ =

N∑
i=1

[
Θ(g(xa

i
), g(x

p

i
)) − Θ(g(xa

i
), g(xn

i
)) + �

]
+
,

(2)Θ(d, e) = 1 −
d ⋅ e

∥ d ∥ ∥ e ∥
.

(i.e., least dissimilar) pair of clusters, removing agglom-
erated clusters. Redefine the inter-cluster dissimilarities 
concerning the newly created cluster. If n is the cardinality 
of observation set � , this agglomerative hierarchical clus-
tering algorithm completes in n − 1 agglomerative steps. 
Details of practical aspects of our implementation are pre-
sented in Sect. 4.4.

Since our Triplet Network operates using the cosine 
distance, we scaled our feature representations to vector 
length using the L2 norm during the clustering phase. The 
label assignments obtained by clustering are used to form 
new triplets and fine-tune the Triplet Network for a single 
epoch. The new task data and the previous EVs stored in 
the DM-EVM form the triplet mining pool.

Finally, incrementing the DM-EVM requires perform-
ing two operations: updating the current EVs and comput-
ing the new class EVs. For the first operation, the existing 
EVs were updated using the representations obtained from 
the Triplet Network. This step requires recomputing the 
dynamical feature representations and the Weibull param-
eters. The dynamical features were recomputed with a sin-
gle pass through the Triplet Network. The updated param-
eters were computed by fitting the Weibull distribution. 
Model reduction is unnecessary in this step since the EVs 
have already been defined, thus making the process much 
faster. We learned new EVs for the second operation using 
the new data and their labels obtained by clustering. This 
step included model reduction.

4 � Experiments and results

4.1 � Dataset and task generation

We employed the UCF-101 dataset [86], which has been 
widely used in the previous literature [6, 8]. The UCF-101 
dataset contains over 27 h of footage of human actions 
such as golfing, archery, and drumming. The dataset con-
tains 13,320 clips of five main categories: body motions, 
sports, playing musical instruments, human-object interac-
tions, and human-human interactions. The dataset contains 
cluttered background and camera motion, which intro-
duces more challenges. The dataset also contains groups of 
similar videos within each class. These groups are snippets 
extracted from a common long-duration video.

In this work, the dataset was split in such a way as 
to ensure that all videos from the same group remained 
together in the train or test split. We used 70% of the data-
set for training and 30% for testing. The tasks were gener-
ated by randomly selecting classes for each task. The num-
ber and size of tasks vary according to the experimental 
setting, detailed as follows.
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4.2 � Experimental settings

We propose eleven experimental settings for evaluating 
Open-World Video Recognition. The settings vary the size 
and number of tasks available for learning. Table 1 shows 
the experimental settings and their parameters. The table is 
organized in a crescent order in the number of classes, which 
also means lowest to highest problem complexity.

The first column contains the reference code for each 
experiment. We classify the experimental settings into 
small (S) and large (L) experiments. Small experiments use 
only a fraction of the available classes and are restricted to 
five tasks. Extensive experiments use all 101 classes from 
the UCF-101 dataset. This experimental setup allows ana-
lyzing the results in a scenario of increasing complexity. 
Each experimental setting is run five times with different 
random seeds to shuffle the order in which classes appear 
in each task. We report the average results of the five runs 
in Sect. 4.7.

4.3 � Initial training and feature extraction

The initial training process initializes the three main models 
of our method: the I3D, the Triplet Network, and the DM-
EVM. This is the only stage that uses the true labels of the 
dataset.

4.3.1 � Inflated 3D convolutional neural network

The I3D was trained using the initial classes with the soft-
max cross-entropy loss. We followed the training procedure 
proposed by [6]. The I3D received 64 consecutive frames 
with 224 × 224 pixels of size as input for each video. These 
frames were selected randomly in both spatial and tempo-
ral dimensions. We also applied a 50% chance of random 

horizontal flip to the frames. The batch size was set to 6. We 
used the Stochastic Gradient Descent (SGD) with a learning 
rate of 0.1, weight decay of 10−5 , and Nesterov momentum 
of 0.9. The network was trained for ten epochs or until stag-
nation. We used a window of 250 frames with 224 × 224 
pixels of size centered in spatial and temporal dimensions 
during the test phase.

4.3.2 � Metric learning with triplet networks

We defined the architecture of our Triplet Network with 
three fully connected layers containing 1024, 512, and 256 
neurons. The Glorot uniform algorithm [87] was used to 
initialize the weights. Moreover, we employed a triplet min-
ing strategy [84] to ensure that only useful triplets are used 
during the training process, i.e., triplets that yield LΘ > 0 . 
In this phase, we trained the Triplet Network for ten epochs. 
The Triplet Network used the output features of the I3D as 
input. We set the margin parameter � to 0.2. A parameter 
sensitivity study can be found in Sect. 5. The learning rate 
was set to 0.001 and the batch size to 128.

4.3.3 � The dual‑memory extreme value machine

In our experiments, the tail size � of the Weibull distribu-
tion was set to 0.2, i.e., 20% of the training set size. The 
classification threshold � was set to 0.5. Section 5 presents 
parameter sensitivity studies for both parameters. According 
to [10], the cover threshold � was set to 0.99.

The trained I3D and Triplet Network were later used 
for extracting features from new videos. This was done by 
forwarding the videos through the I3D and capturing the 
representations after the last pooling layer. The representa-
tions were then forwarded through a branch of the Triplet 
Network and captured at the last layer to obtain the metric 
representation.

4.4 � Clustering

Our strategy for selecting the appropriate value for the num-
ber of clusters k contains two main steps. The first step is 
to select kc candidate partitions. The partitions are defined 
by the kc largest merge gaps in the dendrogram. The second 
step was to compute each candidate partition’s silhouette 
coefficient [88] and pick the partition with the highest score.

In selecting the kc value, we conducted a series of pre-
liminary experiments with various kc values to examine 
their potential influence on the overall performance of our 
method. These tests revealed that the variation in kc had 
minimal effect on the outcomes. Regardless of the specific 
kc value chosen, the performance of our clustering approach 
remained relatively stable. Based on this observation, we 
decided to fix kc at 5 for all our experiments. This value 

Table 1   Experimental settings proposed for Open-World HAR. Small 
settings received the prefix “S”, while the large settings received the 
prefix “L”

Setting # Initial 
classes

# Classes/task # Tasks Total # Classes

S1 3 3 5 15
S2 4 4 5 20
S3 5 5 5 25
S4 6 6 5 30
S5 7 7 5 35
S6 8 8 5 40
S7 9 9 5 45
S8 10 10 5 50
L1 6 5 20 101
L2 11 10 10 101
L3 21 20 5 101
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was chosen because it balances computational efficiency and 
the range of candidate partitions considered, thus achieving 
a practical compromise between performance and compu-
tational demand. This strategy, coupled with the fact that 
the silhouette coefficient is calculated only for the selected 
candidate partitions and not the entire data set, contributes 
to the computational feasibility of our approach.

Figure 3 shows an example of the automatic selection of k 
using the method described above. The gray regions display 
the candidate partitions by selecting the largest merge gaps. 
For visualization purposes, we set kc = 3 in this example. 
The number of clusters and silhouette coefficient of each 
partition are displayed above the gray areas. The partition 
with k = 3 was selected since it presented the largest silhou-
ette value.

4.5 � Incremental learning of the triplet network 
and the DM‑EVM

The label assignments obtained by clustering are used to 
form new triplets and fine-tune the Triplet Network for a 
single epoch. The new task data and the previous EVs stored 
in the DM-EVM formed the triplet mining pool.

Incrementing the DM-EVM requires performing two 
operations: updating the current EVs and computing the new 
class EVs. For the first operation, the existing EVs were 
updated using the representations obtained from the Triplet 
Network. This step requires recomputing the dynamical fea-
ture representations and the Weibull parameters. The dynam-
ical features were recomputed with a single pass through the 
Triplet Network. The updated parameters were computed by 
fitting the Weibull distribution. Model reduction is unneces-
sary at this step since the EVs have already been defined, 
thus making the process much faster. We learned new EVs 

for the second operation using the new data and their labels 
obtained by clustering. This step included model reduction.

4.6 � Evaluation protocol and measures

We reported the averaged results of five initializations 
with different random seeds since they produce a different 
sequence of classes in each task. The initialization averaging 
was omitted in the following equations for simplicity.

The measure chosen for the OSR phase was the Youdens 
Index [89]. It accesses the model’s capability to distinguish 
between known and unknown data. The Youdens Index com-
bines the recall R and specificity S measures, as follows:

To compute R and S, known classes receive the label “1”, 
and unknown classes receive “0”. The Youdens Index J is 
defined as J = R + S − 1 and assumes a value within the 
range [−1, 1] , where “-1” means a classifier that incorrectly 
classifies all samples, “0” means an uninformative classifier, 
and 1 means a perfect classifier.

For the main performance measure, we selected the Nor-
malized Mutual Information (NMI) score [90]. This entropy-
based measure is independent of label matchings and is often 
used for clustering [91]. The NMI for task t after learning 
up to task m is:

in which H is the entropy, y are the true labels, and 𝐲̂ are 
the predicted labels. I(y, 𝐲̂) represents mutual information 
between y and 𝐲̂:

in which N is the total number of samples, and |||⋅
||| is the car-

dinality. The entropy H is:

For the IL phase, we also evaluated the Forgetting and the 
Inter-Task Intransigence (ITI) [10]. We compute Forget-
ting at the task level. According to [43], Forgetting can be 
defined as the maximum performance historically achieved 
at a task minus the performance achieved on the same task 
after incrementally learning all tasks. Since we use the NMI 
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�
i

�
j

���yi
⋂

ŷ
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Fig. 3   Method for automatically selecting the value of k. First, can-
didate partitions were selected based on the most significant dendro-
gram merge gaps, as the gray areas show. Then, the partition with the 
largest silhouette value was chosen for defining k 



Pattern Analysis and Applications	

1 3

as the main performance measure, Forgetting for task t after 
incremental training up to task m can be defined as:

The Mean Forgetting is obtained by averaging the Forgetting 
of each task (after training up to the final task m). The mean 
ITI is computed by subtracting the NMI of the current task t 
from the NMI of the previous task t − 1 , up to the final task 
m. Then, all values are averaged as follows:

Positive mean ITI reflects an average gain in performance 
as new tasks are learned. Negative mean ITI indicates that 
performance tends to degrade after learning each task.

4.7 � Results

This Section is organized in such a way as to present and 
discuss the results of each phase separately. We omit the ini-
tial training measures since this phase is easily solved by the 
triplet network coupled with the I3D backbone, achieving 
near 100% accuracy in all experimental settings. Moreover, 
the initial training follows a traditional supervised training 
approach widely found in the literature. Instead, we focus 
on the critical aspects of OWR: OSR, clustering, IL, and, 
finally, the entire test set results. We compare other cluster-
ing techniques and indicate previous works that compare 
with other methods in the Open-set and IL phases. How-
ever, since ours is the first model to perform unsupervised 
Open-World HAR, it is not possible to compare the final 
classification results.

4.7.1 � Phase 2: open‑set recognition

OSR aims at performing classification while also rejecting 
samples from unknown classes. A comparison with other 
methods can be found in our previous work [9]. In the con-
text of OWR, correctly differentiating between known and 
unknown is the most critical aspect of this phase. The reason 
is that unknown samples are further processed in the cluster-
ing and IL steps.

The Youdens Index measures the ability to differen-
tiate between known and unknown. Table 2 (second col-
umn) shows the Youdens index averaged between tasks 
on all experimental settings. The test set includes the new 
and previously seen classes on each task. New classes are 
assigned the unknown label, and known classes are assigned 
the known label. The results show a decreasing perfor-
mance trend as the experimental settings get more complex. 
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However, even in the large experimental settings, the model 
has shown an average Youdens index above 0.6.

4.7.2 � Phase 3: clustering

Clustering is performed on the rejected data from the previ-
ous OSR phase using the hierarchical clustering algorithm. 
Since our framework operates under an unsupervised sce-
nario, the clustering algorithm must automatically determine 
the number of clusters k. We compared our automatic hierar-
chical clustering strategy to two other automatic clustering 
methods.

The Efficient Parameter-free Clustering Using First 
Neighbor Relations (FINCH) [92] is also an agglomera-
tive clustering technique that performs automatic clustering 
without hyperparameters. However, FINCH proposes a set 
of possible clustering partitions instead of a single solution. 
Hence, we selected the partition with the largest silhouette 
coefficient.

The X-Means [93] algorithm is an extension of K-Means 
that automatically estimates the number of clusters. We set 
the minimum number of clusters to 2 and the maximum 
number of clusters to 101. The initialization was performed 
using the K-Means ++ algorithm [94], and the tolerance 
parameter was set to 0.25. The Bayesian Information Cri-
terion (BIC) was used to estimate the number of clusters.

We performed comparison experiments on two small and 
large experimental settings: S1, S4, L2, and L3. We replaced 
the hierarchical clustering module with the FINCH and 
X-Means models and performed the entire OWR experimen-
tal scenarios. The results of the clustering phase are shown 
in Table 3. The ground truth number of clusters is shown 
as k, while the predicted number of clusters is shown as k̂.

The FINCH algorithm overestimated the number of clus-
ters in all four experimental settings. FINCH clustered data 

based on similar video groups in the UCF-101 dataset rather 
than their classes. Video groups are snippets that were cut 
from the same large video. These results have shown that 
FINCH tended to form large numbers of small clusters that 
were not meaningful, particularly from the class perspective 
of this work.

The X-Means algorithm had a much better estimation of 
k when compared to FINCH. The model had a similar per-
formance to our automatic hierarchical clustering strategy. 
The hierarchical model was superior in the S1, S4, and L2 
settings regarding k estimation and NMI. The X-Means algo-
rithm was superior in the L3 setting. Overall, the X-Means 
model has shown promising performance. However, it 
requires the user to set a range for the possible number of 
clusters which may be prohibitive in some applications.

From this point, we discuss the experimental results 
obtained with the automatic hierarchical clustering strat-
egy. The actual number of clusters k and predicted number 
of clusters k̂ per task are shown in Table 3, in the third and 
fourth columns, respectively. The predicted values were 
averaged over all tasks since they have a constant number 
of clusters.

The model has accurately estimated the value of k in most 
of the experiments. In the Small experimental settings, the 
average predicted values for k were offset by less than one. 
The L3 setting had the most significant gap between k and 
ŷ , with an average of 16.9 predicted for a ground truth of 20. 
This suggests that estimating k becomes more difficult as the 
number of clusters increases. Hence, open-world learning 
with fewer classes at each iteration may improve automatic 
clustering performance in a real-world application.

We also evaluate the clustering NMI, as shown in the fifth 
column of Table 3. The model achieved high values of NMI 
in all experimental settings. This suggests that the features 
learned by the triplet network are easily separable by the 
hierarchical clustering algorithm. Once more, The L3 setting 
presented the lowest NMI. This is caused by the larger gap 
between the true and predicted k.

4.7.3 � Phase 4: incremental learning

IL models are often evaluated using three main measures: 
Forgetting, intransigence, and a classification measure such 
as the NMI. For intransigence, we adopt the Inter Task 
Intransigence (ITI) [10]. The results were averaged between 
tasks and are presented in Table 2.

In this work, the Forgetting of a model for a given task 
is the difference between the historical maximum NMI and 
the final NMI. In most small (S) experimental settings, our 
model presented a Forgetting below 0.021, except for S1, 
which can be considered an outlier. L1 gave a slightly higher 
average Forgetting when compared to the other large (L) 
settings. The cause may be the more significant number of 

Table 3   Comparison among three clustering methods in four experi-
mental settings

Setting Method k k̂ NMI

S1 Hierarchical 3 3.050 ± 0.191 0.979 ± 0.027
FINCH 3 17.90 ± 11.87 0.845 ± 0.114
X-Means 3 3.950 ± 0.700 0.917 ± 0.04

S4 Hierarchical 6 6.000 ± 0.163 0.969 ± 0.011
FINCH 6 76.65 ± 27.03 0.737 ± 0.079
X-Means 6 6.700 ± 0.663 0.944 ± 0.006

L2 Hierarchical 10 9.660 ± 0.412 0.956 ± 0.007
FINCH 10 146.6 ± 52.25 0.728 ± 0.095
X-Means 10 10.778 ± 0.524 0.946 ± 0.009

L3 Hierarchical 20 16.90 ± 0.931 0.930 ± 0.015
FINCH 20 424.1 ± 17.27 0.658 ± 0.003
X-Means 20 20.90 ± 0.739 0.937 ± 0.006
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tasks in this experiment (20 tasks) than L2 and L3 (10 and 5 
tasks). Despite having relatively low Forgetting values, this 
result suggests that eliminating Forgetting in large sequences 
of tasks is still a challenge in OWR, especially in unsuper-
vised scenarios.

Intransigence is often portrayed in the literature as the 
opposite of Forgetting [43]. It measures the plasticity of a 
model when learning new classes. Models with intransi-
gence problems cannot learn new classes effectively because 
they resist changes to avoid forgetting. The Inter-Task Intran-
sigence (ITI) measures the NMI gain (positive values) or 
decay (negative values) of one task concerning the previ-
ous task. The average ITI, shown in Table 2, is obtained by 
averaging this change among all tasks. In the experiments, 
our model has maintained an ITI centered near zero. This 
suggests that our model’s learning ability does not decay as 
new classes are learned.

The NMI measured in the IL phase is computed by aver-
aging the NMI obtained in each task. The results show a 
slightly decreasing performance trend as the experimental 
settings become more complex. However, the model shows 
great promise, with an average NMI of over 0.92 in the small 
settings and above 0.88 in the large settings. A comparison 
of IL with other state-of-the-art methods can be found in our 
previous work [10].

4.7.4 � Full test set

After all the tasks have been learned, the full test set results 
are obtained by evaluating the model using the complete 
test set. Similar to the clustering phase, we evaluate ŷ and 
the NMI of the full test set. This time, the values are aver-
aged over the five random seed initializations. The results 
are shown in Table 2.

Our model accurately estimates the number of clusters k 
in most experimental settings. The highest gap between true 
and predicted k occurred in the L3 setting, where classes are 
introduced in increments of 20. This setting also presented a 
slightly lower NMI when compared to other settings. Once 
more, this result suggests that our model obtains a better 
performance in scenarios where fewer classes are introduced 
in each task.

5 � Parameter sensitivity studies

We investigate three main parameters of our method and 
their impact on performance: EVM classification threshold, 
EVM tail size, and the Triplet Network margin. Each param-
eter was evaluated on the L2 experimental setting (first fold) 
using a predefined range of values. We considered evalua-
tion measures from phases 2 and 4 (OSR and IL). The NMI 

and ŷ from the last iteration were also presented for a more 
general evaluation.

5.1 � EVM classification threshold ı

The classification threshold � controls the rejection aspect 
of the EVM in the OSR phase. Larger values of � lead to a 
more restrictive EVM model when accepting data belonging 
to a known class, i.e., it causes more rejection. Relatively 
large values for � may cause the rejection of known class 
members. On the contrary, reduced values may cause new 
classes to be confused with existing classes.

Figure 4 shows the results of six different measures as a 
function of � . The values shown in the graphs are an average 
between all tasks. The standard deviations are displayed as 
error bars. The bottom center and bottom right graphs are 
the results obtained on the last iteration of the experiments 
using the entire test set. Hence, they are not task averaged.

The Youdens index is shown in the top left corner of 
Fig. 4. This measure is directly affected by the classifica-
tion threshold � since it measures the performance of distin-
guishing between known and unknown classes. As one can 
observe, the Youdens index is lower at the extremes and 
larger at the middle range of � values. This suggests that 0.5 
provides a good balance for rejection.

The following two measures, mean Forgetting and mean 
ITI, are not heavily affected by � . The mean NMI among all 
tasks is slightly affected but stagnates after the 0.5 mark.

The predicted number of clusters ŷ in the final test set 
(bottom center) was compromised when using small values 
of � . At low values of � , many new classes are wrongly clas-
sified as existing classes. Thus, some new classes merge 
with pre-existing classes and disappear from the training set. 
This suggests that � needs to be sufficiently large to allow 
new classes to be discovered and formed in the clustering 
and IL steps.

Finally, the NMI in the final test set is shown in the bot-
tom right of Fig. 4. As one can observe, � does not sig-
nificantly impact this measure as long as it is not extremely 
small. All values above 0.1 have shown similar performance. 
After evaluating the results shown in this Section, we have 
chosen a � of 0.5 for the remaining experiments. This also 
includes parameter sensitivity studies for the parameters � 
and �.

5.2 � EVM tail size �

The EVM tail size � controls the fraction of the training 
data used to fit the Weibull distribution. Figure 5 shows 
the results obtained using each measure for four differ-
ent values of � , ranging from 20% to 50%. A negligible 
difference in performance was observed in all cases, sug-
gesting that � does not cause a significant impact on the 
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performance of our model. However, fitting the Weibull 
distribution using larger values of � is more expensive in 
time and computational resources. Hence, we set � = 0.2 
in the remaining experiments.

5.3 � Triplet network margin ̨

The Triplet Network margin � impacts both the Triplet 
Loss function and the semi-hard triplet mining, as seen in 
Sect. 4.3.2. This parameter is related to the quality of the 

Fig. 4   Performance on the L2 setting using different values of �

Fig. 5   Performance on the L2 setting using different values of �
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features learned by the Triplet Network. Figure 6 shows the 
results obtained in each measure using different values of 
� . The Youdens index, Forgetting, and ITI were not signifi-
cantly affected by the changes in � . However, a larger stand-
ard deviation can be observed for larger values of � in ITI. 
The same can be observed regarding NMI and a decrease in 
mean performance as � increases.

The estimated ŷ and the NMI on the entire test set also 
suffered a performance decay as � became larger. This 
suggests that the metric learning process produced more 
informative features using lower values of � . Thus, we set 
the parameter � to 0.2 in the remaining experiments.

6 � Visual analysis

This Section shows a visual analysis of the two first tasks of 
a fold of the S1 setting. We chose this setting because it has 
few classes. Therefore, a visual analysis is straightforward 
and easier than other settings with many classes. Such an 
analysis can lead to a better understanding of the behavior of 
our OWR model. For this purpose, videos were individually 
tracked to uncover possible reasons for misclassifications.

We employ t-SNE [95] to reduce the dimensionality of 
the triplet network features and allow the observation of 
their structure in two dimensions. Even if the dimension-
ality reduction causes a loss of information, we found the 
structure of the representations enlightening in many cases.

The first fold of the S1 setting was initialized by randomly 
choosing three initial classes. In this case, “Apply Lipstick,” 

“Boxing Speed Bag,” and “Cricket Shot” were selected. The 
model underwent the initial training phase trained the I3D 
and the triplet network in a standard supervised learning 
approach.

In phase 2, “Mopping Floor,” “Shaving Beard,” and 
“Skiing” were introduced in the new task. The OSR model 
predicted whether each video in the new task belongs to a 
known or a novel class. This binary classification was per-
formed first in the training set where all data is unknown. 
Since we cannot determine the Youdens index of a set con-
taining only unknown classes, the model was evaluated 
on a separate test set. The test set contains videos from all 
classes presented until this point. This includes the initial 
three classes and the three unknown classes.

The classification obtained by the Dual-Memory EVM is 
shown in the top left of Fig. 7. A single point represents each 
video in the test set. The shapes represent the true label of 
each video, while the predictions are represented as colors. 
It can be observed that each class forms well-separated clus-
ters. The unknown videos were mostly correctly classified 
as unknown. False rejections occurred in few videos of the 
“Boxing Speed Bag” and “Apply Lipstick” classes.

The most interesting false prediction occurred near the 
“Apply Lipstick” cluster in the top center of the box. This 
cluster is slightly overlapped with a cluster formed by the 
unknown class “Shaving Beard.” This caused false rejections 
(in “A”) and one false recognition (in “B”). By examining 
the incorrectly classified videos, it can be observed they are 
visually similar. In both cases, a third person is performing 
the action on the target subject, which may have confused.

Fig. 6   Performance on the L2 setting using different values of �
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The rejected data from the training set was automatically 
clustered in the next phase. The top right of Fig. 7 shows the 
clustering results. Our model accurately predicted the num-
ber of clusters and assignments in this case. Since labels are 
unavailable during the training phase, we name each cluster 
according to the number and task they were discovered.

After discovering the three new classes, the IL phase was 
conducted. Our model learns from the labels assigned by the 
clustering algorithm. From this point onward, the three new 
classes become known. Figure 7 (lower left) shows the final 
classification results on the test set. The test set includes all 
known classes learned up to this point. Once more, some 
points of “Apply Lipstick” and “Shaving Beard” appear 
overlapped and cause a classification error in “A”.

For the second task of the S1 experiment, we skip the 
open set and clustering phases to show the final results after 
IL. Figure 8 shows the feature space after introducing three 
more classes: “Floor Gymnastics,” “Surfing,” and “YoYo.”

With the introduction of the new task, two new classifica-
tion errors come to our attention. It can be observed that the 
“Skiing” and “Surfing” clusters are relatively close to one 
another in the feature space. This causes some overlapping 
between those two classes. In “C”, a “Skiing” video was 

misclassified as surfing. The cause for this error becomes 
evident upon a visual inspection of the particular video. 
The background and motion are very similar to a “Surfing” 
video.

Another interesting classification error occurred in “D”. 
In this case, a “Skiing” video was misclassified as “YoYo” 
despite being two different classes in terms of appearance 
and motion. By inspecting the frames, it was observed that 
this particular video contains a television logo that lines per-
fectly with the ski pole. This creates the illusion of a “YoYo” 
in some frames. The “YoYo” appearance has prevailed over 
the “Skiing” background and motion in the feature space. 
This suggests that the presence of a “YoYo” in our feature 
extractor may be a stronger class indicator than objects and 
motions used in “Skiing.”

7 � Conclusions and future works

This work presented a framework for performing Unsu-
pervised OWR in Human Action videos. We divided the 
problem into four phases: initial training, OSR, clustering, 
and IL.

Fig. 7   Feature space obtained 
with t-SNE in three different 
phases of unsupervised OWR. 
Figure best viewed in color
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The initial training phase was conducted using a super-
vised learning approach, while the remaining phases 
received no label information. Despite the lack of labels, 
our model closely estimated the number of clusters k and 
provided precise label assignments based on the mean 
NMI.

We observed a negative performance trend regarding 
the experimental settings proposed in this work, as the set-
tings included more classes in each task. This suggests that 
our method performs best by introducing a small number 
of classes at each increment rather than a large number 
of classes.

Our visual inspection of some experimental results has 
revealed interesting aspects of the feature learning process. 
First, classes formed well-defined and separated clusters 
in most cases, suggesting the I3D coupled with the Triplet 
Network output easily separable feature representations. 
We also observed instances in which clusters were par-
tially overlapped. In those cases, we noted a substantial 
visual similarity between them. It is possible that obtain-
ing more training data or introducing mechanisms in the 
feature learning models could mitigate this problem. How-
ever, the solution must consider the limited resources of 
Open-World models, which pose an additional challenge 
for future works.

OWR is an important step toward effective models for 
solving real-world problems. It is imperative in the unsu-
pervised setting because of the large amount of unlabeled 
daily data. Hence, we encourage future works that point 
in that direction.
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