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Abstract—Considering the increase in using Robotic Systems
with the capacity to recognize and locate objects in different
areas of industry, this work presents an object recognition and
location in an Electrical Energy substation (SE) developed in
a virtual environment, with a strategy for depth estimation
by PointCloud (PC). In order to develop the environment, the
CoppeliaSim software of Coppelia Robotics was used, allowing
the implementation of a unit Robotic System for displacement
and data acquisition in the virtual SE environment developed.
Using the Robot Operating System (ROS) platform, we send
commands to the UVS displacement and export the data acquired
by the stereo RGB sensor to data processing in a Python
environment. A YOLOv7 (You Only Look Once) model was used
for object recognition and location tasks, trained to recognize and
locate six types of objects present in the virtual SE environment
with Bounding Boxes (BB). During the recognition and location
of objects predictions, good results of the mean Average Precision
(mAP) were achieved. Next, the depth estimations are performed
by correlating the coordinates of the points related to the
BB regions. Finally, the algorithm was implemented to predict
during operation to evaluate this development’s advantages and
disadvantages, looking to improve the object recognition and
location task during robot navigation.

Index Terms—Depth Estimation, Electrical Substation, Object
Recognition, Object Location, Point Cloud, Robot Operating
System, Stereo Vision, Unmanned Vehicle System, YOLOv7.

I. INTRODUCTION

The use of Machine Learning (ML) Algorithms and robotics
systems for different areas of technology has increased sig-
nificantly in recent years. State-of-the-art (SOTA) approaches
present that using robot systems in electrical power systems
also has led to a more Reliable and Safe Grid [1].

It is possible to diagnose some installation issues preven-
tively using different ML strategies. This sometimes allows
the operator to execute inspections without submitting to the
safety risks in these environments. Therefore, the operator
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does not have to transit to the SE, often installed in places
far from urban areas. Unmanned Vehicle Systems (UVS) are
often used in SE environments. Recently, in [2], the authors
proposed a UVS to monitor an SE. The unit’s navigation used
a dual antenna Real-time Kinematic Positioning (RTK) as the
primary device. In addition, a Light Detection and Ranging
(LIDAR) set was also used to support the navigation when the
RTK was unavailable. Finally, an Inertial Measurement Unit
(IMU) was used to measure the roll and pitch angles of the
robot. The system offered a reliable strategy for autonomous
navigation in the SE environment, but the authors did not
use an RGB sensor for the autonomous navigation. The RGB
sensor was used only for support operating in remote control
mode.

While RTK, LIDAR, and IMU systems are still generally
used as primary sensors for the navigation of a UVS, some
researchers also considered the RGB sensor as support during
obstacle avoidance by a UVS. In [3], a segmentation algorithm
for obstacle detection on the road in a SE environment is
proposed, with a pixel-level matching of obstacles segmen-
tation mask and depth data. Although this work brought a
comparison between Faster Recursive Convolutional Neural
Network (R-CNN) and the You Only Look Once version 3
(YOLOv3) to estimate the obstacle distances with a pixel-
level matching, it is still limited at obstacles present only in
the route of the UVS.

Although the RGB sensor can offer support during obstacle
detection for a UVS, during its use in an operated system
in an SE environment, especially when near live lines, an
ML algorithm for processing RGB sensor data can enhance
the safety of the operator, considering that a computer vision
algorithm can alert in case of risks of live line contact. In
order to evaluate ML strategies in SE environments without
having a real UVS, nor the need to submit to the safety risks
present in SEs, which require proper training for access, we
can use CoppeliaSim software from Coppelia Robots. Hence,
developing a virtual SE environment to implement a virtual
UVS to evaluate different strategies is possible. Furthermore,
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the CoppeliaSim software allows the Robot Operating System
(ROS) platform to send commands to the UVS to export data
from UVS sensors during the operation.

The research [4] brings an example using the CoppeliaSim
software to implement a cooperative robotic system between
a UVS unit and an Unmanned Aerial System (UAS) in virtual
agricultural environments. The algorithm was evaluated with a
UAS operating in a real environment, recognizing and locating
insect traps installed in olive trees using a YOLOv7 model.
Although the focus of the work was the robotic systems op-
timizations, the algorithm can bring significant innovation for
automation in agriculture. For example, with data collection,
a classification offers support when exchanging for a new trap
is necessary.

Other researches to before are also available using RGB
sensors for the location of meters in an SE environment. In [5],
an algorithm was implemented using a YOLOv3. On the other
hand, in [6], an algorithm using the Scale Invariant Features
Transform (SIFT) was implemented.

In complementing the related works and others that also
consider UVS units for navigation em SE environments, such
as [7], [8], and [9], this paper evaluates the use of a Stereo
RGB sensor for depth estimation of equipment in the SE
environment. In addition, the algorithm will implement in a
virtual SE environment. It allows evaluating strategies and,
next, the behavior of the UVS in the face of different situations
that can correspond to a situation in the real environment. This
evaluation will support route optimizations in a real UVS about
trench present in SE and generate safety alerts when close to
equipment with live lines exposed.

In order to build the dataset, we use the online resource
RoboFlow. This tool offers support when building datasets, as
it indicates the objects of interest by Bounding Boxes (BB).
Then, we can export the data with the position of the pixels
that delimit the objects in the images used in model training.
Using the mean Average Precision (mAP) metric is possible to
evaluate the results quantitatively and, through the Confusion
Matrix, understand the results and possible limitations.

After training a model for recognition and location to
objects of interest, it is integrated with the UVS developed in
the virtual environment to execute this task during operation
for recognition and location of equipment from image samples
acquired in the virtual SE environment. Next, processing the
Point Cloud (PC) generated from the RGB stereo camera
implements a depth estimation task. Thus, it is possible to
evaluate the feasibility of integration with other resources,
using the recognition, location, and depth estimation of objects
in route optimization to UVS in the face of obstacles or even
improving the safety when operating manned systems in the
SE environment.

The next caption will present the following items: Methods,
which will present the building of the scenario, preparing the
dataset, training the model, performance metrics, and, finally,
depth estimation; Results, which will present as quantitative
evaluations with scores for the mAP and the confusion matrix,
to qualitative evaluations will be presented predictions results,

the depth estimation, and computational complexity also will
be presented; Conclusions and Next Steps.

II. METHODS

A. Building the scenario

Using the CoppeliaSim software, a virtual environment
of a SE was developed to implement the UVS unit then.
Basic actuators and sensors were used, such as two motor
wheels (left and right) and a stereo RGB camera. Fig. 1a
presents an overview of the virtual SE model developed in the
CoppeliaSim software. On the other hand, Fig. 1b presents the
UVS unit developed for displacement and image acquisition
from the virtual SE environment.

(a) SE (b) UVS

Fig. 1: Simulated model of the SE and the UVS.

For data acquisition in the virtual SE environment, the
following topics were used to interface with the UVS unit
through the ROS platform: joy, cmd vel, and kinect\rgb. The
joy and cmd vel topics were used to send commands to UVS
displacement in the virtual SE environment. At the same time,
the kinect\rgb topic was used to export the RGB image data
from the stereo RGB camera installed onboard the virtual UVS
unit.

B. Preparing the dataset

For this work, a model was trained to recognize and locate
the following objects: (i) transformer; (ii) circuit-break; (iii)
oil-level; (iv) disconnector; (v) trench; and (vi) robot-ramp.
To compose the dataset, 600 acquisitions were made from
the RGB sensor installed in the UVS, where we have 100
samples with a focus on each one of the objects, varying the
viewing angle and distances to the object. Using the official
Roboflow website, the BB indications were made for each
object present in each of the 600 samples. Subsequently,
the data was exported using the YOLO v7 PyTorch format,
which generates the code lines necessary to access the dataset
by the Roboflow Application Programming Interface (API).
This allows a simple interface with the training model using
YOLOv7 layers, available in Python.

Table I summarizes the number of instances for each one of
the classes and the total. There are more significant numbers of
instances than the number of in-focus images because samples
that focus on one object generally have other objects too.

Finally, the dataset was split into smaller datasets (subsets)
for training, validation, and testing. The following proportion
for the subsets was used: Training: 70% (420 images); Vali-
dation: 20% (120 images); and Testing: 10% (60 images).
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TABLE I: Instances for each class and total

Class Focused images Total of instances
transformer 100 265

circuit breaker 100 452
oil level 100 230

disconnector 100 399
trench 100 359

robot ramp 100 394
Total 600 2099

C. Training the model
In order to train the model, the How to Train YOLOv7 on

a Custom Dataset procedure was used, also available on the
official Roboflow website. This algorithm uses a pre-trained
YOLOv7 model with the COCO dataset as a starting point and
then executes the retraining of the last layers of the model.
Therefore, the frozen layers of the YOLOv7 model were used
as feature extractors to train the last layers for recognition and
location of objects of interest.

D. Performance metrics
The mean Average Precision (mAP) metric was used to

evaluate the model’s performance. In addition, the Confusion
Matrix was used to support the visualization of results. The
mAP can be calculated according to Eq.(1):

mAP@α =

n∑
i=1

APi. (1)

According to [10], the mAP metric is the mean from values
to Average Precision (AP) for each class. In comparison,
each class’s AP is equivalent to the Area Under the Precision
Recall-Curve (AUC-PR), calculated as the own name under the
Precision-Recall Curve (PR-Curve). Finally, all these variables
are directly dependent on the Intercession over Union (IoU)
Metric, which corresponds to the intersection of the predicted
and actual Area over the union of both areas, according to Eq.
(2):

IoU =
Atruth ∪Apred

Atruth ∩Apred
. (2)

The IoU metric needs a threshold (α), through this param-
eter is defined whether a prediction is classified as:

• True Positive (TP) when IoU ≥ α;
• False Positive (FP) when 0 < IoU < α;
• False Negative (FN) when α = 0 or when there is an

object that was not detected.
True Negative (TN) is not used in object recognition and

location tasks, as it corresponds to the background, which is
not demarcated in the prediction. A model is considered fitting
when it results in mAP values close to 1, and the higher is the
threshold value (α), which also varies between 0 to 1. This
work used the mAPs with α = 50% (mAP@[.50]). In addition,
the average of 10 values mAP was calculated, with the value of
α varying from 50% to 95%, with a step of 5%. This strategy
is generally denoted as mAP@[.50:.5:.95]. In order to present
the Confusion Matrix, the α = 50% was used.

E. Depth estimation

In order to depth estimation, data from the stereo sensor
installed onboard UVS was used, which was published by a
float32MultiArray message. A node was used to convert from
float32MultiArray message to the PointCloud2 message, to
then calculate the depth of each pixel in the Depth estimation
by point cloud module. The Fig. 2 presents the communication
diagram during the depth estimation task, the labels in the con-
nections arrows represents the topics used in ROS plataform.

The Depth estimation by the point cloud node receives the
PointCloud2 message and detection message containing the
BB locations. Through the position of the BB, it is possible
to know the depth of the pixels in the same region of the BB
detection. Hence, it is enough to calculate the module from
the x, y, and z coordinates of the points corresponding to these
pixels.

Then, the Depth estimation by the point cloud module
returns the depth estimation data to be inserted into the result
of predictions by the YOLOv7 model node. As a result,
we add depth estimation to the predictions made in the
YOLOv7 model, thus presenting recognition, location, and
depth estimation of objects.

During the depth estimation by PointClound (PC), a param-
eter to downsample (ds) was used to improve the execution
time in this task by reduction of points in the PC. Fig. 3a
presents a Depth image for the region of a BB in its original
size. In contrast, Fig. 3b presents a Depth image of the same
region with ds = 8. In other words, one every eight rows and
one every eight columns were considered allowing a reduction
of 64 times the PC, bringing a significant improvement in the
execution time during depth estimation without relevant losses
to the depth information.

During the depth estimation for an object, a strategy based
on the mean for a certain percentage of the nearest points
was used. Therefore, verifying that the floor biased the depth
estimation was possible because it concentrated various nearest
points. Thus, a center rate (CR) parameter was implemented
to delimit the central region of the BB to be considered in
the mean calculation, which allows noise reduction during the
depth estimation, as the region floor was discarded. Fig. 4a
presents a depth image of a region of a BB in the original size,
while Fig. 4b presents the region from the same BB applying
CR = 0.70.

Finally, it was possible to perform the depth estimation for
each BB based on the mean of the 10% nearest points. After
defining the CR delimitation at 70%, it allowed performing
the depth estimation with less noise, as the floor region was
eliminated. In addition, with the reduction of the PC by 64
times, it was possible to perform the recognition, location,
and depth estimation in a reasonable time.

III. RESULTS

A. Quantitative evaluation

In Fig. 5, the mAP@[.50] and the mAP@[.50:.5:.95] values
are presented during the progress of the training epochs
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joy node UVS node
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\kinect\rgb
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pointCloud2 node

\stereo_sensor\float32MultiArray
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point cloud node

\cloud_out

\detections \BB_Depths

Present predictions

with depth estimation

Fig. 2: Communication diagram of the System.

(a) Original Resolution. (b) Downsample with ds = 8.

Fig. 3: PointCloud reduction.

(a) BB with Original Size. (b) BB with CR = 0.7.

Fig. 4: Center Rate of 70%.

using validation subsets. One can observe the model’s good
performance (mAP > 0.6) in the recognition and location of
objects in the virtual SE environment. The mAP@[.5] metric
reached values above 0.9, while the mAP[.50:.5:.95] metric
reached values above 0.7. Fig. 6 presents the Confusion Matrix
that shows the proportion of correct predictions for each one
of the classes.

It is possible to observe that a few instances were classified
incorrectly; a small proportion of backgrounds were classified
as objects; on the other hand, a small proportion of objects
were classified as background. This is related to how much
BB delimits the objects. A small proportion of the circuit-
break instances (0.01) were confused with the disconnector,
and the same proportion of the trench instances (0.01) was
confused with the robot ramp. This can be explained because
the disconnectors are installed near the circuit breaks; many
images captured these objects with overlap, and the same
occurs between the trench and robot ramp.

Fig. 5: mAP@[.50] and mAP@[.50:.5:.95] curves.

Fig. 6: Confusion Matrix with α = 50%.

B. Qualitative evaluation

Implementing the trained YOLOv7 model for recognition
and location of objects of interest with the algorithm for depth
estimation in the UVS allows performing the displacement
in the virtual SE environment while recognition, location,
and depth estimation of objects occurs. Fig. 7 shows a pre-
diction where five objects were observed. The transformer
was recognized with the lowest confidence value of 0.72,
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and it is possible to observe that this equipment is the most
distant at 4.39m. On the other hand, one of the robot-ramp
was recognized with the best confidence value of 0.90 and
corresponded to the nearest object with 1.02m.

Fig. 7: Recognition, location and depth estimation of objects.

In Fig. 8, a case helps explain the results presented in the
confusion matrix, as an overlap between circuit break and
disconnector occurs. In this case, all objects presented high
confidence values. Furthermore, this case presents a situation
in which the Center Rate Parameter supports the estimating
of the disconnector depth because this adjustment allowed to
discard of the region in the right of the BB, which would
be a very high noise considering that the circuit breaker is
a distance of 0.90m even so still a distance of 1.52m was
estimated for the disconnector.

Fig. 8: Recognition, location and depth estimation of objects.

On the other hand, Fig. 9 brings a clear case that the
nearest disconnector is present in a large proportion of the

other BBs. Thus, both the robot ramp and the circuit breaker
presented depth estimation affected by the distance of the
nearest disconnector.

Fig. 9: Recognition, location, and depth estimation of objects.

This strategy demonstrates an excellent way to estimate the
characterization of an object, which can lead to considerable
advances in the route optimization of robotic systems. On the
other hand, the strategy used for depth estimation by PC can
be affected when there are BB overlaps so that new strategies
can be evaluated.

C. Depth estimation evaluation

In order to evaluate the depth estimation, the distances
between the object and the stereo camera positions in the
virtual SE environment were used. Fig. 10a presents the
UVS positioned to calculate the distances. Fig. 10b shows
the predictions performed by the algorithm when the actual
positions were annotated.

(a) UVS positioned. (b) Depth estimation.

Fig. 10: Evaluation of the depth estimation.

Table II presents the error in percentage between the actual
depth of the objects in the virtual SE environment and the
predicted depth performed by the algorithm. Although the
error increases as the distance increases, it is still possible
to observe that these errors have small values even for greater
distances.
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TABLE II: Depth Analysis

Object Real Depth (m) Predic. Depth (m) Error (%)
Disconnector 1 1.338 1.380 0.607
Circuit Break 2.736 2.680 2.063

Disconnector 2 3.403 3.290 3.326

D. Computational Complexity

In order to compare the computational complexity, Table
III presents values to the elapsed time for fifty iterations
considering three situations. First, the values for recognition
and location task performed by the YOLOv7 model trained
are presented. Next, the values considering the YOLOv7 and
depth estimation tasks are detailed without the downsampling.
Finally, the values for YOLOv7 and depth estimation tasks are
presented with a downsampling of DS = 8.

TABLE III: Computational Complexity Comparation

Computing Cost Min (s) Max(s) Mean (s) P95 (s)
YOLOv7 0.018 0.023 0.020 0.023

YOLOv7, Depth 2.940 3.497 3.139 3.273
YOLOv7, Depth, (DS=8) 0.702 1.059 0.921 1.021

It is possible to observe that the predictions performed by
the YOLOv7 model are very relatively fast, where 95% of
the iterations were performed in less than 0.023 seconds. On
the other hand, performing the depth estimation increased the
elapsed time, where 95% of the iteration was performed in
less than 3.273 seconds.

Finally, performing the downsample with DS = 8, the
elapsed time decreased three times, where 95% of the itera-
tions were performed in less than 1.021 seconds, a reasonable
time for applications in robotic systems. Notably, these elapsed
times were achieved running the virtual SE environment simul-
taneously in the same processor. With a dedicated processor,
improving the elapsed time by iteration is possible. However,
an analysis focused on the embedded system used should be
performed.

IV. CONCLUSIONS AND NEXT STEPS

This paper presented a strategy for object recognition,
location, and depth estimation in a virtual SE environment.
It can collaborate to improve the efficiency and safety of
systems considering that the algorithm is performed in a
reasonable time. It can be implemented in robotic systems,
offering support during a navigation task so that the system
can follow the best route or keep the distance of equipment
with a live line present, for example.

The recognition and location of objects task presented good
scores for the mAP metrics, reaching values above 0.9 for
mAP@[.50] and above 0,7 for the mAP@[.50:.5:.95] metrics.
In addition, during the depth estimation, the worst prediction
presented a small error 3.326% even for a distance of 3,403m.

On the other hand, the depth estimation strategy used is
biased when different BB overlap in the image because it con-
siders the closest points present in the regions of the BB that
refer to the nearest equipment. Therefore, the depth estimation
is reliable only when no BB overlay exists. In addition, new
analyses can performed to optimize depth estimation through
PC processing when BB overlaps exist.

The subsequent work is the development of a dataset by
sampling in a real SE environment. This step will acquire more
images focused per class, considering different view angles
and luminosity conditions. Next, train a new YOLOv7 model
for the recognition and location of the real equipment in the
SE, making it possible to evaluate the algorithm’s behavior and
difficulty of the implementation in facing the variation in real
environment or even variations in physical conditions between
equipment of the same model and based on the results we can
propose improvements for this algorithm. Finally, the depth
estimation can implemented as presented in this work.

Still using the virtual SE environment developed, it will
be possible to evaluate new strategies to process the depth
estimation, offering support to the mean of the percentage
of the nearest points. In addition, depth estimations during
navigation tasks for UVS or even for generating safety alerting
when operating manned systems that need to operate close to
equipment with exposed live lines will be evaluated.
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