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Abstract—Electromechanical contactors are core equipment of
the electrical circuits environment, operating mainly in industrial
areas for load control. As they have a lifespan and are susceptible
to faults, predictive maintenance based on measurement systems
is crucial to avoid accidents and profit loss. This paper presents a
method of instrumentation and analysis of AC contactors under
different operational conditions. Optical Fiber Bragg Grating
(FBG) sensors were used as sensor elements. The experimental
setup relied on two ABB AX40 AC contactors, each instrumented
using a single FBG sensor externally. The devices were subjected
to three switching conditions: the contactor with no faults, worn
load contact, and end-life load contact. The events were submitted
to different variability conditions to better generalize the system
for field application. Continuous Wavelet Transform (CWT)
generated scalograms from the acquired signals to be submitted
to different Convolution Neural Networks (CNNs) models. The
data set was split between the training, CNN validation, and
repeatability test groups. This third group is a set of conditions
not trained with the classifier to verify the generalization. The
results presented in this paper show a high F1 score of around 0.9
for the CNN architectures in the training group and validation
groups. However the repeatability test group had lower results,
being around 0.3. This paper shows the high applicability of FBG
as single sensor element and CNN to monitoring and classifying
faults in electrical switching devices, with further studies aiming
for field application.

Index Terms—Fiber Bragg Gratings, Switching Devices, Deep
Learning

I. INTRODUCTION

Electromechanical contactors are used in electrical systems
mainly in industrial areas for load control, becoming a funda-
mental part of electrical circuits, however they are susceptible
to malfunctions. Some of these faults are the carbon’s deposit
obstructing the inner contact [1], core or contact blockage,
voltage sag and contact bounce [2]. Switching devices such as
On Load Tap Changers (OLTC) transformers and circuit break-
ers are already monitored by measurement systems [3], [4].
They are based on sensors, normally non-invasive, that make
use of mechanical vibration detection of switching conditions
[5]. However the electrical sensors, such as accelerometers,
are susceptible to external electromagnetic noise in field ap-
plications [6]. On the other hand, optical sensors such as Fiber
Bragg Grating (FBG) are immune to electromagnetic influence
[7]. FBG sensors have already proven its effectiveness in
several switching devices researches using only a single sensor
[2], [8], [9]. Although they have not yet been applied in a
robust system with repeatability.

This paper proposes a real-time health monitoring system
for an AC contactor, using FBG as the sensor and CNN for
switching pattern recognition. The CNN is based on CWT-
generated images from three data classes: no operation faults,
load contacts wear-off, and end-life contacts. This work ad-
vances previous research on low power relays [8], [9], offering
greater robustness and flexibility in fault analysis. Moreover,
the system’s use of CNN and focus on repeatability enhance
its field reliability.

II. MATERIALS AND METHODS

A. Experimental Setup

The tests were carried out using two AC contactors of
the same model ABB AX40. This device works based on
electromechanical force generated a coil connected to an AC
source of 220 V AC, which attract the movable part of the
ferromagnetic core to its fixed one. This action also close the
load contacts, allowing electrical current to pass. When the
source is off, a return spring brings the moveable core and the
load contacts back to their original position [10].

The arrangement relied on FBG sensors and an interrogator
I-MON 256, with 4k Hz of acquisition rate and 20 µs of
exposure time to acquire the sensors signals. The FBGs were
fixed to the contactors cases with a cyanoacrylate-based glue
to acquire the mechanical vibration, as presented in Figure 1.

Fig. 1. Representation of the experimental setup for measurements.

The FBG is defined as a periodic modulation of the optical
fiber core refractive index, that reflects part of the incident light
spectrum, which is called Bragg wavelength. This reflection
is susceptible to mechanical deformations and temperature
changes [11], [12]. We used four FBG sensors separately for
each test round, three for one contactor and the last one for the
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other. The optical fiber used was the GF1 Thorlabs type. Re-
garding the FBGs parameters, all of them had different Bragg
wavelengths and the reflectivity above 80%. This procedure
aimed to achieve the best adaptability for different FBGs.

The experiment consisted of capturing the mechanical signal
of the closing contacts, keeping it connected for 3 seconds to
avoid any trace of mechanical waves from the first event, and
opening the contacts again, also taking this vibration. It is
noted that the temperature does not undergo large amplitude
changes in this arrangement and time window. This implies
that temperature does not significantly influence the Bragg
wavelength variation with the small time window of the
acquired signal.

In addition to the acquisition system, the contactor was
operated under three load conditions. Non-load switching, an
inductive motor with 15 horsepower switching and three-phase
heating resistance switching. Regarding the resistances, they
were connected in triangle and placed in a water reservoir,
dissipating 5.4k W each.

B. Data set
The carried out test procedure acquired 3 classes of data,

435 samples of the contactor at healthy state (Class 1), 210
with load contact wear-off (Class 2) and 210 with end-life load
contact (Class 3). All these samples were divided between the
contactor (C1 or C2), the sensor (S1, S2, S3 or S4) and the
load condition of the contactor (no-load (NL), resistance (R)
or motor (M)). The variability imposed by changing between
FBGs, contactors and different tpes of loads provides better
generalization and repeatibility for the CNN classifier. The
data set is thorougly detailed in Table I showing the classes,
sensors, contactors and its respective samples number. The
classes are visually displayed by colors.

TABLE I
DATA SET SHOWING THE NUMBER OF SAMPLES FOR EACH CLASS AND

VARIABILITY.

S1 C1 S2 C1 S3 C1 S4 C2 D.A

CLASS 0 NL 25 40 40 40 30

CLASS 0 R 25 40 40 40 30

CLASS 0 M 25 40 40 40 30

CLASS 1 NL 25 15 15 15 30

CLASS 1 R 25 15 15 15 30

CLASS 1 M 25 15 15 15 30

CLASS 2 NL 25 15 15 15 30

CLASS 2 R 25 15 15 15 30

CLASS 2 M 25 15 15 15 30

CLASS 3 NL 25 15 15 15 30

CLASS 3 R 25 15 15 15 30

CLASS 3 M 25 15 15 15 30

CLASS 4 NL 25 15 15 15 30

CLASS 4 R 25 15 15 15 30

CLASS 4 M 25 15 15 15 30

S1 C1 S2 C1 S3 C2 S4 C1

CLASS 1 NL 40 40 40 25

CLASS 1 R 40 40 40 25

CLASS 1 M 40 40 40 25

CLASS 2 NL 15 15 15 25

CLASS 2 R 15 15 15 25

CLASS 2 M 15 15 15 25

CLASS 3 NL 15 15 15 25

CLASS 3 R 15 15 15 25

CLASS 3 M 15 15 15 25

The data set was split between training, validation and test
groups. The first two were composed by S1C1, S2C1 and
S3C2, this data was randomly split in 66.6% for training and
33.3% for validation. As for the test group, it only used the
S4C1 data to evaluate the predictive quality of the classifier
and the repeatability of the system for field application.

C. Algorithm
All signals were submitted to a pre-treatment procedure. The

data was normalized, denoised and the opening and closing

events of the contactor were extracted from the main signal in
a time window of 1.024 seconds with each event centralized.
These two separate signals form a contactor data sample.

The closing and opening events were submitted to CWT,
generating two main images. The center of the images (0.45
to 0.55 seconds) was extracted as the main signal (1, 4). Two
additional images were acquired from each event, those being
the zoom on the window frequency of 0 to 500 Hz (2, 5)
and 1000 to 1500 Hz (3, 6), since it has important power
spectral density components. All of the six generated images
were merged into a single one to use at the classification
algorithm as shown in Figure 2, where red colors represents
denser frequencies than blue colors.
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Fig. 2. Example of the processed data of the contactor 1 at healthy state with
no load and sensor 1.

For this experiment, three types of convolutional neural
networks architectures were used, with the weights established
and stored in the Keras library. MobileNetV2 is a network
proved to be useful in radar’s scalogram classification [13],
EfficientNetB3 has a great performance in electroencephalo-
gram’s scalogram classification [14] and ResNet50 was also
used to compare with the other two.

III. RESULTS AND DISCUSSION

To choose the ideal CNN, the three architectures were
submitted to the training and validation data sets. For all of
them, the layers of the transfer learning were frozen and two
additional dense layers of 2042 neurons with 20% of dropout
were implemented. The size of the input images consisted of a
square of 512 x 512 pixels for the MobileNetV2 and ResNet50
and 256 x 256 for the EfficientNetB3, due to implications in
the architecture.

Since the data is unbalanced, F1 macro was chosen as
the evaluation metric. This metric is a harmonic mean of
false positives and false negatives, being better than accuracy
for this data set. It has a range value from 0 to 1, with
its better result being 1. The loss function of the algorithm
is also implemented. This function updates the weights of
the CNN based on the outcome, lesser values indicate better
performance. The final results of the F1 metric and the loss
function of the CNNs using 12 epochs is presented in Table
II.
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TABLE II
LOSS AND F1 VALUES FOR EACH TRAINED CNN

Function/CNN MobileNetV2 ResNet50 EfficientNetB3
Train loss 0.20 0.30 0.20
Train F1 0.94 0.90 0.94

Validation loss 0.31 0.42 0.37
Validation F1 0.91 0.82 0.89

By Table II, it is possible to imply that MobileNetV2
achieved better results based on the lesser value of the loss
function and the higher results of the F1 metric. It is important
to indicate that the three architectures had their saturation in
12 epochs and MobileNetV2 is less computationally expensive
than other CNNs such ResNet50.

Despite the F1 presented in the training and validation
data sets being close to 90%, the repeatability tests had
questionable accuracy values. Accuracy is used for balanced
data, like the test group. The final results of the accuracy for
the test group varied between 0.21 and 0.30 with best result
being EfficientNetB3.

The low repeatability for the proposed monitoring system
could indicate an improper installation of the sensor from
the test group, however if we rearrange the data set so
that the other sensors are in the test group, the problem
persists for each FBG. This leads to the understanding that
the problem may be in the small physical variations of the
installation, making so an undetectable overfit of the CNN
occurs based on the input information. To solve this problem,
data augmentation, sensor encapsulation and feature selection
can be implemented.

All FBGs sensors were able to identify classes in the
training and validation group, even with slightly different
parameters. It was possible to acquire the contactor vibration
signals up to 2 kHz with only a single FBG sensor element and
submit them to a neural network for fault detection with high
F1 metric score. Although additional criteria must be taken to
ensure repeatability, the system has potential for application.

IV. CONCLUSION

The results obtained in this work show that for the clas-
sification of different defects in contactors is feasible using
features extracted from scalogram images, provided by just a
single FBG sensor, and convolutional neural networks. On the
other hand, it is not possible to generalize the classification
of a new data set to a pre-trained model where there is not
a significant number of measurements in different conditions
within the base model. This behavior should be confirmed in
future studies, suggesting other control measures to guarantee
the repeatability of the experiments, although some, such
as calibration of the optical source gain and locking of the
contactor base, have already been carried out. Other works
we have in progress are to encapsulate the FBG for fixing the
same sensor on different contactors. If this verification still
produce the results obtained in this work, this may indicate
that due to the size of the internal components, the failure
conditions in contacts are very close to the normal operating
state.

Given this, another promising work in progress is to analyze
the features extracted in frequency and time. Attributes based
on Power Spectrum Denstiy can be used for detailed analysis
to select outstanding features and discard others. Furthermore
the database raised in this work can help study statistical
deviations that can be correlated to some defects.
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dation, and SETI (State Secretary of Science, Technology,
and Higher Education of Paraná), and MultiUser Photonics
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