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Abstract—The potential implications of Artificial Intelligence
(AI) and Deep Learning (DL) algorithms in generating highly
realistic deepfake videos have raised concerns regarding the
reliability of our human senses. In response to this challenge,
we propose a deepfake detection system based on phonemes,
the transcribed text, associated mouth movements, and video-
extracted features. As a proof-of-concept, we develop a deepfake
detection system specifically designed for the Portuguese lan-
guage, employing three presidential candidates from the 2022
Brazilian elections. Additionally, we introduce a unique dataset
comprising real and fake videos involving these three individuals
and deliberately blending their identities. The extracted features
consolidate relevant attributes, which we utilized to train multiple
classification algorithms. Notably, our computational models
demonstrate satisfactory performance when authenticating or
detecting fake videos containing at least one of the trained
phonemes from the Portuguese language. Hence, we conclude that
deepfake detection is feasible, primarily due to the absence of
natural expressions, particularly in non-English language deep-
fake videos. Furthermore, developing individual-guided deepfake
detection systems may facilitate the authentication of videos
featuring celebrities or politicians during future online events.

Index Terms—Deepfake, Language-focused, Phoneme-based.

I. INTRODUCTION

Deepfakes, which involve the manipulation of videos, im-
ages, and audio to create convincing yet fabricated content,
have gained significant attention since their popularization in
2017. The initial focus of deepfake videos revolved around
inserting celebrity faces into pornographic movies, exemplified
by the manipulated video featuring “Wonder Woman” actress
Gal Gadot. However, the emergence of deepfakes featuring
prominent individuals such as North American Speaker of the
House Nancy Pelosi, Facebook CEO Mark Zuckerberg, and
“Game of Thrones” character Jon Snow in 2019 highlighted
the urgent need for effective detection methods and regulatory
measures. Consequently, computer scientists have dedicated
considerable efforts towards developing deepfake detection
systems, aiming to assess the authenticity of manipulated
images, audio, and videos.

While most deepfake videos have primarily been used
for humorous content, often involving reenactments or facial
transfers in music videos and memes, there is a growing

concern that they will soon incorporate political messages
and target public figures. Some of these seemingly humorous
deepfakes have already emerged, aiming to discredit local
celebrities and government officials, attaining an alarming
level of realism. Consequently, the influence of deepfake polit-
ical videos on numerous elections is anticipated, necessitating
proactive measures to mitigate their impact. In light of this, we
initiated a project that involves reviewing academic articles,
creating deepfake videos in the Portuguese language, and
developing countermeasures to authenticate or debunk videos
and online streams featuring target individuals.

We organize the remainder of this paper as follows: Section
II provides an overview of related work in deepfake detection.
Section III details the methodology employed in our project,
encompassing dataset creation, feature extraction, and classi-
fication methods. Section IV presents our experimental results
and performance evaluation. Finally, Section V concludes the
paper by summarizing the findings and discussing future direc-
tions for combating the increasing threat posed by deepfakes
in a global context.

Our methodology seeks to unveil these mouth reenactment
videos by analyzing specific phonemes inherent to the target
language alongside the corresponding articulatory movements
of the mouth during phoneme pronunciation. And we exploid
the prevalence of deepfake videos derived from deep learn-
ing (DL) architectures trained on English audio and visual
data. Moreover, emerging technologies are delving into the
distinctive characteristics of various languages worldwide. For
instance, the film industry has already harnessed deepfake
technology to achieve realistic voice dubbing in alternative lan-
guages and facilitate post-production editing. The video game
industry has similarly embraced this technology, employing
virtual characters to impart a natural linguistic quality to
their products. Likewise, educational media has capitalized on
this technology by reenacting historical figures and delivering
notable speeches.

Nonetheless, it is imperative to acknowledge that unscrupu-
lous individuals are poised to exploit this technology as a
weapon to manipulate public opinion and disseminate mis-
information. For example, malevolent actors can assume the
identity of a targeted individual, thereby gaining the trust of
a family member and acquiring illicit financial or material979-8-3503-4807-1/23/$31.00 ©2023 IEEE



gains. Additionally, the generation of compromising content
featuring prominent figures may be employed for purposes of
blackmail, or content manipulation could be orchestrated to
influence public sentiment toward a particular political leader.
This technology also harbors the potential to tamper with
surveillance footage and other archival visual material, thereby
introducing fabricated evidence into legal proceedings. Ulti-
mately, these attacks may manifest as online threats, including
real-time impersonation in conversations or the dissemination
of falsified media. Consequently, mouth reenactment has gar-
nered significant attention within the academic literature due
to its role as one of the most substantial threats in the context
of the ongoing misinformation warfare.

II. LITERATURE REVIEW

Existing research in this field includes the work of Güera
and Delp [1], who proposed a deepfake detection system uti-
lizing a Recurrent Neural Network (RNN) within a temporal-
aware pipeline. Their approach involved extracting frame-
level features using a Convolutional Neural Network (CNN),
which they used to train the RNN classifier for discerning
manipulated videos. Nguyen et al. [2] employed capsule net-
works, a form of CNN-based models, to detect forged images
and videos, encompassing various spoofs ranging from replay
attacks to computer-generated content. Nhu et al. [3] focused
on forensics face detection and utilized Generative Adversarial
Networks (GANs) to create fake training data for their CNN-
based analysis. It allowed them to generate diverse facial
images with different resolutions and sizes, enabling robust
face feature extraction for deepfake recognition systems.

Additionally, Ciftci et al. [4] proposed the FakeCatcher,
a system designed for detecting synthetic portrait videos.
Their method involved extracting biological signals from
facial regions in authentic and fake portrait video pairs.
Through transformations to assess spatial coherence and tem-
poral consistency, they obtained feature sets capturing the
signal characteristics, and trained a Support Vector Machine
(SVM) and a CNN for classification. Moreover, Li and Lyu
[5] focused on facial region signals, detecting face-warping
artifacts as distinctive clues for deepfake detection. These
artifacts resulted from limited-resolution deepfake image gen-
eration, subsequently warped to match the original faces in the
source video. And they used state-of-the-art CNNs capable of
identifying such artifacts, although manipulations like video
compression could potentially obscure these clues.

Furthermore, computer science researchers have extensively
employed DL algorithms to investigate specifically mouth
reenactment videos, commonly known as “dubbing”. These
investigations have involved different approaches, and specific
techniques, including one-to-one (identity to identity), many-
to-one (multiple identities to a single identity), and many-
to-many (multiple identities to multiple identities) deepfake
creation methods. We summarized the techniques utilized for
manipulating mouth movements in Table 1, where similarities
in the implemented DL techniques become apparent when
grouping them based on their approaches. Notably, all papers

employing a one-to-one approach have used Generative Ad-
versarial Networks (GANs). And over half of the reviewed
papers employing many-to-one approaches also implemented
GANs. We observed Recurrent Neural Networks (RNNs) in
papers utilizing many-to-one and many-to-many approaches,
as these DL architectures enhance deepfake models with
temporal awareness to accommodate pose and expression
variations. The listed many-to-many approaches involve the
combination of multiple techniques and DL architectures. In
these approaches, authors used Encoders/Decoders (EDs) to
generate deepfake videos from numerous sources to multiple
targets, accompanied by Gated Recurrent Units (GRUs) and
RNNs for audio and identity encoding. In a recent approach,
Mazaheri and Roy-Chowdhury [27] focused on detecting and
localizing facial expression manipulations, using the Facial
Expression Recognition (FER) system and Ensemble with
Shared Representations (ESR) to identify any alterations made
to facial expressions, which aids in the advancement of reliable
methods for facial verification. Although DL-based approaches
are achieving good results, traditional Machine Learning (ML)
techniques can also obtain satisfactory performance in detect-
ing deepfakes. And as detailed in Rana et al. [28], the ML
approaches allow better understandability and interpretability
of the model with reduced computational cost.

TABLE I
MOUTH MANIPULATION PAPERS AND THEIR DL ARCHITECTURES.

Approach Paper Year DL Architecture
[6] 2017 CycleGAN

One-To-One [7] 2018 RecycleGAN
[8] 2019 RealisticFaceGAN
[9] 2020 DeepFaceLabGAN
[10] 2017 RNN+MFCC
[11] 2018 RNN+Char2Wav
[12] 2018 ReenactGAN
[13] 2018 MoCoGAN

Many-To-One [14] 2018 Vid2VidGAN
[15] 2018 RNN+MFCC
[16] 2019 RNN+CGAN
[17] 2019 Pix2PixGAN+AdaIN
[18] 2019 Vid2VidGAN+AdaIN
[19] 2015 RNN+MFCC
[20] 2018 EDs+CNN
[21] 2018 EDs+GRU
[22] 2019 EDs+GRU+RNN

Many-To-Many [23] 2019 GAN+RNN+MFCC
[24] 2019 CGAN
[25] 2019 CNN+RNN+CGAN
[26] 2021 EDs+GAN
[28] 2021 ML+FeatureSelection
[27] 2022 FER+ESR

III. METHODOLOGY

Our proposed methodology comprehensively addresses var-
ious deepfake creation strategies and approaches by analyzing
specific phonemes in any given language. We establish a
correlation between the transcription of these phonetic units
and the corresponding mouth movements observed during their
pronunciation. This paper introduces the Language-focused
and Phoneme-based Deepfake Detection System (LPDDS),



which utilizes pre-trained computational models to detect dis-
tinctive language phonemes. These models are mathematical
algorithms based on ML techniques, trained using a dataset
derived from carefully selected video clips containing spoken
language segments associated with specific phonemes. The
LPDDS testing process, implemented in Python 3.10, involves
the following steps:

1) Extraction of the video’s duration, measured in seconds;
2) Transcribe audio into text, with time stamps assigned at

5-second intervals;
3) Selection of phonemes for analysis;
4) Segmentation of the corresponding 5-second sections;
5) Extraction of facial images from the segmented clips;
6) Extraction of mouth landmarks and video features;
7) Classification of data, grouped into segments of 7 frames

(representing one phoneme), as either true or false.

In this methodology, we create a database of videos com-
prising both real and fake samples. And within each testing
video, regardless of its authenticity, we localize the specific
phoneme based on its transcription, focusing on 5-second seg-
ments (steps 4, 5, and 6). To test our system, we applied a swap
technique to the 5-second clip with the localized phoneme,
seeking trained patterns of mouth movement and video fea-
tures (step 7). For training our ML models, we manually
extracted mouth landmarks and video data features from small
clips representing fractions of a second (00:00:00.20), corre-
sponding to the phonemes our LPDDS aims to classify. These
small clips yielded seven (7) frames when extracting face
images, providing sufficient information to establish patterns
of mouth landmark movement. By manually gathering data,
we ensured that the training database for the ML algorithms
contained representative information of the selected phoneme.

For classification, we associated the observed mouth move-
ment and other video-related features with specific phonemes,
searching for these patterns within the suggested 5-second
clip(s) based on the transcription of a new video. If our compu-
tational model identifies these patterns in the indicated clip of
the target video, it will authenticate it as genuine. Otherwise,
if the LPDDS does not verify the video’s authenticity, it will
classify the target video as a deepfake. And this approach
allows our system to authenticate specific segments of the
target video multiple times during long speech videos.

In this study, we focus on developing the LPDDS tailored
to non-English deepfake videos and targeting the Portuguese
language. One of the challenges we encountered during this
research was the scarcity of realistic deepfake videos in Por-
tuguese. As previously mentioned, deepfakes often comprise
humorous advertisements, commonly featuring celebrities and
political figures engaged in activities such as dancing and
celebrating victories or defeats. To address this challenge and
facilitate the development of the LPDDS, we generated a
novel dataset consisting exclusively of real and fake videos
with Portuguese audio. The dataset construction commenced
with videos of three prominent 2022 Brazilian presidential

candidates: Jair Bolsonaro, Luı́s Inácio Lula da Silva, and
Simone Tebet. From 21 original videos, we collected 37 clips
and created 50 deepfake videos with less than 60 seconds
mixing the three target individuals’ faces and containing the
selected phonetic unit. To create fake videos, we employed two
distinct existing deepfake techniques: the MyVoiceYourFace
and the FaceSwap. These techniques operate based on similar
inputs, involving either a single image or multiple images,
and output the projection of the provided inputs onto the
target video. In the next step, the number of clipped videos of
the target phoneme “ÃO” depends on how many times each
pronounces it. And labeling these clips as true or false, we
created a dataset with 133 phoneme-based scenes (52 real
and 81 fake) for training and testing our ML classification
models. To promote transparency and accessibility, we have
made all the original videos, deepfakes, and phoneme-based
clips available in an online GitHub1 repository.

Using the dataset of the selected clips, we extract aligned
faces from each frame and Cartesian points that represent the
position of the mouth during the clip. To achieve this, we
employ the OpenCV library, which specializes in detecting
facial landmarks in images or frames. Specifically, we focus
on extracting the points related to the mouth. In addition, we
utilize Kinetics CNN architectures to extract features related
to the movement of the video. These architectures, namely
the Two-Stream Inflated 3D ConvNet (I3D), are based on the
inflation of 2D ConvNets and build upon the work of Carreira
and Zisserman [29]. By adopting these architectures, our clas-
sification models can effectively learn spatiotemporal features
from videos. This approach allows us to capitalize on the
well-established designs and parameters of CNNs, resulting
in spatial and temporal integration for accurate classification.

Our computational model, shown in Figure 1, uses the input
of a CSV file containing the extracted mouth coordinates
and Kinetics values. To enhance the model’s performance,
we incorporate a feature selection stage, which involves a
ranking process to identify the most discriminative features.
Implementing a testing and scoring process, we train multiple
ML algorithms using the previously processed data. Each
classifier (Logistic Regression, Decision Tree, Neural Net-
work, Random Forest, Support Vector Machine, and k-Nearest
Neighbors) undergoes a five-fold cross-validation process to
ensure robustness and avoid overfitting. As a result, our
computational model generates a confusion matrix for each
trained ML algorithm, serving as evaluation metrics to assess
their performance.

IV. EXPERIMENTS

Our experiments seek to determine the most appropriate
combination of feature extraction, preprocessing techniques,
and ML algorithms for authenticating a selected phoneme
on real and fake video datasets. In the ML classifiers, we
use traditional parameters for a fair comparison between
them and future optimization when compared with DL-based

1https://github.com/jonaskrause/DeepFake-PhonemeAO



Fig. 1. LPDDS Computational Model.

approaches. We started by applying the LPDDS computational
model without feature selection and using all the 280 mouth
coordinates plus the 1024 Kinetics values. Table II presents
the following metrics of each ML algorithm: the Area Under
the Curve (AUC), the Classification Accuracy (CA), the F1
score (F1), the Precision (Prec), the Recall, and the Matthews
Correlation Coefficient (MCC). And they are sorted by the
highest F1 score value.

TABLE II
EVALUATION METRICS OF ML CLASSIFIERS USING ALL EXTRACTED

FEATURES.

Classifier AUC CA F1 Prec Recall MCC
SVM 0.830 0.865 0.862 0.867 0.865 0.714
Neural Network 0.868 0.812 0.811 0.811 0.812 0.602
Random Forest 0.794 0.774 0.766 0.777 0.774 0.602
Decision Tree 0.720 0.752 0.750 0.750 0.752 0.474
Logistic Reg. 0.796 0.714 0.717 0.795 0.692 0.375
kNN 0.618 0.692 0.632 0.795 0.692 0.375

Figure 2 presents the output of our computational model
(confusion matrix) using the ML algorithm with the highest
F1 score, in this case, the SVM classifier. It details how many
fake (F) and true (T) videos of the database our computational
model correctly predicted versus the actual ones and, conse-
quently, the ones it missed.

Fig. 2. The output of the LPPDS Computational Model (Confusion Matrix)
of the highest F1 score classifier (SVM) without feature selection.

The next experiment compares the feature extraction strate-
gies by applying the LPPDS computational model over dif-
ferent segments of the inputted data. We started by selecting
only the mouth (X, Y) coordinates extracted from the dataset-
clipped videos of the phoneme and reproduced the previous
experiment. Table III presents the evaluation metrics of ML
classifiers using only the mouth-corresponding extracted fea-
tures. In this case, the Neural Network algorithm achieved the
highest F1 score.

TABLE III
EVALUATION METRICS OF ML CLASSIFIERS USING MOUTH EXTRACTED

FEATURES.

Classifier AUC CA F1 Prec Recall MCC
Neural Network 0.815 0.774 0.772 0.772 0.774 0.519
Logistic Reg. 0.786 0.714 0.717 0.722 0.714 0.414
SVM 0.734 0.714 0.714 0.714 0.714 0.400
Decision Tree 0.634 0.647 0.645 0.643 0.647 0.250
Random Forest 0.669 0.647 0.635 0.635 0.647 0.229
kNN 0.618 0.692 0.632 0.795 0.692 0.375

As the previous analysis, Figure 3 shows the confusion
matrix of the ML algorithm with the highest F1 score. And in
the classification of mouth coordinates, the Neural Network
achieved the best result. It is noticeable when comparing
Tables II and III, as well as Figures 2 and 3, that the
performance of the LPDDS decreased when we reduced the
number of features excluding the larger segment of the dataset
(Kinetics data).

The following experiment isolates the Kinetics extracted
features by applying the LPDDS computation model over this
second part of the collected dataset. Therefore, we trained the
classification algorithms using only video-extracted features
achieving the following results. Table IV lists the evaluation
metric values achieved by each ML algorithm. And, with
Kinetics features, the Logistic Regression achieved the best
F1 score (0.876) of the ML algorithms in all our experiments.



Fig. 3. The confusion matrix of the highest F1 score classifier (Neural
Network) with mouth extracted features.

TABLE IV
EVALUATION METRICS OF ML CLASSIFIERS USING KINETICS EXTRACTED

FEATURES.

Classifier AUC CA F1 Prec Recall MCC
Logistic Reg. 0.855 0.880 0.876 0.889 0.880 0.751
SVM 0.820 0.865 0.862 0.867 0.865 0.714
kNN 0.814 0.857 0.849 0.884 0.857 0.717
Neural Network 0.869 0.827 0.825 0.826 0.827 0.633
Random Forest 0.827 0.805 0.797 0.810 0.805 0.585
Decision Tree 0.755 0.774 0.773 0.772 0.774 0.521

Figure 4 presents the output of the most accurate computa-
tional model of the LPDDS using the experimental dataset.
By analyzing the confusion matrix of this trained model,
one can note that it uncovered the most deepfake phoneme
expressions (79), incorrectly classifying only two of them.
It also performed well when authenticating real videos (38),
but it loses in this matter when compared with the LPDDS
computational model using SVM and all features combined
(39, in Figure 2).

Fig. 4. The confusion matrix of the highest F1 score classifier (Logistic
Regression) with Kinetics extracted features.

This initial analysis guided our research for determining the
appropriate feature selection process and from which group
(mouth coordinates or Kinetics data) detains the most deter-
ministic features. So we used the Fast Correlation-Based Filter
(FCBF), a feature selection method that examines the class
relevance and the dependency between each feature pair. It also
uses an entropy-based measure to identify redundancy due to
pairwise correlations between features. Figure 5 presents the
results of the FCBF analysis and points out the group of ten
(10) most discriminative features when compared with another
group. It is valuable to notice that these ten selected features
are all part of the Kinetics group of features.

And using only these ten FCBF selected features on the
LPDDS computational model, we retrained the classification
to achieve the ML metrics reported on Table V. In this case,
the Random Forest outperformed the other ML algorithms but

Fig. 5. FCBF indicators for each group of features.

performed similarly to the Neural Network on the previous
experiment, including the identical output of the confusion
matrix reported on Figure 4.

TABLE V
EVALUATION METRICS OF ML CLASSIFIERS USING FCBF SELECTED

FEATURES.

Classifier AUC CA F1 Prec Recall MCC
Random Forest 0.852 0.865 0.862 0.867 0.865 0.714
SVM 0.858 0.857 0.853 0.863 0.857 0.700
kNN 0.770 0.805 0.785 0.852 0.805 0.615
Logistic Reg. 0.852 0.782 0.767 0.800 0.782 0.542
Neural Network 0.827 0.752 0.754 0.760 0.752 0.494
Decision Tree 0.763 0.752 0.751 0.751 0.752 0.477

To extend the feature extraction analysis, we research for
another feature selection algorithm to select a new group
of features and compare with the FCBF. We choose the
ReliefF, a weight-based algorithm designed to determine the
significance of predictors when the outcome variable is a
multiclass categorical variable. This algorithm operates by
applying penalties to predictors that produce dissimilar values
for neighboring instances belonging to the same class. Con-
trariwise, it rewards predictors that generate distinct values for
neighboring instances from different classes. In this manner,
ReliefF effectively assesses the importance of predictors in
distinguishing between various classes. Using the 110 most
discriminative features selected by the ReliefF algorithm, we
evaluate the LPDDS computational model and present the ML
metric results in Table VI.

TABLE VI
EVALUATION METRICS OF ML CLASSIFIERS USING RELIEFF SELECTED

FEATURES.

Classifier AUC CA F1 Prec Recall MCC
SVM 0.865 0.872 0.868 0.883 0.872 0.736
Logistic Reg. 0.873 0.872 0.868 0.833 0.872 0.736
kNN 0.807 0.857 0.850 0.877 0.857 0.711
Neural Network 0.859 0.827 0.824 0.827 0.827 0.632
Random Forest 0.804 0.805 0.799 0.807 0.805 0.583
Decision Tree 0.764 0.774 0.775 0.776 0.774 0.530

In this experiment, the SVM and the Logistic Regression
classifiers performed similarly and outputted the same F1
score. Figure 6 presents this result, illustrating the identical
confusion matrix generated by these two classifiers.



Fig. 6. The confusion matrix of the highest F1 score classifiers (SVM and
Logistic Regression) with ReliefF extracted features.

V. CONCLUSION

In this paper, we presented a Languaged-focused and
Phoneme-based Deepfake Detection System (LPDDS) to ad-
dress the growing concern regarding deepfake videos. And we
detailed a methodology where we analyze specific phonemes,
their corresponding mouth movements, and video-extracted
features of the selected phonetic unit. We also presented a
novel dataset comprising real and fake videos of three 2022
Brazilian presidential candidates for training and testing the
classification algorithms. Furthermore, the LPDDS computa-
tional model demonstrated satisfactory results in authenticat-
ing or detecting fake videos containing the target phoneme.

In conclusion, we support the hypothesis that deepfake
detection is feasible, particularly in non-English language
deepfake videos where mouth expressions are often unique.
And we believe that the findings of this paper contribute to the
ongoing efforts to combat the increasing threat of deepfakes
and safeguard the reliability of digital content. Regarding the
conducted experiments, differences between classification ML
algorithms and attribute selection methods are minor, with the
best result obtained with Logistic Regression using all Kinetics
features. For future experiments, we intend to utilize new DL-
based approaches and the clustering analysis pre-implemented
in the LPDDS computational model (Figure 1) to delimitate
which extracted features cause the main classification errors
and further populate the existing dataset with real and fake
videos that could assist in this classification problem.
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