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A B S T R A C T

Automatic evaluation metrics play an important role in assessing video captioning systems. Popular metrics
used for assessing such approaches are based on word matching and may fail to evaluate the quality
of automatically generated captions due to inherent natural language ambiguity. Moreover, they require
many reference sentences for effective scoring. With the fast development of image and video captioning
methodologies using deep learning in recent years, many metrics have been proposed for evaluating such
approaches. In this study, we present a survey of automatic evaluation metrics for the video captioning task.
Moreover, we highlight the challenges in evaluating video captioning and propose a taxonomy to organize
the existing evaluation metrics. We also briefly describe and identify the advantages and shortcomings of
those metrics and identify applications or contexts in which these metrics can be better used. To identify
the advantages and limitations of the evaluation metrics, we quantitatively compare them using videos from
different datasets employed for the video description task. Finally, we discuss the advantages and limitations
of the metrics and propose some promising future research directions, such as semantic measurement,
explainability, adaptability, extension to other languages, dataset limitations, and multimodal free-reference
metrics.
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1. Introduction

In recent years, we have witnessed an exponential growth in the
amount of images and videos produced and stored by people and en-
terprises and made available on the Internet. Understanding the visual
content of images and videos and describing them in natural language
has attracted the attention of researchers in the last few years (Aafaq,
Mian, Liu, Gilani, & Shah, 2019; Rafiq, Rafiq, & Choi, 2021). Comparing
images with videos, understanding the latter is much more challenging,
since they require sophisticated techniques to process the diversity of
human and object appearances that appear in diverse environments
and also, with complex interactions between each other over time. An
approach that accurately describes events in videos can be helpful in
many applications, such as human–robot interaction, video indexing,
assistance to the visually impaired, sign language understanding, and
intelligent video surveillance, to name a few.

Assessing the quality of such systems is a complicated and subjective
task. This happens because the captions, besides being grammatically
well-formed and fluent, need to refer to the video properly (Stefanini
et al., 2023). Human evaluation is the gold standard for assessing the
quality of the captions. However, this is only sometimes possible since
this task is too labor-intensive and inefficient (Bin, Shang, Peng, Ding,
& Chua, 2021).

To circumvent this problem, some metrics have appeared over time
for evaluating the quality of video captions. Four metrics, namely:
BiLingual Evaluation Understudy (BLEU) (Papineni, Roukos, Ward, &
Zhu, 2002), Consensus-based Image Description Evaluation (CIDEr)
(Vedantam, Lawrence Zitnick, & Parikh, 2015), Metric for Evalua-
tion of Translation with Explicit ORdering (METEOR) (Banerjee &
Lavie, 2005), and Recall-Oriented Understudy for Gisting Evaluation
(ROUGE-L) (Lin, 2004), are the most frequently used for the evaluation
of video captioning approaches. These metrics have become popular
since they were used in the Large Scale Movie Description Challenge
(LSMDC 2015) (Rohrbach et al., 2017) and the codes were released
by the Microsoft Common Objects in COntext (MS COCO) Evaluation
Server.1 However, such metrics are sensitive to word overlap and
fail to compare captions that convey almost the same meaning but
describe the same content with no words in common. To assess the
semantic content of captions, Semantic Propositional Image Caption
Evaluation (SPICE) (Anderson, Fernando, Johnson, & Gould, 2016) was
suggested. By processing them into a scene graph, it examines the
candidate and reference sentences from the standpoint of their semantic
similarity. Even so, since it only uses a dependency parser to analyze
the sentences, it might be unable to interpret grammatical information.

1 https://github.com/tylin/coco-caption
2

The traditional evaluation metrics are based on n-gram overlapping.
They basically compute the similarity of a candidate sentence against
a set of reference sentences. Fig. 1 shows a straightforward example
of evaluation using the conventional metrics to highlight the com-
plexity of the challenge of automatically analyzing video captioning
approaches, as well as the primary shortcomings presented in such
metrics.

First, a reference sentence is provided (blue box) for each video.
The next step is to assess the two hypothetical candidate sentences, A
(red box) and B (green box). The first one is semantically correct, and
the second one is wrong. The correct candidate sentence scored less
than the incorrect one, according to the above-mentioned metrics. This
is because they have fewer exact words in their reference sentences.
Additionally, the accuracy of such measures is significantly hampered
by the small number of reference phrases. Actually, the reference
sentences required by these metrics may not completely cover the
visual content because they are selective translations of the video made
by human referees or an automated system (Jiang et al., 2020).

Unlike traditional metrics that require a set of reference sentences
for evaluation, a recent promising metric called EMScore (Shi, Yang,
Xu, Yuan, Li, Hu and Zha, 2021) was proposed to measure the similar-
ity between a video and candidate sentences without using reference
sentences during evaluation. Instead, it employs a large-scale vision-
language model that was pre-trained to extract visual and linguistic
features to compute a score based on the consistency of the video and
caption. Using a pre-trained model reduces the gaps between the video
and text embeddings. However, a significant semantic gap still exists
between visual and language domains. The semantic gap (Baâzaoui,
Barhoumi, Ahmed, & Zagrouba, 2018; Perlin & Lopes, 2015), can
be understood as the ‘‘distance’’ between the low-level information
(pixels, edges, shapes, texture) of images and their high-level meaning
(language) in a given context.

Some metrics were developed from the Natural Language Processing
(NLP) perspective. They are based on n-grams for estimating the seman-
tic similarity between two blocks of text. Such a task is called Semantic
Textual Similarity (STS) and usually outputs a percentage or ranking of
similarity between texts (Chandrasekaran & Mago, 2021). One of the
main challenges faced in such a scenario is the coexistence of many
possible meanings for a word or phrase (polysemy) or the existence
of two or more words having the same spelling or pronunciation but
different meanings and origins (homonymy). For example, consider
the sentences: ‘‘The man is cooking a dish’’ and ‘‘The man is washing
the dish’’. These two sentences contain the noun ‘‘dish’’, which is an
example of a polysemous word. Despite not being equivalent, such
sentences achieve high scores on some traditional metrics because they
have many words in common and have the same length. On the other
hand, the sentences ‘‘The man is cooking dinner for his family’’ and

‘‘The man is preparing a meal for his loved ones’’ are equivalent and

https://github.com/tylin/coco-caption
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Fig. 1. An example of caption evaluation of a video from the ActivityNet Captions dataset (5pqVrMgiMcs) is shown. BLEU1, BLEU2, BLEU3, and BLEU4 denote the BLEU metric
with 1-gram, 2, gram, 3-gram and 4-gram, respectively. Traditional reference-based metrics may fail to evaluate candidate sentences due to the small number of reference sentences.
Moreover, despite not describing the video scene, candidate sentence ‘‘A’’ has more similar words to the reference sentence than candidate sentence ‘‘B’’, and achieved a better
score than the correct caption ‘‘A’’. With the exception of CIDEr, which has a range of [0, 10], all metric scores are scaled in the range [0, 1]. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
would achieve a lower score as they are written with different words.
Besides, metrics that rely on visual information to compute the quality
of a candidate sentence also face drawbacks due to the semantic gap
problem.

Although some review studies on video captioning have been pub-
lished in the last few years (Aafaq et al., 2019; Amirian, Rasheed,
Taha, & Arabnia, 2020; Jain et al., 2022), they usually compare related
methods, metrics, and datasets employed by existing approaches and
disregard non-standard evaluation metrics. In a recent survey study on
deep learning-based image captions (Stefanini et al., 2023), researchers
analyzed non-standard metrics as an alternative or complement to
standard metrics for more precise performance evaluation, even when
ground-truth captions are not available during the inference step.

This paper presents a survey of the evaluation metrics for the video
captioning task. To the best of our knowledge, this is the first in-
depth review study about this subject. It is worth noticing that two
popular metrics, CIDEr, and SPICE, were initially proposed for the
image captioning task. Notwithstanding, they have been frequently
used for evaluating video descriptions. Therefore, we also considered
some promising metrics recently proposed for evaluating image cap-
tions in this survey. That said, the main contributions of this study are
summarized as follows:

• A taxonomy of the existing metrics is proposed;
• The advantages and shortcomings of existing metrics are identi-

fied and discussed;
• The applications or contexts in which these metrics can be better

used are suggested.
• An empirical comparison between the main metrics is shown to

contrast their results.
• The main challenges in video captioning evaluation metrics are

highlighted;

This paper is organized as follows. Section 2 presents a brief back-
ground and the challenges of the video captioning task. Section 3
presents the most popular video captioning benchmark datasets. In Sec-
tion 4, the main evaluation metrics are overviewed. Section 5 presents

empirical experiment results on videos from popular video captioning
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datasets. Next, Section 6 discusses the limitations of the evaluation
metrics. Finally, Section 7 presents the conclusions, and points out
future research directions.

2. Video captioning vs image captioning

Humans can easily describe the visual content of images and videos
using natural language. Notwithstanding, this is still a challenging
task for computers. Generating natural language descriptions from
visual content (images and videos) involves solving several complex
problems, including: object detection and classification; human action
recognition; detection of the visual relationships between humans and
objects.

Image and video captioning tasks require the ‘‘translation’’ of visual
content into a sequence of words, which can be seen as similar tasks.
Instead of dealing with images with static structural information, the
video captioning task has to process and understand the visual content
presented in a sequence of frames, and translate them into a sequence
of words. To achieve this, a video captioning approach must capture
not only the individual frames but also their relationships and order
in time. As a result, the approach must have a strong contextual un-
derstanding of the temporal content presented in the video. Moreover,
the temporal component of videos introduces an additional level of
difficulty, as it requires recognizing how the visual content evolves
over time. This may involve tracking objects, detecting motion, and
identifying actions. Thus, compared to image captioning, video cap-
tioning is more challenging as it requires sophisticated techniques to
deal with the diversity of human and object appearances in different
environments, as well as their changing relationships over time (Ji &
Wang, 2021).

Nowadays, with the advancement of Computer Vision (CV) and
Artificial Intelligence (AI) techniques, computers can effectively solve
many real-world problems, including object classification, action recog-
nition, and image segmentation. However, a step beyond the simple
categorical classification of objects and actions is translating complex
visual information into a semantically structured text (Inácio, Gutoski,
Lazzaretti, & Lopes, 2021).
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Early approaches proposed for video captioning started with
emplate-based methods. In those approaches, the objects, activities,
nd scenes were first detected and then used in a sentence tem-
late (Aafaq et al., 2019; Liu, Xu, & Wang, 2019). Although these
ethods could generate descriptions based on grammar, they did
ot consider the spatial and temporal associations between entities.
nspired by the exponential development of deep learning techniques in
he CV and NLP areas, video captioning research has recently emerged
s a hot research topic. Usually, deep learning approaches are mainly
esigned as encoder–decoder pipelines. The encoder uses convolutional
etworks to convert the input visual content into a feature vector
epresentation. The decoder is usually a Long-Short Term Memory
LSTM), Gated Recurrent Unit (GRU), or transformer-based network
hat outputs a sequence of words.

Once the captions are generated, an evaluation process is essential
o assess the performance and effectiveness of the proposed systems
nd allow their comparison with other approaches. Human evaluation
s often considered the gold standard, the ideal and most reliable metric
o assess caption quality. However, it is always time-consuming, labor-
ntensive, and, sometimes, not consensual. Thus, automatic evaluation
etrics are required to evaluate video captioning approaches.

. Video captioning datasets

The evaluation metrics discussed in this work have been used to
erform a quantitative analysis of video descriptions using datasets as
enchmarks. Therefore, the metrics’ performance is closely related to
he quality, size, and diversity of the datasets. Existing video captioning
odels are trained on publicly available datasets and employ a hold-out

alidation strategy, following existing studies that use standard train-
ng, validation, and testing splits. This training approach ensures a fair
omparison with state-of-the-art methods. The metrics presented in this
tudy can be used to monitor model performance during training and
o report performance on the test set post-training. To the best of our
nowledge, no studies in the literature have employed a different vali-
ation strategy, possibly due to computational costs. Table 1 shows the
ain details of the most widely used datasets, which can be categorized

nto three domains: ‘‘open’’ (unspecific videos); ‘‘human’’ (focused on
uman-centered activities); and ‘‘cooking’’ (regarding cooking-related
ctivities). Examples and detailed analysis of the datasets mentioned
n Table 1, is outside the scope of this work, as well as papers where
ach metric was used, and can be found elsewhere (Aafaq et al., 2019;
mirian et al., 2020; Jain et al., 2022).

• ActivityNet Captions (Krishna, Hata, Ren, Fei-Fei, & Niebles,
2017): contains 20,000 videos taken from the ActivityNet dataset
(Heilbron, Escorcia, Ghanem, & Niebles, 2015), in which each
video has, on average, 3.65 temporally localized sentences and a
total of 100,000 sentences. All videos were annotated by Amazon
Mechanical Turk workers. The dataset was proposed for the
dense video captioning task, which aims to generate multiple
informative and diverse sentences for a video containing short,
long, or even overlapping events.

• Charades (Sigurdsson et al., 2016): provides 27,847 descriptions
of 9848 videos annotated by Amazon Mechanical Turk workers.
Each video has an average length of 30 s and includes 15 types
of indoor scenes of daily-life human activities. It is also available
66,500 temporally localized intervals for 157 action classes and
41,104 labels for 46 object classes. It was proposed for activity
understanding, including action classification, localization, and
video descriptions.

• Microsoft Research Video Description Corpus (MSVD) (Chen &
Dolan, 2011): this is, possibly, the most used dataset for the
video captioning task. It contains 70,028 sentences from 1970
video clips collected by Amazon Mechanical Turk workers. Each
video contains one main activity to be described, usually lasting
between 10 and 25 s. Moreover, the audio is muted in all video

clips.

4

Table 1
Datasets used for the evaluation of video description approaches.

Dataset Domain #videos #sentences #vocabulary

ActivityNet Captions Open 20,000 100,000 1,348,000
Charades Human 9848 27,847 4144
MSR-VTT Open 10,000 200,000 29,316
MSVD Open 1970 70,028 13,010
TACoS Cooking 14,105 52,593 2000
YouCook2 Cooking 2000 15,400 2600

• MSR Video to Text (MSR-VTT) (Xu, Mei, Yao, & Rui, 2016):
contains 200,000 sentences for 10,000 clips extracted from 7180
videos, with an average of 20 different sentences per clip. All
videos were annotated by Amazon Mechanical Turk workers. It
is the second most used dataset.

• Saarbrücken Corpus of Textually Annotated Cooking Scenes
datasets (short: TACoS) (Rohrbach et al., 2014): contains 52,593
descriptions of 14,105 video clips about people’s cooking proce-
dures. All descriptions were annotated by Amazon Mechanical
Turk workers. It provides three levels of detailed descriptions
for complex videos: one sentence for a complex event, a short
sentence for a video segment, and a detailed description for each
step of cooking procedures.

• YouCook2 (Zhou, Xu, & Corso, 2018): contains 15,400 sentences
of video clips in 2000 untrimmed videos downloaded from
YouTube, all instructional cooking recipe videos. The descriptions
were provided by two human annotators. To date, this is the
largest task-oriented instructional video dataset for the computer
vision community.

4. Evaluation metrics

This Section reviews the automatic evaluation metrics commonly
used for video captioning tasks. Moreover, we also consider in this
study some metrics that were explicitly proposed for image captioning,
but are useful and promising for the video captioning task too. We
did not include studies that propose evaluation metrics for Natural
Language Generation (NLG) systems, such as Machine Translation,
Dialog Generation, Summarization, Question Answering, or other tasks
different than video or image captioning.

We also propose a taxonomy that characterizes and classifies the
automatic evaluation metrics based on their dependency on reference
sentences, domain, and similarity aspects. A previous review study
proposed a taxonomy for image captioning metrics (Sharif, Nadeem,
Shah, Bennamoun, & Liu, 2020). In such a study, the metrics were di-
vided into two categories: data-driven and hand-designed. Data-driven
metrics involve learning to measure sentence correspondence through
a data-driven approach, while hand-designed metrics use a set of hand-
crafted criteria or features. Recently, many metrics have been proposed
to assess captions directly from the visual content without reference
sentences. Thus, the proposed taxonomy presented in this study differs
from Sharif, Nadeem et al. (2020) by taking into account the unique
features and aspects of the more recent metrics that are reported in
this study.

An outline of a taxonomy for the metrics examined in this work is
shown in Fig. 2. The metrics are divided into two primary categories:
reference-based and reference-free. Reference-based metrics provide a
similarity score between one or more reference sentences and a target
sentence. Meanwhile, reference-free metrics score similarity between
a target sentence and visual information (image or video). Then, each
category can additionally be split into learned and hand-crafted subcat-
egories. The hand-crafted approaches employ deterministic measures
of similarity between a candidate and the reference sentences, such
as the F-score or the cosine similarity. The learned methods usually
require training a (neural network) model to predict the likelihood of
a candidate caption being a human-generated description.
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In the proposed taxonomy, we also consider the way these metrics
ncode the sentences to compute the metrics, which can be divided into
our main ways:

(a) Word-matching: when n-grams are compared;
(b) Scene-graph: when sentences are encoded as a scene-graph prior

to comparison;
(c) Word embedding: when using a pre-trained word-embedding to

encode sentences;
(d) Feature composition: when different features are considered.

Moreover, some metrics also include visual content (concepts cap-
tured in images) to measure the similarity. They were also categorized
in the proposed taxonomy.

4.1. Reference-based metrics

Existing datasets for video captioning consist of a set of videos
paired with captions in natural language, usually written by humans,
which describe their visual content.

Most metrics used for evaluating video captioning approaches are
based on those reference sentences. Thus, given a candidate sentence
generated by the approach, the metrics evaluate the sentence by mea-
suring its similarity against a set of reference sentences associated with
a given visual content.

A brief description of the reference-based metrics is presented be-
low. More details can be found in the original papers.

4.1.1. BLEU (BiLingual Evaluation Understudy)
BLEU (Papineni et al., 2002) is a quick, inexpensive, and language-

independent method initially proposed for automatic evaluation of
machine translation and is commonly used to evaluate image and video
captioning approaches. It measures the overlapping precision of the
n-grams of a predicted sentence with one or more reference human
descriptions. BLEU is based on modified 𝑛-grams precision, and it is
usually computed for n-grams of size 1 to 4. Grammatical correctness
or intelligibility is not directly considered. A high score in this metric
may be associated with a large number of references. BLEU scores range
from 0 to 1 but are usually reported as a percentage value. A score
above 0.30 generally reflects an understandable sentence, and above
0.50 reflects good and fluent candidate sentences (Denkowski & Lavie,
2010). The BLEU is computed as follows:

𝐵𝑃 =

{

1 if 𝑐 > 𝑟.
(1−𝑟∕𝑐)
𝑒 if 𝑐 ≤ 𝑟. d

5

BLEU = 𝐵𝑃 .𝑒𝑥𝑝

( 𝑁
∑

𝑛=1
𝑤𝑛𝑙𝑜𝑔𝑝𝑛

)

(1)

where, 𝑐 denotes the length of the candidate sentence, 𝑟 is the reference
corpus length, 𝐵𝑃 is a brevity penalty factor to penalize candidate
sentences shorter than reference sentences, 𝑤𝑛 are positive weights
summing to one, 𝑝𝑛 is the geometric average of the modified n-gram
precisions up to 𝑁 , and 𝑒𝑥𝑝 is the exponential function. Usually, 𝑁 is
et to 4 and 𝑤𝑛 is set to 1∕𝑁 .

4.1.2. METEOR (Metric for Evaluation of Translation with Explicit ORder-
ing)

METEOR (Banerjee & Lavie, 2005) is also a metric initially proposed
for automatic machine translation, and it was designed to address
the weakness perceived in the BLEU metric, including: the lack of
recall, the use of higher-order 𝑛-grams, the lack of explicit word-
matching between candidate and reference sentences, and the use
of geometric averaging of 𝑛-grams. It creates an alignment between
unigrams in the candidate and reference sentences. Each unigram from
the candidate can have zero or one mapping to a unigram from the
reference sentences. The METEOR word matching supports morpholog-
ical variants, including stemming and synonyms. The metric is based
on the precision, recall, and harmonic mean and consists of creating
alignment between unigrams from candidate and reference sentences.
The METEOR score is computed according to the following equation:

𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑚𝑒𝑎𝑛(1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) (2)

The 𝐹𝑚𝑒𝑎𝑛 is computed by combining Precision and Recall using
the harmonic mean according to the following formula:

𝐹𝑚𝑒𝑎𝑛 = 10𝑃𝑅
𝑅 + 9𝑃

(3)

where 𝑃 and 𝑅 stand for Precision and Recall and are computed as
𝑚∕𝑐 and 𝑚∕𝑟, respectively, where 𝑚 is the number of unigrams co-
occurring in both candidate and reference sentences, 𝑐 is the number
of unigrams in the candidate sentence, and 𝑟 is the number of unigrams
in the reference sentence.

A penalty is calculated as follows to take into account the degree to
which the corresponding unigrams in both the candidate and reference
sentences are in the same word order.

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 0.5
(

𝑁𝑐
𝑁𝑢

)3
(4)

where the total number of matched unigrams is denoted by 𝑁𝑢, while
𝑐 represents the smallest possible number of chunks, which are groups

f matched unigrams that appear in the same order in both the candi-
ate and reference sentences.
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4.1.3. CIDEr (Consensus-based Image Description Evaluation)
CIDEr (Vedantam et al., 2015) is the first metric that was specifically

proposed for evaluating image captioning approaches. It proposes a
consensus-based evaluation protocol using the Term Frequency-Inverse
Document Frequency (TF-IDF) to capture the frequency of each word
in a candidate sentence in a list of reference sentences. The main idea
is to evaluate how well a candidate sentence 𝑐𝑖 matches the consensus
of a set of image descriptions 𝑆𝑖 = {𝑠𝑖1, 𝑠𝑖2,… , 𝑠𝑖𝑚}. Each sentence 𝑠𝑖𝑗 is
represented as a set of n-grams, and a given n-gram 𝑤𝑘 is a set of one
or more words. TF-IDF 𝑔𝑘(𝑠𝑖𝑗 ) for each n-gram 𝑤𝑘 is computed using:

𝑔𝑘(𝑠𝑖𝑗 ) =
ℎ𝑘(𝑠𝑖𝑗 )

∑

𝑤𝑙∈𝛺 ℎ𝑙(𝑠𝑖𝑗 )
𝑙𝑜𝑔

(

|𝐼|
∑

𝐼𝑝∈𝐼 𝑚𝑖𝑛(1,
∑

𝑞 ℎ𝑘(𝑠𝑝𝑞))

)

(5)

Where, ℎ𝑘(𝑠𝑖𝑗 ) is the number of times an 𝑛-gram 𝑤𝑘 occurs in a
reference sentence 𝑠𝑖𝑗 , ℎ𝑘(𝑐𝑖) is the number of times an 𝑛-gram 𝑤𝑘
occurs in a candidate sentence 𝑐𝑖, 𝛺 is the vocabulary of all 𝑛-grams
and 𝐼 is the number of all images in the dataset. The TF term confers
greater weighting to n-grams that exhibit higher frequency in the
reference sentence utilized for image description, while the second term
of 𝑔𝑘(𝑠𝑖𝑗 ), IDF, attenuates the weighting of n-grams that exhibit frequent
occurrence across all images in the dataset by dividing the number of
images in which 𝑤𝑘 appears in any of its reference captions.

The, the similarity between each reference caption 𝑠𝑖𝑗 and a can-
didate sentence 𝑐𝑖 is computed by the average cosine distance of the
TF–IDF vectors.

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝑆𝑖) =
1
𝑚

∑

𝑗

𝑔𝑛(𝑐𝑖)𝑔𝑛(𝑠𝑖𝑗 )
‖𝑔𝑛(𝑐𝑖)‖‖𝑔𝑛(𝑠𝑖𝑗 )‖

(6)

where, 𝑔𝑛(𝑐𝑖) is a vector consisting of all 𝑛-grams 𝑔𝑘(𝑐𝑖) of length 𝑛 and
||𝑔𝑛(𝑐𝑖)|| is the magnitude of the vector 𝑔𝑛(𝑐𝑖). The same definition is
used for 𝑔𝑛(𝑠𝑖𝑗 ).

When using longer 𝑛-grams, it is possible to capture rich seman-
tic information and grammatical properties. The CIDEr with multiple
lengths of 𝑛-grams can be calculated as:

𝐶𝐼𝐷𝐸𝑟(𝑐𝑖, 𝑆𝑖) =
𝑁
∑

𝑛=1
𝑤𝑛𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝑆𝑖) (7)

where 𝑤𝑛 was empirically define by the author as 1∕𝑁 .
The CIDEr-D is a variation of the CIDEr and is commonly used to

evaluate image and video captioning applications. It introduces a Gaus-
sian penalty based on the difference between candidate and reference
sentence lengths. Moreover, a clip to the 𝑛-gram counts in the CIDEr
numerator is considered. These modifications aim to avoid sentences
with high scores but with poor results when judged by humans. The
CIDEr-D score is defined as follows:

CIDEr−D(𝑐𝑖, 𝑆𝑖) =
𝑁
∑

𝑛=1
𝑤𝑛CIDEr−D𝑛(𝑐𝑖, 𝑆𝑖) (8)

CIDEr−D𝑛(𝑐𝑖, 𝑆𝑖) =
10
𝑚

∑

𝑗
𝑒
−(𝑙(𝑐𝑖 )−𝑙(𝑠𝑖𝑗 ))2

2𝜎2 ∗

𝑚𝑖𝑛(𝑔𝑛(𝑐𝑖), 𝑔𝑛(𝑠𝑖𝑗 )).𝑔𝑛(𝑠𝑖𝑗 )
‖𝑔𝑛(𝑐𝑖)‖‖𝑔𝑛(𝑠𝑖𝑗 )‖

(9)

where, 𝑐𝑖 and 𝑆𝑖 = {𝑠𝑖1,… , 𝑠𝑖𝑚} are a candidate sentence and a set of 𝑚
reference sentences for an image 𝑖, 𝑤𝑛 = 1∕𝑁 and 𝑁 = 4 are uniform
weight and n-gram order defined empirically by the authors, 𝑙(𝑐𝑖) and
𝑙(𝑠𝑖𝑗 ) denotes the lengths of candidate 𝑐𝑖 and reference sentence 𝑠𝑖𝑗 ,
respectively. The authors also defined 𝜎 = 6, and to ensure that the
CIDEr-D scores are comparable to other metrics, a factor of 10 was
added.

4.1.4. ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
This package, developed by Lin (2004), was aimed at the automatic

evaluation of summaries. It consists of four different metric varia-
tions: ROUGE-N (N-gram Co-Occurrence Statistics), ROUGE-L (Longest
6

ommon Subsequence), ROUGE-W (Weighted Longest Common Sub-
equence), and ROUGE-S (Skip-Bigram Co-Occurrence Statistics). The
OUGE-L metric is often used to evaluate image and video captioning
pproaches. It is a recall-based approach that uses the F-measure to
ompute the score, using n-gram overlapping and longest common
ubsequences between two statements. The ROUGE-L is computed by
he following equations:

𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋, 𝑌 )

|𝑋|

(10)

𝑃𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋, 𝑌 )

|𝑌 |
(11)

𝑅𝑂𝑈𝐺𝐸_𝐿 = 𝐹𝑙𝑐𝑠 =
(1 + 𝛽2)𝑅𝑙𝑐𝑠𝑃𝑙𝑐𝑠

𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠
(12)

where, 𝐿𝐶𝑆(𝑋, 𝑌 ) denotes the length of a longest common subsequence
of 𝑋 and 𝑌 , |𝑋| is the length of 𝑋, |𝑌 | is the length of 𝑌 , and 𝛽 controls
he relative importance of 𝑃𝑙𝑐𝑠 and 𝑅𝑙𝑐𝑠 and is usually set to 1.2 (Chen
t al., 2015).

.1.5. SPICE (Semantic Propositional Image Caption Evaluation)
This metric was designed by Anderson et al. (2016) to tackle the

imitations of the existing automatic evaluation metrics based on 𝑛-
rams, such as BLEU, METEOR, and CIDEr. Usually, these metrics
ssign a low score to a generated sentence that conveys almost the same
eference meaning but has no words in common.

It was originally proposed for the image captioning task, but it
s also employed to evaluate video captioning systems. The metric
ncodes objects, attributes, and relations from candidate and refer-
nce sentences in graph-based semantic representations 𝐺(𝑐) and 𝐺(𝑆),
espectively, by using a dependency parse tree.

(𝑐) = ⟨𝑂(𝑐), 𝐸(𝑐), 𝐾(𝑐)⟩ (13)

here, 𝑂(𝑐) ⊆ 𝐶 is a set of objects mentions in a sentence 𝑐, 𝐸(𝑐) ⊆
(𝑐)𝑥𝑅𝑥𝑂(𝑐) is the set of hyper-edges representing relations between
bjects, and 𝐾(𝑐) ⊆ 𝑂(𝑐)𝑥𝐴 is the set of attributes associated with
bjects.

During the match analysis between tuples, synonym and lemma-
ization techniques are considered to allow the match of words with
ifferent inflection forms. The logical tuples from a scene graph is
efined the function 𝑇 , as:

(𝐺(𝑐)) ≜ 𝑂(𝑐) ∪ 𝐸(𝑐) ∪𝐾(𝑐) (14)

Each tuple may contain one, two, or three elements, representing
bjects, relations and attributes, respectively. The caption quality is
alculated based on the F1-score over tuples in the candidate and
eference sentences, and can be defined as:

(𝑐, 𝑆) =
|𝑇 (𝐺(𝑐))⊗ 𝑇 (𝐺(𝑆))|

|𝑇 (𝐺(𝑐))|
(15)

𝑅(𝑐, 𝑆) =
|𝑇 (𝐺(𝑐))⊗ 𝑇 (𝐺(𝑆))|

|𝑇 (𝐺(𝑆))|
(16)

𝑃𝐼𝐶𝐸(𝑐, 𝑆) = 𝐹1(𝑐, 𝑆) =
2𝑃 (𝑐, 𝑆)𝑅(𝑐, 𝑆)
𝑃 (𝑐, 𝑆) + 𝑅(𝑐, 𝑆)

(17)

where, ⊗ is a binary matching operator that returns matching tuples in
two scene graphs.

4.1.6. WMD (Word Mover’s Distance)
It is a distance measure proposed by Kilickaya, Erdem, Ikizler-

Cinbis, and Erdem (2017) to calculate the dissimilarity between two
text documents. It was inspired by the ‘‘Earth Mover’s Distance’’ (EMD),
employing a solver of the ‘‘transportation problem’’.

This metric aimed to assess the semantic distance between docu-
ments by representing the words as word embedding vectors. It calcu-
lates the minimum distance that words in one document should travel
to the words in another document.
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This metric was not designed for image or video captioning eval-
ation. However, it has been used to evaluate image captioning ap-
roaches (Laina, Rupprecht, & Navab, 2019) and, over time, it has
nspired the development of other metrics.

The resulting WMD score represents the dissimilarity or distance
etween the two documents, with a lower value indicating higher
imilarity and a higher value indicating lower similarity. The WMD
istance between documents 𝑥 and 𝑦 is defined as:

min
𝑇≥0

𝑛
∑

𝑖,𝑗=1
𝑇𝑖𝑗𝑐(𝑖, 𝑗)

subject to:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛
∑

𝑗=1
𝑇𝑖𝑗 = 𝑑𝑖 ∀𝑖 ∈ {1,… , 𝑛}

𝑛
∑

𝑖=1
𝑇𝑖𝑗 = 𝑑′𝑗 ∀𝑗 ∈ {1,… , 𝑛}

(18)

here 𝑇 is a flow matrix in ∈ R(𝑛×𝑛) and 𝑇𝑖𝑗 ≥ 0 means how much
f word 𝑖 in one document travels to word 𝑗 in another document,
is the vocabulary size, 𝑐(𝑖, 𝑗) = ‖𝑥𝑖 − 𝑥𝑗‖2 is the distance between
ord 𝑖 and word 𝑗 encoded in 𝑚-dimensional embedding space, 𝑑𝑖 is

he word frequency that appears 𝑐𝑖 times in the document, 𝑑′𝑗 is the
ord frequency that appears 𝑐𝑗 times in the document.

.1.7. WEmbSim
Similar to WMD, WEmbSim (Sharif, White, Bennamoun, Liu, &

hah, 2020) uses word embeddings to encode the words in an embed-
ing space. Using an embedding matrix 𝑉 , each sentence is mapped to
vector representation via the Mean of Word Embeddings (MOWE), as
efined in Eq. (19) and denoted by the function ̃𝑣(.). Then, the distance
etween two sentences is computed by the cosine similarity (cossim),
s follows.

�̃�(𝐶) = 1
𝑛

∑

∀𝑤𝑖∈𝐶
𝑉∶,𝑤𝑖

(19)

cossim
(

�̃�, �̃�
)

=
|�̃�.�̃�|
|�̃�||�̃�|

(20)

𝑆𝑐𝑜𝑟𝑒(𝐶|𝑅) = 𝛷 cossim
(

�̃�(𝐶), �̃�(𝑅𝑖)
)

,∀𝑅𝑖 ∈ 𝑅 (21)

where, 𝛷 is a rule used to specify how to combine the score for multiple
reference sentences. The authors suggest using the 𝑚𝑒𝑎𝑛 combination
function, as it consistently shows better performance than the 𝑚𝑖𝑛 or
𝑎𝑥 rule combination function, �̃�(.) is a function which maps a given
andidate sentence 𝐶 = [𝑤1, 𝑤2,… , 𝑤𝑛] or a reference sentence 𝑅𝑖 =
𝑤1, 𝑤2,… , 𝑤𝑛] into a feature vector representation, 𝑛 is the number
f words in a given sentence, and 𝑖 is the index of the 𝑖th reference
entence.

WEmbSim was developed as an automatic evaluation metric for
mage captioning systems, measuring system-level performance based
n semantic similarity. However, similar to SPICE, it does not consider
luency and may struggle to distinguish between sentences with the
ame words in different orders.

.1.8. BERTScore (Bidirectional Encoder Representations from Transform-
rs Score)

BERTScore (Zhang, Kishore, Wu, Weinberger, & Artzi, 2020) is
n automatic metric for machine translation and image captioning
ystems. It uses the BERT model (Devlin, Chang, Lee, & Toutanova,
019) to extract token level vector representation from candidate 𝑐
nd reference 𝑟 sentences. Then, the Precision and Recall metrics are
omputed as follows:

𝐵𝐸𝑅𝑇 = 1
|𝑐|

∑

𝑐𝑗∈𝑐
max
𝑟𝑖∈𝑟

(𝑟𝑇𝑖 𝑐𝑗 ) (22)

𝐵𝐸𝑅𝑇 = 1
|𝑟|

∑

max
𝑐 ∈𝑐

(𝑟𝑇𝑖 𝑐𝑗 ) (23)

𝑟𝑖∈𝑟 𝑗

7

𝐵𝐸𝑅𝑇 = 2
𝑃𝐵𝐸𝑅𝑇𝑅𝐵𝐸𝑅𝑇

𝑃𝐵𝐸𝑅𝑇 + 𝑅𝐵𝐸𝑅𝑇
(24)

where 𝑟𝑖 and 𝑐𝑗 are token level vector representations from 𝑟 and 𝑐
sentences, respectively.

Similar to cosine similarity, the final score of BERTScore metric
ranges between −1 and 1. Higher BERTScore values indicate better
similarity between the generated and reference text, while lower values
indicate lower similarity. However, the scores are often in the upper
end of that range. Thus, the authors suggest the use of a baseline scaling
to increase the score readability, leaving the final score in the range [0,
1]. The rescaling procedure for 𝑅𝐵𝐸𝑅𝑇 is:

𝑅𝑠𝐵𝐸𝑅𝑇 =
𝑅𝐵𝐸𝑅𝑇 − 𝑏

1 − 𝑏
(25)

where, 𝑏 is an empirical lower bound on observed BERTScore. The same
rescaling procedure have to be applied for 𝑃𝐵𝐸𝑅𝑇 and 𝐹𝐵𝐸𝑅𝑇 .

4.1.9. SMURF (SeMantic and linguistic UndeRstanding Fusion)
SMURF (Feinglass & Yang, 2021) is an automatic evaluation metric

that combines a novel semantic evaluation algorithm SPARCS (Seman-
tic Proposal Alikeness Rating using Concept Similarity) and novel flu-
ency evaluation algorithms SPURTS (Stochastic Process Understanding
Rating using Typical Sets) and MIMA (Model-Integrated Meta-Analysis)
for both caption-level and system-level analysis. A Transformer-based
model such as BERT or RoBERTa (Liu, Ott et al., 2019) is used to extract
features from texts and capture both the syntax and morphology of the
text.

MIMA was proposed to estimate the typicality into evaluation of a
candidate sentence 𝑦𝑛 as follows.

𝑓MIMA(𝑦𝑛, 𝑝) = 1 − medianlayer (𝑚𝑎𝑥head[𝐼f low(𝑦𝑛, 𝑝)]) (26)

𝐼f low(𝑦𝑛, 𝑝) = 𝑀𝐼

=
2𝐻(𝛼𝑖(𝑦𝑛, 𝑝)) +𝐻(𝛼𝑗 (𝑦𝑛, 𝑝)) −𝐻(𝛼𝑖𝑗 (𝑦𝑛, 𝑝))

𝐻(𝛼𝑖(𝑦𝑛, 𝑝)) +𝐻(𝛼𝑗 (𝑦𝑛, 𝑝))
(27)

here 𝐼𝑓𝑙𝑜𝑤 denotes the information flow in terms of the attention
imensions 𝛼𝑖(𝑦𝑛, 𝑝), 𝛼𝑗 (𝑦𝑛, 𝑝), and their joint distribution 𝛼𝑖𝑗 (𝑦𝑛, 𝑝), 𝑀𝐼
s the normalized mutual information, defined in Witten and Frank
2005), which is a measure of the mutual dependence or redundancy
etween two sets of random variables, 𝛼𝑖𝑗 are attention layers weights
omputed by the distilled BERT model from a sequence vector of
okenized words of a candidate sentence 𝑦𝑛, 𝐻(𝛼𝑖(𝑦𝑛, 𝑝)) is the en-
ropy of the attention distribution 𝛼𝑖(𝑦𝑛, 𝑝) for the 𝑖th attention dimen-
ion., 𝐻(𝛼𝑗 (𝑦𝑛, 𝑝)) is the entropy of the attention distribution 𝛼𝑗 (𝑦𝑛, 𝑝)
or the 𝑗th attention dimension, 𝐻(𝛼𝑖𝑗 (𝑦𝑛, 𝑝)) is the entropy of the
oint attention distribution 𝛼𝑖𝑗 (𝑦𝑛, 𝑝) between the 𝑖th and 𝑗th attention
imensions.

MIMA serves as a basis for evaluating the fluency of input text,
hich can be divided in grammar and style. Grammar depends of the

ypicality of the whole sentence and is computed using the 𝑓𝑀𝐼𝑀𝐴.
tyle depends on the distinctness or atypicality of the words directly
ssociated with the image description. Thus, focusing on style, SPURTS
as proposed to evaluate the distinctness or atypicality of the words

n the candidate sequence without stop words (denoted as 𝑦𝑤∕𝑜). Here,
he distilled RoBERTa model was used since it performs well on out-of-
istribution.

PURTS = 1 − 𝑓MIMA(𝑦𝑤∕𝑜, 𝑝) (28)

The SPARCS metric mainly focuses on semantics and is defined as
ollows.

(𝐶, 𝑆) =

∑

𝑖
𝑑𝑓𝑔𝑡(𝑆)(𝐶𝑖)

|𝑔𝑡(𝑆)|
∑

𝑖

( 𝑑𝑓𝑔𝑡(𝑆)(𝐶𝑖)
|𝑔𝑡(𝑆)| + I

[

𝑑𝑓𝑔𝑡(𝑆)(𝐶𝑖) = 0
]

) (29)

(𝐶, 𝑆) =
∑

𝑖 𝑑𝑓 𝑔𝑡(𝑆)(𝐶𝑖)
∑

𝑖 𝑑𝑓 𝑔𝑡(𝑆)(𝑆𝑖)
(30)

PARCS = 𝐹1(𝐶, 𝑆) =
2𝑃 (𝐶, 𝑆)𝑅(𝐶, 𝑆) (31)

𝑃 (𝐶, 𝑆) + 𝑅(𝐶, 𝑆)
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Where 𝐶 is the candidate concept set, 𝑔𝑡(𝑆) is the reference caption set,
𝑔𝑡 is a function that maps concepts to a reference caption set, and 𝑑𝑓
is the document frequency, which is used to estimate typicality of the
concept across the sentences.

Finally, the SMURF metric can be defined as follow.

𝑆𝑀𝑈𝑅𝐹 =

{

SPARCS′ + 𝐺 if SPARCS′< T,
SPARCS′ +𝐷 + 𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝐺 = 𝑚𝑖𝑛(MIMA′ − 𝑇 , 0) is a grammatical outlier penalty, 𝐷 =
𝑚𝑎𝑥(SPURTS′ − 𝑇 , 0) is a style reward, and 𝑇 = −1.96 is an empirically
threshold defined by the authors.

4.1.10. VIFIDEL (VIsual Fidelity for Image Description EvaLuation)
VIFIDEL (Madhyastha, Wang, & Specia, 2019) was developed in-

spired on the WMD metric to estimate the faithfulness of a generated
caption concerning the content of a given image. It measures the
similarity between objects detected in the image and the words in the
generated caption using the WMD metric. Additionally, it can incorpo-
rate reference descriptions when available to enhance the evaluation.

𝑉 𝐼𝐹𝐼𝐷𝐸𝐿(𝐼, 𝑆) = 𝑒𝑥𝑝(−𝑊𝑀𝐷(𝑑𝐼 , 𝑑𝑆 )) (32)

where 𝑑𝐼 I is a semantic vector representation containing normalized
bag of object category labels for image I and 𝑑𝑆 is the normalized bag
of words representation for description S.

This metric can be extended to utilize sentence references, when
available, to assess the importance of objects in an image. Let 𝑅𝐼 =
(𝑅𝐼

1 , 𝑅
𝐼
2 ,… , 𝑅𝐼

𝑀 ) be a set of human references for a given image 𝐼 , a
penalty weight 𝑝𝑘𝐼 , for a word 𝑘 (object label in image I or a word in a
candidate sentence 𝑆𝐼 ) is computed as:

𝑝𝐼𝑘 = 1
𝑀

𝑀
∑

𝑟=1

(

1 − 𝑚𝑎𝑥𝑡∈{𝑅𝐼
𝑟 }
𝑐𝑜𝑠(𝑥𝑘, 𝑥𝑡)

2

)

(33)

′(𝑖, 𝑗|𝑅𝐼 ) = ‖𝑝𝐼𝑖 𝑥𝑖 − 𝑝𝐼𝑗 𝑥𝑗‖
𝑝
2 (34)

here {𝑅𝐼
𝑟 } is the set of content words in the 𝑟th reference for image

, and 𝑥𝑡 is the word embedding for word 𝑡. Replacing the cost 𝑐(𝑖, 𝑗)
f WMD (see Eq. (18)) with Eq. (34), VIFIDEL score is computed
onsidering a score weighted by object importance.

.1.11. TIGEr (The Text-to-Image Grounding based metric for image cap-
ion Evaluation)

The TIGEr metric (Jiang et al., 2020) has been proposed for eval-
ating image captioning systems, taking into account both the image
ontent and sentence references. To compute features from an image–
entence pair in a common semantic space, the metric uses the pre-
rained Stacked Cross Attention Neural Network (SCAN) (Lee, Chen,
ua, Hu, & He, 2018), which is an image–text grounding model. The
aptions are encoded in a sequence of 𝑑-dimensional vectors, and the
mages are encoded in a set of 𝑛 = 36 region-level 2048-dimensional
eatures. The quality of a candidate sentence 𝐶 based on a set of refer-
nce sentences 𝑅 and a image 𝑉 is then computed by combining two
etric systems: Region Rank Similarity (RRS) and Weight Distribution

imilarity (WDS).

𝑆𝑆(𝑉 ,𝐶,𝑅) =
𝐷𝐺𝐶𝑠(𝑉 ,𝐶)

𝐼𝐷𝐶𝐺𝑠(𝑉 ,𝑅)
(35)

𝐷𝑆(𝑉 ,𝐶,𝑅) = 1 −
𝑒𝑥𝑝(𝜏𝐷(𝑅||𝐶))

𝑒𝑥𝑝(𝜏𝐷(𝑅||𝐶)) + 1
(36)

𝑇 𝐼𝐺𝐸𝑟(𝑉 ,𝐶,𝑅) =
𝑅𝑆𝑆(𝑉 ,𝐶,𝑅) +𝑊𝐷𝑆(𝑉 ,𝐶,𝑅)

2
(37)

where 𝑠(𝑉 , 𝐶) = {𝑠1, 𝑠2,… , 𝑠𝑛} is a set of similarity score between a
candidate sentence 𝐶 and all image regions, which can be ranked.
𝐷𝐺𝐶𝑠(𝑉 ,𝐶) is based on the Discounted Cumulative Gain Järvelin and
Kekäläinen (2002), which is used to measure quality of document
8

ranking in web search engines. Similarly, the 𝐼𝐷𝐺𝐶𝑠(𝑉 ,𝑅) is the Ideal
𝐷𝐺𝐶 computed based on the reference sentences. 𝑊𝐷𝑆(𝑉 ,𝐶,𝑅) is based
on KL Divergence (Kullback & Leibler, 1951) and measures the distance
between the two distributions. The final score ranges from 0 to 1, where
a higher score indicates a better caption.

4.1.12. REO (Relevance, Extraness, Omission)
REO metric (Jiang et al., 2019) provides a more informative as-

sessment compared to other metrics as it generates scores from three
different perspectives: Relevance, Extraness, and Omission. To extract
features from images and sentences (references and candidate), REO
also employs the SCAN model, which creates a multimodal semantic
space. The relevance score is then calculated using the cosine similarity
(cossim) distance between the candidate and reference features, as
shown below:

𝑅 = 1
𝑁

𝑁
∑

𝑖=1
𝑐𝑜𝑠𝑠𝑖𝑚(𝑎𝐶𝑖 , 𝑔𝑖) (38)

here, 𝑎𝐶𝑖 is the context features of the candidate sentence and 𝑔𝑖 de-
otes either image features or context features extracted from reference
entences.

Extraness scores are calculated by computing the similarity distance
etween the vertical context vector 𝑎𝐶𝑖⟂ and its original context vector
𝐶
𝑖 , as follows:

𝐶
𝑖⟂ = 𝑎𝐶𝑖 −

𝑎𝐶𝑖 𝑔𝑖
‖𝑔𝑖‖

2
𝑔𝑖 (39)

𝐸 = 1
𝑁

𝑁
∑

𝑖=1
𝑑(𝑎𝐶𝑖 , 𝑎

𝐶
𝑖⟂) (40)

here 𝑎𝐶𝑖 is the context features of the candidate sentence, 𝑎𝐶𝑖⟂ repre-
ents the irrelevant content of 𝐶 to the ground truth at 𝑖𝑡ℎ image region,
nd 𝑑 is the Mahalanobis distance.

Similar to Extraness, the Omission score is calculated as follows:

𝑖⟂ = 𝑔𝑖 −
𝑔𝑖𝑎𝐶𝑖
‖𝑎𝐶𝑖 ‖2

𝑎𝐶𝑖 (41)

𝑂 = 1
𝑁

𝑁
∑

𝑖=1
𝑑(𝑔𝑖, 𝑔𝑖⟂) (42)

here 𝑔𝑖⟂ represents the vertical context features based on the orthog-
nal projection of 𝑔𝑖 to 𝑎𝐶𝑖 .

.1.13. ViLBERTScore (Vision-and-Language BERT Score)
Inspired by the excellent performance of word-embedding tech-

iques, especially the BERTScore model, in many text generation tasks,
iLBERTScore (Lee et al., 2020) was proposed. It computes image-
onditioned embeddings for each token using ViLBERT (Lu, Batra,
arikh, & Lee, 2019) from both generated and reference texts. A cosine
imilarity among the pair of tokens from the candidate and reference
aption is computed. The greedy matching process between these to-
ens is expressed via the cosine similarity of their embeddings. The
est matching token pairs are used for computing precision, recall, and
1-score, as follows.

iLBERTScore𝑃 =

∑𝑚
𝑖=1 𝑚𝑎𝑥ℎ̂𝑤𝑗∈𝐻�̂�𝑉

ℎ𝑇𝑤𝑖ℎ̂𝑤𝑗

𝑚
(43)

ViLBERTScore𝑅 =

∑𝑛
𝑖=1 𝑚𝑎𝑥ℎ𝑤𝑗∈𝐻𝑋𝑉 ℎ̂

𝑇
𝑤𝑖ℎ𝑤𝑗

𝑛
(44)

ViLBERTScore𝐹 = 2 ViLBERTScore𝑃ViLBERTScore𝑅
ViLBERTScore𝑃 +ViLBERTScore𝑅

(45)

where 𝐻𝑋𝑉 = (ℎ𝑤0,… , ℎ𝑤𝑇 ) and 𝐻�̂�𝑉 = (ℎ̂𝑤0,… , ℎ̂𝑤𝑇 ) are contextual
embeddings provided from the pre-trained ViLBERT for reference and
candidate sentences, respectively. Note that ViLBERT model compute
features from a pair of image and caption embeddings.
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4.1.14. LEIC (Learning to Evaluate Image Captioning)
The LEIC metric (Cui, Yang, Veit, Huang, & Belongie, 2018) is a

discriminative evaluation technique that relies on machine learning to
distinguish between human-written and machine-generated captions.
It encodes the candidate and reference captions (when available) and
images as feature vectors, which are then used as input into a softmax
classifier to obtain the probability of the description being generated
by a human or a machine, as follows.

𝑠𝑐𝑜𝑟𝑒𝜃(𝑐, 𝑖) = 𝑃 (𝑐 is human written |𝐶(𝑖), 𝜃) (46)

where 𝑐 is the candidate sentence, 𝐶(𝑖) is the context of image 𝑖, which
can include the reference caption as part of context, and 𝜃 is a learned
parameter. Further information regarding the training and inference
procedures can be found in the original paper.

4.1.15. FAIEr (Fidelity and Adequacy ensured Image caption Evaluation
metric)

FAIEr (Wang, Yao, Wang, Wu, & Chen, 2021) is a learning-based
metric that evaluates the fidelity and adequacy of captions generated
by image captioning systems. It employs the same scene graph parser
used by the SPICE metric to represent sentences as textual scene graphs.
To create a visual scene graph, an object detector is employed to detect
and extract object features from an image. Each detected object is a
graph node, and the relationship-level representation is encoded using
a Graph Convolutional Network (GCN). The visual and reference scene
graphs are fused using an attention mechanism. The final score is
computed by measuring the similarity between two scene graphs at the
object and relationship levels.

𝑆𝑜 =
∑𝐿𝑜

𝑐
𝑘=1 𝑚𝑎𝑥𝑖∈[1,𝑁𝑜](𝑧

𝑜𝑇
𝑖 ℎ𝑜𝑐𝑘)

𝐿𝑜
𝑐

(47)

𝑟 =
∑𝐿𝑟

𝑐
𝑘=1 𝑚𝑎𝑥𝑖∈[1,𝑁𝑜](𝑧

𝑟𝑇
𝑖 ℎ𝑟𝑐𝑘)

𝐿𝑟
𝑐

(48)

here 𝑧𝑜𝑖 and 𝑧𝑟𝑖 are the union of object-level and relationship-level
ector representations computed by the fusion of visual and reference
cene graphs, ℎ𝑜𝑐𝑘 and ℎ𝑟𝑐𝑘 are object-level vector representations of
andidate sentence and reference sentence. 𝐿𝑜

𝑐 and 𝐿𝑟
𝑐 are number of

in candidate and reference sentences, respectively. The final score of
the candidate caption with respect to the union reference information
is 𝑆 = 𝑆𝑜 + 𝑆𝑟.

4.1.16. NNEval (Neural Network based Evaluation Metric)
NNEval (Sharif, White, Bennamoun, & Shah, 2018) is also a

learning-based metric designed to evaluate image captioning system.
It leverages both lexical and semantic information by using a com-
position of well-established output metrics such as BLEU, METEOR,
CIDER, SPICE, and WMD. Rather directly using candidate and reference
sentences to train the metric, NNEval uses a set of composed features
derived from the scores generated by each individual metric. Then,
the feature vector is used to feed a feed-forward neural network, that
computes the probability of an input sentence being human-generated.
The output can be formulated as follows:

𝑃 (𝑘 = 1, 𝑥) = 𝜖𝑧1
𝜖𝑧0 + 𝜖𝑧1

(49)

where 𝑧𝑘 represents unnormalized class scores (𝑧0 and 𝑧1 correspond
o the machine and human class respectively), and 𝑥 = {𝑥1, 𝑥2,… , 𝑥𝑖}
s a fixed length composite feature vector. More information about the
etwork architecture as well as the training and inference processes can
e found in the original paper.
 c
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.1.17. LCEval (Learned Composite Metric for Caption Evaluation)
LCEval (Sharif, White, Bennamoun, Liu, & Shah, 2019) is a learning-

ased metric that extends the NNEval metric by incorporating various
omputed metrics. However, unlike NNEval, which combines all fea-
ures into a feature vector, LCEval divides the features into three
ubgroups based on their lexical, semantic, and syntactic properties.
he lexical features include BLEU, METEOR, ROUGE-L, and CIDER
cores. The semantic features consider SPICE, WMD, and MOWE scores.
inally, the syntactic features are extracted using the Head Word Chain
atches (HWCM), which captures the syntactic similarity between

entences using the tree structure of the sentences. The final score can
e formulated using Eq. (49).

.2. Reference-free metrics

Due to the known limitations of the existing metrics based on
eference sentences, mainly regarding the difficulty of obtaining several
ossible ways of describing the same visual content, some reference-
ree metrics were recently proposed. In such metrics, visual and textual
eatures are extracted using pre-trained neural network models for the
mage–text matching task. Then, a similarity score is computed. A brief
escription of the reference-free metrics studied is described below.
ore information about the training and inference processes, as well as

he architectures of the following metrics can be found in the original
apers.

.2.1. CLIPScore (Contrastive Language–Image Pre-training Score)
This metric was introduced by Hessel, Holtzman, Forbes, Le Bras,

nd Choi (2021) for assessing image captioning systems without ref-
rence sentences. It uses the CLIP (Radford et al., 2021) model, a
ross-modal retrieval model pre-trained on 400M image + caption
airs, to extract features from images and candidate sentences. The
inal score is then computed by measuring the cosine similarity be-
ween features. Additionally, the metric can be extended to incorporate
eference sentences when available. Given and image with visual CLIP
mbedding 𝑣 and a candidate sentence with textual CLIP embedding 𝑐,
he CLIPScore can be computed as follows:

𝐿𝐼𝑃−𝑆(𝑐, 𝑣) = 𝑚𝑎𝑥(𝑐𝑜𝑠(𝑐, 𝑣), 0)𝑤 (50)

here 𝑤 was empirically defined by the authors as 2.5. To compute
orpus-level CLIP-S, the average over the pairs (image, candidate) can
e performed.

When reference sentences are available, the CLIPScore can be cal-
ulated as follows:
𝑒𝑓𝐶𝐿𝐼𝑃−𝑆(𝑐, 𝑅, 𝑣) =

−𝑀𝑒𝑎𝑛(𝐶𝐿𝐼𝑃−𝑆(𝑐, 𝑣), 𝑚𝑎𝑥(𝑚𝑎𝑥
𝑟∈𝑅

𝑐𝑜𝑠(𝑐, 𝑟), 0))
(51)

here 𝑅 denotes the set of textual CLIP embedding references, and
−𝑀𝑒𝑎𝑛 denotes the harmonic mean.

.2.2. UMIC (Unreferenced Metric for Image Captioning)
UMIC (Lee, Yoon, Dernoncourt, Bui, & Jung, 2021) is another free-

eference metric designed to evaluate the quality of sentences generated
y image captioning systems. It uses image features extracted from
he UNITER (UNiversal Image–TExt Representation learning) (Chen
t al., 2020), a pre-trained model for predicting alignment between
mages and texts. The model is fine-tuned via contrastive learning
o distinguish between the reference sentences and negative captions
sing synthetic negative samples. The UMIC score can be formulated
s follows:

(𝐼,𝑋) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖[𝐶𝐿𝑆]
+ 𝑏), (52)

here 𝑖[𝐶𝐿𝑆] is a joint representation of the input image and input
aption computed by the UNITER, 𝑊 and 𝑏 are trainable parameters.
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Fig. 3. Timeline of metrics classified by tasks: Text Summarization, Machine Translation, Document Similarity, Image Captioning, Video Captioning, and Text Generation.
4.2.3. EMScore (Embedding Matching-based score)
EMScore (Shi et al., 2022) is a free-reference metric proposed for

evaluating video captioning approaches. It uses the pre-trained image-
language model CLIP to extract video and text embeddings. To provide
a comprehensive comparison between the video and caption, EMScore
calculates the average matching scores at both the coarse-grained level
(based on the global embeddings of the video and the candidate cap-
tion) and the fine-grained level (based on the embedding similarities
between the frames and words).

For course-grained embedding matching, the score is computed
using the following equation:

𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑉 )𝑐 = 𝑓 ⊺
𝑋𝑓𝑉 (53)

where 𝑓𝑉 and 𝑓𝑋 are embeddings of the video and the captions, respec-
ively. As all the embeddings are normalized using L2 normalization,
he cosine similarity can be simplified to the inner product.

For fine-grained embedding matching, the score is computed using
he precision (P), recall (R), and the F1 score, as follows:

(𝑋, 𝑉 )𝑓 = 1
|𝑋|

∑

𝑥𝑖∈𝑋
max
𝑣𝑗∈𝑉

𝑓 ⊺
𝑥𝑖𝑓𝑣𝑗 (54)

𝑅(𝑋, 𝑉 )𝑓 = 1
|𝑉 |

∑

𝑣𝑗∈𝑉
max
𝑥𝑖∈𝑋

𝑓 ⊺
𝑥𝑖𝑓𝑣𝑗 (55)

𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑉 )𝑓 = 2 𝑃𝑅
𝑃 + 𝑅

(56)

where 𝑓𝑥𝑖 and 𝑓𝑣𝑗 are embeddings of the caption and the frame,
respectively, |𝑋| is the number of tokens of a candidate sentence X,
|𝑉 | is the number of frames of a video 𝑉 .

The final score is computed by combining a fine-grained score and
a coarse-grained score as follows:

𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑉 ) =
𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑉 )𝑐 + 𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑉 )𝑓

2
(57)

When reference sentences are available, they can also be considered
as an extended metric called EMScore_ref, defined as follow.

𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑉 ,𝑋∗)𝑟𝑒𝑓 =
𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋, 𝑉 ) + 𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋,𝑋∗)

2
(58)

where V is a video content, X is the candidate sentence, and X* is
reference sentence. When dealing with multiple reference sentences
{𝑋∗

𝑖 }
𝑀
𝑖=1, 𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋,𝑋∗) = 𝑚𝑎𝑥𝐸𝑀𝑆𝑐𝑜𝑟𝑒(𝑋,𝑋∗

𝑖 )

4.3. Timeline of automatic evaluation metrics

Fig. 3 shows the timeline of the above-mentioned evaluation met-
rics. The timeline presents the metrics proposed for the image or video
10
captioning task, as well as those initially proposed for other tasks, but
also used to report the performance of visual description systems. We
categorized them in different colors, each representing a task for which
they were primarily devised. Also, the popular metrics used for video
captioning were highlighted with a star to emphasize that most of them
were proposed for a different task than video captioning.

In the early approaches, BLEU, METEOR, ROUGE-L, and CIDEr
were employed to evaluate video captioning (Venugopalan et al., 2015)
using the code available in GitHub.2 Later, SPICE was included in the
library. It is a metric specifically proposed to assess the propositional
semantic content from image captioning. Since then, these five met-
rics have become a kind of standard for reporting the state-of-the-art
performance of video and image captioning approaches.

In 2015, the WMD metric was introduced for the document similar-
ity task. It uses word embeddings to calculate the similarity between
documents. Despite not being used directly for the video description
task, it served as inspiration for other metrics proposed later, including
VIFIDEL, WEmbSim, and BERTScore. WembSim and VIFIDEL use pre-
trained word embeddings, such as word2vec, GLOVE, or fasttext. On
the other hand, BERTScore is based on the BERT Model and was
proposed for text generation and image captioning using contextualized
embeddings.

Learned metrics, such as LEIC, NNEval, and LCEval, also have been
proposed to improve evaluations at the caption level. Both NNEval
and LCEval cast the problem of evaluation as a classification task.
They consist of training a multi-layer feedforward neural network using
different metrics scores as input, including BLEU, CIDEr, SPICE, and
WMC, to distinguish between human and machine-generated captions.
LEIC uses both the reference sentences and the image as input to train a
neural network which, in turn, classifies whether a sentence was writ-
ten by a human or a machine. Despite presenting good correlations with
human judgments, learned metrics suffer from overfitting to particular
domains and lack interpretability.

An important issue is the difficulty of evaluating the captions with-
out enough reference captions to cover the diversity of vocabulary
and visual content. Such a problem inspired the development of free-
reference metrics, including UMIC, CLIPScore, and FAIEr. In such met-
rics, the visual content of images may be used to detect concepts, such
as objects and the relationship between them, or compute a similarity
measure between sentences and images using text–image pair network
models.

Similar to the traditional metrics, novel reference-based metrics
proposed for the image captioning task can be easily used to evaluate

2 https://github.com/tylin/coco-caption

https://github.com/tylin/coco-caption
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Table 2
Summary of evaluation metrics. Acronyms TR, FR, NG, WE, GR, VC, NN indicates, respectively, reference-based methods,
free-reference methods, metrics based on n-gram comparison, word embedding-based metrics, metrics that model sentences in
a semantic graph, methods that use visual content, and metrics trained using a neural network. Also, TK indicates the task:
(I)mage Captioning, (V)ideo Captioning, (O)ther task.

N Metric TR FR NG WE GR MM LN TK

1 BLEU (Papineni et al., 2002) X X O
2 METEOR (Banerjee & Lavie, 2005) X X O
3 CIDEr (Vedantam et al., 2015) X X I
4 ROUGE (Lin, 2004) X X O
5 SPICE (Anderson et al., 2016) X X I
6 WMD (Kilickaya et al., 2017) X X O
7 WEmbSim (Sharif, White et al., 2020) X X I
8 VIFIDEL (Madhyastha et al., 2019) X X I
9 LEIC (Cui et al., 2018) X X X X I
10 NNEval (Sharif et al., 2018) X X X I
11 LCEval (Sharif et al., 2019) X X X I
12 TIGEr (Jiang et al., 2020) X X X I
13 REO (Jiang et al., 2019) X X X I
14 BERTScore (Zhang et al., 2020) X X I/O
15 ViLBERTScore (Lee et al., 2020) X X I
16 SMURF (Feinglass & Yang, 2021) X X I
17 CLIPScore (Hessel et al., 2021) X X X I
18 EMScore (Shi et al., 2022) X X X V
19 FAIEr (Wang et al., 2021) X X X X I
20 UMIC (Lee et al., 2021) X X X X I
video captioning approaches as they use only textual information. In
fact, video and image captioning are similar tasks, since both require
‘‘translating’’ the visual content into a description in natural language.
However, the critical difference between them is that video captioning
requires taking into account the temporal information (actions). That
is why metrics that use the visual content of images to compute a score
cannot be easily extended to the video captioning task.

Recently, a reference-free metric named EMScore was proposed
specifically for the video captioning task. It uses a video–text retrieval
model that was pre-trained on more than 400 million image–text
pairs. It can measure videos’ consistency with images and, effectively
identifies ‘‘hallucinations’’ in captions.

A summary of the metrics presented in Fig. 3 is shown with more
details in Table 2, which compares their key points investigated in this
study.

5. Empirical experiments

This Section presents four simple empirical experiments to support
a comparative analysis of the main characteristics and shortcomings
of some selected metrics. First, we randomly selected some videos
from popular video captioning datasets (see Section 3). Then, two
hypothetical candidate sentences were created for each video: (a) a
semantically incorrect candidate sentence using words present in the
reference sentences, and (b) a semantically correct candidate sentence
with words not present in the reference sentences. The experiments
are detailed below, and all the code and data for reproducing these
experiments will be available in Github.3

5.1. Popular metrics for video captioning

This analysis aims to examine the limitations of popular metrics
used to evaluate video captioning approaches. We selected three video
clips from different popular datasets (MSVD, MSR-VTT, and ActivityNet
Captions) with related reference sentences (see Fig. 4).

It can be noticed that BLEU, METEOR, and CIDEr assigned high
scores, highlighted in bold, to incorrect candidate sentences in all video
clips. ROUGE-L assigned a better score for the correct sentence in
Fig. 4. A because it contains the longest common subsequence com-
pared to the wrong one. However, as seen in Fig. 4B and C, the sentence

3 https://github.com/bioinfolabic/survey-vidcap-metrics
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with the longest common subsequence does not always sufficiently rep-
resent the visual content. All of these word-matching-based metrics fall
short in their evaluation of these videos. This limitation comes from the
fact that they place more weight on word-matching comparisons than
they do on the vast diversity of linguistic expressions. The performance
evaluation of video captioning algorithms using datasets containing
only one or a few reference sentences, such as ActivityNet Captions
or the Charades datasets, may not be sufficiently evaluated by such
metrics due to that limitation.

Despite being designed to consider semantic content, the SPICE met-
ric assigned the same score for correct and wrong semantic sentences in
video clips Fig. 4.A and Fig. 4.C, and a lower score in Fig. 4.B. As briefly
presented in Section 4.1.5, SPICE assigns a score by computing the simi-
larity between encoded candidate and reference sentences in a semantic
graph representation based on objects, attributes, and relations using
a dependency tree parser. Despite considering synonymous in object
nodes, it could not adequately evaluate those candidate sentences. This
indicates that SPICE fails to evaluate the semantics when words are not
similar between candidates and reference sentences.

5.2. Potential metrics for video captioning

The purpose of this analysis is to look into the feasibility and
accuracy of recently proposed image captioning metrics in the video
captioning task. First, one video from ActivityNet Captions dataset was
selected. Then, we created five more reference sentences, since there
was only one sentence available for the video in the dataset. Some
metrics compute the score using both the image and the reference
sentences. For such metrics, we used the middle frame of the video,
because it is more related to the reference sentences. Fig. 5 shows
that candidate sentence A received a higher score (highlighted in bold)
than candidate sentence B across all metrics, despite not adequately
describing the image.

Also, BERTScore, WEmbSim, and SMURF all fail to assign a higher
score to the correct sentence despite being proposed to consider seman-
tic similarity using word embeddings.

Candidate A (correct sentence) received a higher score from TIGEr,
while both candidate sentences received a similar score from ViL-
BERTScore. To extract image–text pair features, these metrics employ
a pre-trained neural network model. The final score is then computed
using these features. Despite the fact that these models have been pre-
trained on large datasets, they may be limited to the context in which
they were trained.

https://github.com/bioinfolabic/survey-vidcap-metrics
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Fig. 4. Example of popular metrics used to evaluate videos from different datasets. The video scenes are from (A) MSVD (video gjVBEJGHrXk_26_38), (B) MSR-VTT (video
video730), and (C) ActivityNet Captions dataset (video v_t1-GV2bAL4I). The first 10 sentence references from the original datasets were considered. In the columns, B@N, R, S, M
and C denotes BLEU with N-grams (N = 1, 2, 3 and 4), ROUGE-L, SPICE, METEOR, and CIDEr-D, respectively. For further information about video caption datasets, see Section 3.
CLIPScore also assigned a higher score to the correct sentence. It is a
free-reference metric that computes the score solely based on the visual
content. This could imply that metrics that consider visual content
evaluate semantics more effectively.

5.3. Specific metrics for video captioning

The purpose of this analysis is to assess the EMScore metric in
particular. To the best of our knowledge, it is the only metric found
for evaluating video captioning approaches to date. It compares the
similarity of a video and a potential text as input. Fig. 6 illustrates a
video from the MSR-VTT dataset selected for this experiment. Then, we
calculated the similarity measure between nine sentences. Six of them
were derived from the reference sentences of the original dataset. Other
12
three semantically incorrect sentences were created for the experiment.
Notice that the wrong sentences (highlighted by a red background)
achieved similar results to the correct ones (highlighted by a green
background). Moreover, the lowest scored sentence ‘‘this is a video of
a potato and a man’’ contains only the main concepts presented in the
video (man and potato), but does not consider the action performed.
This fact indicates that the missing information (action or objects)
influences the metric’s score.

Considering that videos may contain audio information and that
such data may be essential to describe a given video adequately, we
selected another video from the MSR-VTT dataset to analyze such
a scenario, as shown in Fig. 7. Six sentences were extracted from
the reference sentences of the original dataset(highlighted by a green
background). The other three semantically wrong sentences were cre-
ated(highlighted by a red background).
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Fig. 5. Analysis of scores given by evaluation metrics with two candidate sentences. Candidate A is a semantically incorrect sentence, although it contains words present in the
reference sentences. Candidate B is a semantically correct sentence, but it does not contain words in the same order as those presented in the reference sentences.
Fig. 6. Example of evaluation scores assigned by the EMScore metric for a video
presented in MSR-VTT dataset. The reference sentences presented in the dataset are
in green, whilst, those in red are semantically incorrect candidate sentences. The best
score is highlighted in bold. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Observe that EMScore assigns the highest score to a semantically
incorrect sentence. Sentences that describe only parts of the visual
content achieved similar scores (between 0.27 and 0.29). The sentence
with the lowest score describes a man showing the food while another
man (who is not visualized in the scene) provides comments. Such
behavior highlights that the EMScore metric does not consider audio
information and, thus, could not fully match the description with visual
information.
13
Fig. 7. Example of the evaluation scores assigned by EMScore for a video found in the
MSR-VTT dataset which considers the audio. Sentences in green are reference sentences
presented in the dataset. The sentences in red are candidate semantically incorrect
sentences. The best score is highlighted in bold. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

5.4. Analysis

Based on the three experimental evaluations shown before, we
observed that most metrics still fail to assess semantic aspects from
visual descriptions. Also, the metrics based on word embeddings still
have space for improvements, considering that they are based on the
corpus on which they were trained. Many word embedding models only
generate a fixed feature vector for each word. However, a word can
have a different semantic meaning depending on where it occurs in a
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sentence. In addition, missing words in word embedding models may
result in a low score.

When trained on a biased dataset, metrics that use pre-trained
neural network models to extract visual and textual features may
suffer from performance degradation. An example of this is shown in
Fig. 6, where the sentence that begins with ‘‘A man demonstrates how’’
achieved a high score. Apparently, this happened since the sentence
had a sequence of words with a high frequency in the pre-trained
dataset. Accordingly, Caglayan, Madhyastha, and Specia (2020) also
reported that some metrics tend to produce unexpected high scores
in some benchmarks when using the most frequent sentence in the
training set.

Furthermore, during the experiments, we also observed that there
are several datasets available for evaluating videos and image caption-
ing tasks with different aspects (Aafaq et al., 2019). Some datasets have
videos with temporal discontinuities, such as sudden changes in action
or appearance, which may affect negatively the score of reference-free
metrics, as shown in Fig. 6.

We also noticed that datasets, such as MSR-VTT and ActivityNetCap-
tions, make available videos with audio. In these cases, the reference
sentences may consider both audio and video to describe the video
scene. For example, in Fig. 4(B), the reference sentences ‘‘There is
someone advertising some boots’’ and ‘‘A pair of gray hiking boots are
shown as the narrator states boots are the most important part of hiking ’’
were created taken into account both, the visual and audio information.
Similar candidate sentences would be scored low by EMScore as they
only use the visual content for the evaluation.

Finally, the number of reference sentences available in the datasets
seems to influence the computation of some metrics, as reported in
previous works (Jiang et al., 2020; Madhyastha et al., 2019; Sharif,
Nadeem et al., 2020). Those findings may indicate that some metrics
may not achieve good results when used in specific datasets, especially
when there are few reference sentences associated to each video.

6. Discussion

6.1. Limitations of the evaluation metrics

Traditional metrics, such as BLEU, METEOR, and ROUGE-L, are
commonly used to evaluate the performance of image and video cap-
tioning approaches by means of a simple and quick procedure. How-
ever, the main weakness of those metrics is that they are based on n-
gram overlapping, which compares a candidate sentence with human-
written reference sentences. Therefore, they are highly dependent on
how the words appear in the reference sentences for evaluating a
candidate sentence, which must be generated in the same order and
using the same words presented in the reference sentences to achieve
high scores.

CIDEr was the first metric proposed specifically for evaluating image
captioning approaches. It introduced a novel paradigm that propose
to measure the consensus of the human judgment. Although CIDEr
improved the accuracy over the existing metrics, it is also based on n-
grams comparison and suffers from the same problems reported before.
Besides, it also does not take into account the semantic information
contained in the sentences.

Due to the high dependency on correct n-gram matching and the
difficulty of assessing the semantics of sentences and words by the
above-mentioned metrics, SPICE was devised to evaluate the semantic
content of descriptions automatically generated for images. Actually, it
was able to satisfactorily measure the semantics between a candidate
sentence and reference sentences by creating graph-based semantic
representations, which are not considered by other metrics. However,
this metric is highly dependent on a semantic parser, since it fails
to perform the lexical and syntactical evaluation of the generated

sentences.
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Furthermore, SPICE computes the semantics by measuring string
matching, making the evaluation challenging to scale or adapt to dif-
ferent languages and domains (Madhyastha et al., 2019). Also, unpre-
dictable failures can be caused by sentence parsing issues or problems
in created semantic representations (Feinglass & Yang, 2021).

In the last few years, many metrics have been appeared for evaluat-
ing image and video captioning systems, depicted in Fig. 3 and detailed
in Table 2.

Motivated by the WMD metric, some metrics, including WEembSim,
VIFIDEL, and BERTScore were proposed to tackle the problem of eval-
uating the semantic meaning between words or sentences using word
embeddings. However, although word embeddings can provide some
semantic representations of words, they may introduce biases to the
evaluation process once they are learned using a specific corpus.

The visual content of images was also considered in some met-
rics (Cui et al., 2018; Hessel et al., 2021; Jiang et al., 2019, 2020;
Lee et al., 2021, 2020) by encoding the visual and text data into a
common semantic vector space using a pre-trained model. The SCAN
(Stacked Cross Attention Neural Network) (Lee et al., 2018), a network
pre-trained on the 2014 MS-Coco dataset proposed for the image–text
matching problem, is commonly used (Jiang et al., 2019, 2020).

Moreover, some approaches consider the visual content during eval-
uation by detecting objects using a pre-trained object detector model,
for instance, the Faster R-CNN model (Madhyastha et al., 2019; Wang
et al., 2021). Despite achieving high correlation with the human judg-
ment, they are also highly dependent on pre-trained models. Besides,
some of them may overlook the syntactic correctness of the captions
and their relevance to the image. Thus, it is advisable to combine them
with other metrics (Stefanini et al., 2023).

Learned metrics have emerged more recently (Cui et al., 2018;
Sharif et al., 2019, 2018; Wang et al., 2021). They use neural networks
mainly trained to distinguish between human and machine-generated
captions. The concern about these metrics is that they are ‘‘gameable’’
that is, susceptible to manipulation. This means they can be used as an
objective function for training video captioning approaches, achieving
high scores while still generating syntactically and/or semantically
incorrect sentences (Gao, Galley, & Li, 2019).

Although most of these metrics are robust and present a good
correlation with human judgments, they output only a single score to
assess the quality of the captions generated by the system. However,
a single value may not provide enough information to interpret the
low quality of a given system or to explain specific errors. In other
words, metrics, in general, lack ways to provide human-comprehensible
explanations of their meaning.

REO is the first metric that tackles the interpretability problem by
computing a score involving three aspects: relevance regarding ground
truth, extra description beyond image content, and omitted ground
truth information. Despite providing a score for each aspect, it is a
visual-content metric that uses a pre-trained model to extract feature
vectors, but does not present a clear explanations of the scores.

Inspired by the drawbacks presented in metrics used for video
captioning evaluation, a free-reference metric called EMSCore was
proposed to measure the similarity between a video and a candidate
sentence. It is an embedding-based evaluation metric and uses the pre-
trained image-language model CLIP (Radford et al., 2021) to obtain
image and text embeddings. Coarse-grained (video level) and fine-
grained (frame level) embeddings are combined to get characteristics
of the visual elements of the video over time. Despite being promising,
such metric consider only the visual content of videos and may fail to
evaluate approaches trained with multimodal data (audio and visual
information) currently available in some recent datasets. For instance,
Fig. 4B) presents some reference sentences considering the narrator’s
speech. A video captioning system trained on such a dataset with
multimodal data will generate similar sentences that would probably be
scored lower while using the EMScore metric. Although EMSCore does
not need reference sentences, the authors recommend using them when

available, as they are complementary and may lead to information gain.
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Despite the large number of metrics reported in the literature, none
f them has been widely adopted. Many of these metrics are restricted
o evaluating image description systems and cannot be satisfactorily
xtended to the video captioning task. Moreover, the use of pre-trained
odels to extract features that were previously trained in specific

ontexts may fail to represent a video from another context. Even if
generic pre-trained model is used, it may fail as the input may have
nknown situations or vocabulary.

.2. Possible extension to other languages

Most evaluation metrics use English language resources, such as de-
endency tree parsers, synonymous dictionaries, or pre-trained neural
etworks to capture semantic or syntax information from the sentences.
uch metrics depend on such an apparatus, making extending them
o other languages difficult or unfeasible. However, due to their sim-
licity, n-gram-matching-based metrics (BLEU, METEOR, CIDEr, and
OUGE) have been used for languages other than English, such as

talian (Antonio, Croce, & Basili, 2019), Hindi (Singh, Singh, & Bandy-
padhyay, 2022), Portuguese (dos Santos, Colombini, & Avila, 2022),
nd Chinese (Liu, Hu, Li, Yu, & Guan, 2020).

Also, the metrics based on word embedding cannot be easily ex-
ended to other languages. They require pre-trained word embedding
odels in the target language, which, frequently, are not available.
he same holds for reference-free metrics, which use features extracted
rom pre-trained network models for the visual–word matching task.
ince there are not many publicly available datasets of this type for
ther languages, the use of such metrics is also limited to the English
anguage only.

Scene graph-based metrics such as SPICE and FAIEr require a lan-
uage parser to detect the concepts and relationships between objects
nd subjects. This metric was successful due to the significant advances
btained with such tools in the English language, for example, the
tanford parser. However, extending these metrics to other languages
s challenging due to the difficulty of finding similar tools in other
anguages.

. Conclusions and research trends

Image and video caption evaluation is a complex task that in-
olves semantics and matching of the visual content and text. In
he recent years, many evaluation metrics were proposed, aiming at
ircumventing the drawbacks and challenges faced by their preceding
pproaches.

In the present study, a survey on automatic evaluation metrics for
ideo captioning was done. We proposed a taxonomy, categorizing the
etrics and discussing their pros and cons. Additionally, this study also

nalyzed the existing metrics, pointing out their main weaknesses.
It was noticed that most of those metrics, presented in Section 4,

ere proposed to address specific shortcomings of previous metrics,
ncluding the lack of semantic evaluation, insufficient reference sen-
ences, poor correlation with human judgments, lack of generalizabil-
ty, and lack of explainability. Notably, these metrics focus on achieving
strong correlation with human judgments while overlooking other de-

irable characteristics, including computational cost, bias, consistency,
ensitivity, and ease of use. As such, further research is required to
evelop metrics that cover the desirable characteristics for evaluating
ideo description systems.

We hope this research will provide a reference for researchers
o understand the current drawbacks and advantages of the existing
etrics for image and video captioning and new insights for developing
ew metrics.

Based on the deep analysis of the main drawbacks of the metrics,
he advancement of the state-of-the-art in the field of image and video
aptioning evaluation will require extensive research efforts towards
he following directions:
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• Semantics: Existing metrics often fail to evaluate the semantics
of the visual content since it can be described by many differ-
ent sentences written in natural language. Evaluating semantic
similarity among those sentences or between a sentence and
visual content is challenging. Reference-based metrics usually use
word-matching or word-embedding features to estimate semantic
similarity and often neglect visual relevance and details. Although
free-reference metrics have presented promising results in extract-
ing features and inferring semantic matching, they often neglect
the syntactic structure of sentences. Also, they may result in
a biased evaluation since they use pre-trained models and are
limited by the training data context. Further research is needed
to find ways to evaluate semantics in the computational scenario.
More specifically, the semantics of the visual content of videos
and the semantics of texts that describe the video contents. In
both cases, such metrics should ideally measure the semantics of
the complex interactions between entities and objects over time.

• Explainability: Existing metrics used to evaluate video caption-
ing approaches only provide a single score. Recent state-of-the-art
comparisons report these scores sometimes with significant differ-
ences. Usually, no explanation are provided for such a behavior.
In fact, a single score cannot provide a meaningful interpretation
or intuition about why and when an approach is better than
another. Furthermore, although efficient for some tasks, neural
network-based approaches are ‘‘black-boxes’’ that lack traceabil-
ity and transparency of their computed results. Therefore, an ideal
metric should provide, in addition to an overall system score,
information about errors made by the system (e.g., hallucinations,
missing information, incorrect subject/action/object ratio). In this
context, comprehensive human-comprehensive metrics require
explainability, which should ideally comply with the principles
of explainable artificial intelligence proposed by Phillips et al.
(2021). Certainly, this is a challenging endeavor that will require
interdisciplinary research.

• Adaptability: While generic captioning systems have been evalu-
ated using current measures, context-specific techniques can call
for additional measurements. When captioning medical photos,
for instance, the generated captions should ideally help with the
diagnosis, and the resulting medical report should not include
descriptions of the image’s components that are not relevant for
the diagnosis. As a result, programs that are specialized to a
certain context should adopt appropriate evaluation metrics.

• Extension to other languages: Some metrics, especially those
that aim to capture the semantic aspects of the video, use fea-
tures extracted from neural networks trained on a specific cor-
pus or specific language parsers. However, they cannot be eas-
ily extended to languages other than English, as discussed in
Section 6.2. Future research may include creating such lan-
guage resources, allowing the extension of some metrics to lan-
guages other than English. However, due to the wide differences
in word and expression meanings and grammatical differences
across modern languages, we do not foresee a language-agnostic
reference-free metric emerging soon.

• Datasets: When there are few reference sentences available,
some measures have a poor performance. Therefore, high-quality
datasets with multiple reference sentences are essential to im-
prove evaluation reliability. The MSVD and MSR-VTT datasets,
which feature numerous annotations per video, are the most fre-
quently employed in the video description task. However, many
of those videos have points of discontinuity in the scenes that
can negatively affect the performance of reference-free metrics,
such as motion or scene switching. The ideal reference scenario
would be a complete (for a given domain) and high-quality ‘‘gold
standard’’ dataset with many reference sentences that adequately
describe the video scene differently. A dataset like this one
could facilitate the creation of new reference-based and reference-
free measures and establish a standard by offering a precise,
consensual assessment of the effectiveness of video captioning.
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• Multimodal free-reference metrics: Since a video combines
both audio and visual information, the audio may be necessary
to effectively communicate the video’s content. To the best of
our knowledge, the EMScore is the only metric proposed for
evaluating video captioning approaches and computes a similarity
score between a video (visual information captured from frames)
and a sentence. However, a video contains, beyond visual infor-
mation, audio information, which may be essential to describe
a video scene. For instance, consider a video scene of a woman
sitting in a chair giving an interview about education issues, and
the following candidate sentences: (a) "A woman is sitting in a
chair and moving her hands’’, and (b) "A woman is sitting in a
chair and talking about education issues’’. The EMScore provides
a higher score to the first candidate sentence, even though the
second candidate sentence better describes the given video. Pre-
vious studies (Hori et al., 2017; Ramanishka et al., 2016) have
shown that combining audio features, such as MFCC, and visual
features can improve the performance of video captioning ap-
proaches. Thus, a potential future work should investigate novel
reference-free metrics capable of including, in addition to visual
information, audio information (when available) in the evaluation
of video descriptions.
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