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CPGEI, UTFPR
Curitiba, Brazil

hslopes@utfpr.edu.br

Valmir de Oliveira
CPGEI, UTFPR
Curitiba, Brazil

valmir@utfpr.edu.br

Abstract—One of the most impacting problems in building
machine and deep learning models for automated vision systems
in industrial environments is the large variety of products in
a real production line, which means that the dataset generated
from the systems will be, most probably, imbalanced. Different
approaches have been studied in the recent literature to reduce
the effects of imbalanced data, still without a recommendation
of a more adequate methodology for industrial scenarios. Hence,
this paper compares three approaches for reducing the effects of
imbalanced classes using a dataset of real images collected in an
industrial production line: class removal, weight compensation,
and data augmentation. We use a convolutional neural network
as the backbone for the classifier of proposed method. Several
comparisons are presented, emphasizing the advantages and
limitations of each approach. Results show that data augmen-
tation is the most promising approach for the evaluated dataset,
improving the results and allowing the real-world application of
the proposed method.

Index Terms—Imbalanced dataset, Data Augmentation,
weights compensation, Classification, Convolutional Neural Net-
works.

I. INTRODUCTION

Industrial production systems have been modernized in
recent years with the emergence of the Industry 4.0 concept.
The collection of production data and the subsequent analysis
are already present in several industrial branches. Such a
procedure leads in the concept of a Cyber-Physical Production
System (CPPS), derived from software and hardware appli-
cations in exchanging data between these systems. CPPS is
known as an Industry 4.0 trend focused on flexibility for new
products and new requirements [1]. According to [2], CPPSs
have significant potential to further improve the condition-
awareness of manufacturing machines and processes, reduce
operational downtime, improve automation and product qual-
ity, and respond more timely to dynamically changing cus-
tomer demands.

In the particular case of computer vision for industrial
applications, in the context of CPPSs, which is the main focus
of this work, the central idea is to provide image acquisition,
defect detection, and classification. This technology is widely

used because of its fast, accurate, non-destructive, and low-
cost characteristics. Machine vision identifies objects mainly
based on their color, texture, and geometric features. Hence,
image acquisition quality, the number of acquired images, and
the image processing algorithm determine the correct detection
of defects and classification accuracy.

In the industrial environment, the images from the vision
system can be easily collected and stored on a server. However,
for many categories of industries, the problem is that there is a
large variety of products in a real production line. This means
that the dataset generated from the vision system will probably
be imbalanced. According to [3], in industrial scenarios, the
distribution of data across different classes is highly skewed,
e.g., an instance can be 1000 times less frequent than another
class.

In [4], the authors suggested that solutions for imbal-
anced classification problems can be categorized into two
major approaches: Synthetic Minority Oversampling Tech-
nique (SMOTE) and Adaptive Synthetic Sampling Approach
(ADASYN). On the one hand, SMOTE and its variants attempt
to re-balance the dataset by generating synthetic samples
of minority classes. ADASYN, on the other hand, uses a
weighted distribution for different minority class examples
according to their difficulty in learning.

In this context, several works have been addressed in
the recent literature for industrial problems using SMOTE
and ADASYN-based techniques, as presented in [5]. Still
considering [5], datasets with faulty instances are difficult to
obtain, since machines are normally operating in a healthy
state. Generating artificial fault data in the laboratory, on the
other hand, can be too expensive and, most of the time, might
not present the reality of an event of an actual fault.

Regarding artificial data generation, one can emphasize the
approach presented in [6]. The authors proposed to work with
image fault detection and the recurrent problem of imbalanced
datasets. Their work used a dataset of X-ray images from
a public database with four different imbalanced classes of
faults. They used Random Oversampling (ROS), Random Un-
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dersampling (RUS), and SMOTE to create three new balanced
datasets. The next step included a Histogram of Oriented
Gradients (HOG) and deep Convolutional Neural Networks
(CNN) for the proposed classification procedure. The best
result was with the CNN model with SMOTE re-sampling,
reaching an accuracy of 97.2%.

Similarly, in [7], the authors discussed an imbalanced image
dataset of defects in the strip steel industrial process. Im-
ages were acquired through a computer vision system, which
creates imbalanced datasets due to the low occurrence of
defects. The contribution of their work was using a transfer
learning with the VGG19 model combined with different
sorts of algorithms such as Online Hard Example Mining and
Adversarial Fast Region-based Convolutional Neural Network
to make a real-time classification. Some difficulties included
the speed of the production line, the quality of images, and
the tuning of the chosen algorithms for best accuracy results.

In [8], on the other hand, the authors used a two-stage
transfer learning training strategy for improving the accuracy
on minority samples and a multi-scale convolutional neural
network to extract multi-scale features of input images. They
combined a CNN with a VGG16 transfer learning for training
the dataset. They also included some additional stages for
capturing image details that are normally not perceptible for
a normal CNN architecture, thus improving the final results.

Considering the above described works, all they presented a
particular set of techniques to reduce the effects of imbalanced
data. Nonetheless, when we intend to classify real images
collected by a computer vision system in the industry, some
techniques may have better results than others. Therefore,
the present paper compares three approaches to reducing the
effects of imbalanced classes using a dataset of real images
collected in a production line: (1) class removal, (2) weight
compensation, and (3) data augmentation. We used a CNN as
the backbone for the proposed method and present different
comparisons, emphasizing the advantages and limitations of
each approach.

The paper is organized as follows. Section II describes
the methodology used to develop this work, while Section 3
presents the results obtained. In the last section, conclusions
and future work are presented.

II. METHODS

This Section details the proposed method and its most
relevant steps. As previously discussed, we compare three
approaches aiming at reducing the effects of imbalanced
classes, using a dataset of real images acquired in a real
industrial production line. Fig. 1 shows an overview of the
workflow, which is detailed as follows.

A. Process Description

Before presenting the details of the proposed methodology,
it is relevant to discuss some details of the industrial process
related to our problem. However, it is worth mentioning that
some details from the process and images were omitted due
to the company’s rights and manufacturer confidentiality.

Fig. 1. Overview of the proposed workflow.

In general, when there is a new production order for a new
part number, a setup must be performed at the production
machines due to the differences among product families. The
part is manually fed into a rotary table that carries the part into
the machine. An industrial robot takes out the part from the
table and position it in front of the inspection vision system.
Then, the part is quickly verified for the vision system, which
is trained for product mixture detection. However, due to light
intensity differences caused by oiled parts, surface treatment
variance and other conditions in the production line, the final
result (Good or Bad) can be erroneous, which is not desired
for an industrial process. Therefore, the ultimate motivation
for the automation and analysis presented in this work is to
improve the results from the visual analysis.

B. Dataset

The dataset used in this work is a real database stored in a
server of manufacturing company. Fig. 2 shows some of the
images in the dataset.

The dataset has 9 imbalanced classes, some of them with
more than 1000 images, most of them around 1000, and one
of them with less than 50 samples. It is shown that there is a
large difference among classes. Table I shows how the data is
distributed within classes.

C. Pre-processing

Image pre-processing is one of the steps for data preparation
to make it more “understandable” to the neural network input
layer. In this work, the first process was the normalization of
image pixels in the range {0..1}. Next, the whole dataset was
randomly divided into training and test, with a 70%/30% ratio.

D. Convolutional Network Architecture

CNNs were proposed and tested for the first time in 1998
to handle two-dimensional inputs, such as images, in which
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Fig. 2. Samples of the mechanic parts of several classes.

TABLE I
CLASS DISTRIBUTION.

Class Images
Class 0 1569
Class 1 1116
Class 2 1283
Class 3 1306
Class 4 917
Class 5 924
Class 6 44
Class 7 1568
Class 8 1582

feature learning was achieved by stacking convolutional and
pooling layers [9], [10]. As detailed in [11], CNN is a feed-
forward neural network that consists of convolutional layers
and fully connected layers, as well as associated weights and
pooling layers. In general, CNNs have the ability to learn
different levels of representation for high-dimensional data, so
that they can learn abstract, essential, and high-order features
from raw data. The convolutional layer applies a set of number
filters to obtain the feature maps of input images. The pooling
layer downsamples the data to reduce the feature dimensions
of the input. Finally, the fully connected layers are responsible
for computing the class score, i.e., the classification. Table II
shows the architecture of the CNN chosen for this work.

E. Class Removal

We selected three of the most recurrent approaches to deal
with imbalanced data. The simplest way to deal with the class
imbalance problem is to treat the minority class of the dataset
as an outlier and, then, eliminating it. In this case, there is a

TABLE II
CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE.

Layer Outputs Parameters
Conv2D 6384788 224

MaxPool2D 3192398 0
Conv2D-1 31923916 1168

MaxPool2D-1 15911916 0
Conv2D-2 15911932 4640

MaxPool2D-2 795932 0
Dropout 795932 0
Flatten 149152 0
Dense 128 19091584

Dense-1 9 1161
Output 9 –

class with less than 50 images which is around 5% of the next
minority class.

F. Weights compensation

The weights compensation method penalizes mistakes in
samples of a given class i using weights different from
one. Hence, higher class-weight means that more emphasis
is given on that class. In the imbalanced context, classes
that are less frequent than others, increase the class weight
relative to classes that are more frequent. Table III shows the
corresponding percentage of each class correlated to class 8
as majority. They are calculated as wj = S

C·Sj
, where wj is

the weight for class j, S is the total amount of samples for all
classes, C is the total number of unique classes in the dataset,
and Sj is the total amount of images in the respective class.

TABLE III
WEIGHTS FOR CLASS.

Class Weight
Class 0 0.73
Class 1 1.02
Class 2 0.89
Class 3 0.88
Class 4 1.25
Class 5 1.24
Class 6 26.03
Class 7 0.73
Class 8 0.72

G. Data Augmentation

Data augmentation is a compelling method to reduce over-
fitting problems [12]. Data augmentation introduces artificial
images to the dataset by either warping or oversampling.
Data warping introduce transformations in the existing images,
however preserving the labels. On the other hand, oversam-
pling creates synthetic instances and adds them to the training
set [13]. In this work, we use the SMOTE approach. The
main idea is to create new artificial images for each class until
each one reaches the same number of images in the majority
class. The original dataset contained more than ten thousand
images, distributed in nine classes. With the data augmentation
oversampling process, all classes will increase the total number
of images to more than fourteen thousand.
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In the industrial production line, a robot shows the parts
to the vision system to take the photos. The robot has a high
accuracy in terms of positioning. Based on this fact, changes in
position and rotation are considered negligible. By inspecting
some images, the only features that seem to be more likely
for data generation is brightness, blur, and noise. Fig. 3 shows
how subtle are the differences between an original image and a
synthetic image with brightness, blur, and noise augmentation.

Fig. 3. Brightness, blur, and noise augmentation.

H. Evaluation metrics

We used different metrics to evaluate our results. The first
one is the Precision, defined as:

Precision =
TP

TP + FP
, (1)

in which, TP are the True Positives and FP the False Posi-
tives. The next metric is the Recall or Sensitivity, formulated
as:

Recall =
TP

TP + FN
, (2)

where FN correspond to the False Negatives. With those
metrics, one can define the F1-score, which is simply the
harmonic mean between precision and recall:

F1score = 2 · Precision ·Recall

Precision+Recall
. (3)

III. RESULTS

In this Section, the results of the application of the four
methods presented before (Section II) are explained in details.

A. Baseline

It is essential to have a baseline model for future comparison
with the other methods that will be tested. For this baseline, we
adopt the original distribution of the dataset. The classification
results are shown in Table IV, and the corresponding confusion
matrix is shown in Figure 4.

By analyzing the confusion matrix of Fig. 4, it is observed
that class 8 presented the most relevant prediction errors. There
is a significant misclassification between this class and classes
1 and 3. By inspecting the images in each of these classes,
we can notice that the family of products analyzed have close
similarities, as shown in Figure 2. Possibly, this is the main
cause of prediction errors and relatively low F1-Score shown
in Table IV.

TABLE IV
BASELINE RESULTS.

Class Precision Recall F1-Score #Images
C0 0.998 0.989 0.993 452
C1 0.889 0.824 0.855 341
C2 0.997 0.995 0.996 376
C3 0.934 0.932 0.933 395
C4 1.000 0.982 0.991 281
C5 0.978 0.996 0.987 268
C6 0.941 1.000 0.970 16
C7 0.991 0.998 0.994 441
C8 0.841 0.889 0.864 476

Macro avg 0.952 0.956 0.954 3046
weighted avg 0.950 0.949 0.949 3046

Fig. 4. Confusion Matrix - Baseline.

B. Class removal approach

Once the minority class is much smaller than the other
classes, it is possible to remove that class from the original
dataset. Table V shows the results for the class removal
approach.

TABLE V
RESULTS FOR THE CLASS REMOVAL APPROACH.

Class Precision Recall F1-Score #Images
C0 0.998 1.000 0.999 452
C1 0.881 0.979 0.928 341
C2 0.997 0.997 0.997 376
C3 0.950 0.906 0.927 395
C4 0.993 0.979 0.986 281
C5 0.985 0.996 0.991 268
C7 0.989 0.998 0.993 441
C8 0.940 0.893 0.916 476

Macro avg 0.967 0.969 0.967 3030
weighted avg 0.966 0.966 0.966 3030

By inspecting the confusion matrix in Fig. 5, we can notice
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that there are more minor errors than in the baseline, primarily
for class 1. However, this approach was not to successfully
sort out the class 8, which still have several prediction errors.
Although the class removal approach results seem to show
better results, a real dataset from a factory production line
could take samples from another period where the minority
class might be more expressive and could not be removed.

Fig. 5. Confusion matrix - Class Removal.

C. Weights compensation approach

The next approach compensates the difference of instances
among classes by using relative weights, based on the majority
class. First, it is needed to check how many samples there
are in each class. Then, the difference in the percentage of
each class related to the majority one is calculated, which will
be the weight compensation. Table VI shows the results for
this approach. It is observed that results are somewhat similar
compared to the baseline.

TABLE VI
RESULTS FOR THE WEIGHT COMPENSATION APPROACH.

Class Precision Recall F1-Score #Images
C0 0.996 0.998 0.997 452
C1 0.902 0.921 0.911 341
C2 0.995 0.995 0.995 376
C3 0.967 0.954 0.961 395
C4 1.000 0.989 0.995 281
C5 1.000 0.989 0.994 268
C6 0.889 1.000 0.941 16
C7 0.998 1.000 0.999 441
C8 0.916 0.916 0.916 476

Macro avg 0.962 0.974 0.968 3046
weighted avg 0.969 0.969 0.969 3046

The confusion matrix (Fig. 6) shows that improvements
were achieved for class 1, in which almost all images were
classified accurately. However, class 8 resulted in the worst
results. In the baseline, 423 images were correctly classified,

but only 210 out of 476 were correctly classified in this
method, less than 50%.

Fig. 6. Confusion matrix - Weights Compensation.

D. Data augmentation approach

Data augmentation introduces new artificial images to the
dataset by either warping or oversampling [13]. Data warping
transforms existing images, such as their label is preserved. On
the other hand, oversampling creates synthetic instances and
adds them to the training set. We selected the synthetic minor-
ity oversampling technique (SMOTE) in this work. Results of
classification with data augmentation are shown in Table VII.

TABLE VII
RESULTS FOR THE DATA AUGMENTATION APPROACH.

Class Precision Recall F1-Score #Images
C0 0.998 0.991 0.994 474
C1 1.000 0.998 0.999 474
C2 0.986 0.980 0.983 475
C3 0.996 1.000 0.998 475
C4 0.976 0.942 0.959 474
C5 0.996 1.000 0.998 475
C6 1.000 0.998 0.999 474
C7 1.000 0.996 0.998 474
C8 0.929 0.974 0.951 475

Macro avg 0.987 0.986 0.986 4286
weighted avg 0.987 0.986 0.987 4286

In the confusion matrix of Fig. 7, it is observed an im-
provement in the classification accuracy. In this approach
the classifier was not severely biased towards the majority
class. However, there are some classification errors between
in classes 4 and 8 (25 images). A deeper analysis of this
issue reveals that the products from those classes have very
similar shapes, which might sometimes make images hard to
distinguish. Notwithstanding, with this approach almost all
prediction errors were reduced to zero, except for a single
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class. The problem of predicting class 8 was reduced, which
was more complex to achieve in the previous methods.

Fig. 7. Confusion matrix - Data Augmentation.

E. General comparisons

Table VIII summarizes all the F1-score values for each
approach. We can notice that the best result was achieved by
using data augmentation. Nevertheless, the weights compensa-
tion method results were relatively close, suggesting that this
methodology could, also, be useful for solving the industrial
image classification problem.

TABLE VIII
AVERAGE F1 SCORE.

Method F1-Macro F1-Weighted #Images
Baseline 0.954 0.949 3046

W/O minority class 0.967 0.966 3030
Weights compensation 0.968 0.969 3046

Data augmentation 0.986 0.987 4286

IV. CONCLUSION AND FUTURE WORK

In this paper we compared tree approaches for mitigating
the imbalance problem of an industrial image classification
problem. This is a real problem daily faced in production lines.
We used a CNN to extract features and classify images into 8
different (but, quite similar) classes.

First, a simple baseline was created, using the raw imbal-
anced dataset. Although, at first sight, the results seem to
be good, they are not satisfactory considering the industrial
production standards. The first, and simplest, approach used
was removing the minority class. Next, a weight compensation
to balance the loss function for minority classes was applied to
change the imbalanced dataset to a balanced one. Finally, the
data augmentation was used to balance the number of exam-
ples per class. Overall, the data augmentation showed the best

results in terms of F1-score, with the weights compensation
method achieving similar results, but less images are required.

An immediate future work will test the model in the real
environment of the production line, and collect more data
for future analysis and comparison to the current solution.
Actually, the computer vision system has an error of around
3% of false rejection, which directly influences productivity
and performance indicators. If this model would be able sort
out this problem with the precision shown, production will
increase, leading to higher production volumes, which is the
final target for this work.
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