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Abstract
Human action recognition (HAR) is a topic widely studied in computer vision and pattern recognition. Despite the success

of recent models for this issue, most of them approach HAR from the closed-set perspective. The closed-set recognition

works under the assumption that all classes are known a priori and they appear during the training and test phase. Unlike

most previous works, we approach HAR from the open-set perspective, that is, previously unknown classes are considered

in the model. Additionally, feature extraction for HAR in the context of open set is still underexplored in the recent

literature, since one needs to represent known classes with a low intra-class variance to reject unknown examples. To

achieve this task, we propose a deep metric learning model named triplet inflated 3D convolutional neural network (TI3D),

which builds upon the well-known I3D model. TI3D is a representation learning model that takes as input video sequences

and outputs 256-dimensional representations. We perform extensive experiments and statistical comparisons on the UCF-

101 dataset using a 30-fold cross-validation procedure in 25 different scenarios with varying degrees of openness and a

varying number of training and test classes. Results reveal that the proposed TI3D achieves better performance than non-

metric learning models in terms of F1 score and Youdens index, indicating a promising approach for open-set video action

recognition.
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1 Introduction

Human action recognition (HAR) is a recurrent subject in

the fields of computer vision and pattern recognition.

Recently, many works have achieved impressive perfor-

mance on HAR from the closed-set perspective [6, 46, 59].

Closed-set classification works under the assumption that

all classes are known a priori. However, in real-world

scenarios, this assumption is often false, particularly in

HAR, where entirely new classes can be created at will.

That is, individuals can create new actions, movements, or

gestures that are not previously known by the model. For

this reason, HAR is naturally an open-set problem.

Open-set recognition has subtle differences with some

other recognition tasks. For instance, classification with a

reject option is a similar, yet different, task. In this case, the

classifier still works under the closed-set assumption, and

the purpose of rejecting is not to identify new classes.

Instead, the goal is to avoid errors in low-confidence pre-

dictions [12]. Another similar task to open-set recognition

is anomaly detection [14, 29]. Models such as the one-class

support vector machine (OC-SVM) [35] and the support

vector data descriptor (SVDD) [43] separate known data

from their surroundings in all directions in the feature

space. However, these models have poor performance in

open-set recognition tasks [19], mainly because all known

classes are usually treated as a single class in the feature

space, ignoring the possible differences between them [12].

The ability to deal with the unknown is a widely studied

subject in the open-set recognition field [12]. Unlike tra-

ditional classifiers, an open-set classifier should correctly

classify samples that belong to known classes and reject

those that belong to unknown classes, as shown in Fig. 1.
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To achieve open-set classification, the model needs to

delimit the space occupied by known classes. The

remaining feature space is defined as open space, where

unknown classes may appear.

The open-set HAR problem is highly complex and still

under-explored, with only a few works found in the recent

literature [5, 30, 38, 61]. The challenges for performing

open-set HAR are many:

• One must develop a feature extractor capable of

generating robust representations of human actions

using videos as input.

• It is necessary to have a classifier capable of rejecting

inputs belonging to unknown classes.

• The evaluation protocol for open-set classification is

often computationally expensive, in special for video-

related tasks such as HAR. Moreover, evaluation

protocols for open-set HAR are still ill-defined with

no globally used protocol, which preclude direct

comparison between methods in the literature.

For tackling the feature learning problem, we introduce the

triplet inflated 3D convolutional neural network (TI3D),

which is based on the I3D model [6]. TI3D performs

metric learning (ML) to map input videos to a latent space

where the cosine distance corresponds to a measure of

semantic similarity between human actions.

In open-set problems, it is important to have compact

and well-defined boundaries around known classes. In this

case, compact boundaries that comprise small regions of

open space are preferred, as opposed to large boundaries,

which increase the risk of falsely accepting unknown

samples. This concept is known as open-space risk [33].

Compact class boundaries are more easily achieved if intra-

class distances are small and inter-class distances are large

in the feature space, which is the core idea of ML. In this

sense, TI3D indirectly contributes to minimizing the open

space risk.

For solving the classification problem, we employ the

extreme value machine (EVM) [31]. The EVM receives

the representations generated by TI3D, classifies known

samples, and rejects those of unknown classes. We show

that the threshold parameter of the EVM dictates the

classification performance and should be carefully chosen.

We also propose an evaluation protocol for open-set

HAR. As suggested by early works on open-set recogni-

tion, our method is evaluated using a k-fold cross-valida-

tion procedure and varying degrees of openness [33],

which is measured as a function of the number of classes in

the training and test sets. Moreover, we ensure that similar

degrees of openness appear through different numbers of

training and test classes, showing that openness is not the

only factor that affects the classification performance, and

thus contributing to the evaluation protocol problem. We

perform extensive experiments using the UCF-101 data-

set [40] and show that deep metric learning with TI3D

consistently improves open-set performance on HAR when

compared to non-metric learning methods.

The main contributions of this paper are:

Fig. 1 Overview of the open-set human action recognition problem.

In the closed-set scenario (left), new classes that appear during the

test phase are wrongly classified as known. In the open-set scenario

(right), new classes appear in what is called open space and are

classified as unknown. Figure best viewed in color (color figure

online)
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• The TI3D model, which performs deep metric learning

to obtain high-quality feature representations for open-

set HAR;

• A framework for performing open-set video HAR that

combines TI3D and the extreme value machine;

• An evaluation protocol for open-set HAR;

• A performance analysis under different experimental

settings and parameter values;

• A detailed statistical analysis of the results, which

suggests that our feature learning model significantly

improves the open-set HAR classification performance

when compared to non-metric learning models.

This paper is organized as follows: Section 2 presents

related works found in recent literature. Section 3 addres-

ses the fundamental topics related to the method proposed

for open-set HAR. Section 4 describes in detail the pro-

posed method. Section 5 presents the experimental set-

tings, their results, and a discussion. Finally, Sect. 6 reports

the general conclusions drawn and suggests future research

directions.

2 Related works

Unlike traditional image classification tasks, video classi-

fication depends upon complex spatiotemporal relation-

ships among entities, making it a much more challenging

task. Recently, convolutional neural networks have been

used for solving several vision-related problems with great

success [17, 21, 41]. However, traditional 2D CNNs are

inherently fit for two-dimensional data and may be ineffi-

cient for solving video-related tasks [56].

A natural way to mitigate this shortcoming is to add

recurrent layers on the top of the CNN, thus adding a

‘‘temporal-like’’ dimension to the classification model, as

done in [8]. Although this approach seems to be more

effective than a regular CNN, it raises problems. As

pointed out by [6], recurrent models such as the long short-

term memory (LSTM) network may fail at capturing fine

low-level motion. Moreover, they demand a much higher

computational power, require more data to train, and are

more likely to overfit.

Another interesting approach to the video classification

problem was proposed by [39]. The authors explicitly

provide motion information to the CNN in the form of

precomputed optical flow (OF). The authors also introduce

the concept of two-stream convolutional networks, which

has been widely used in succeeding works [51, 56, 63].

A different line of research has approached the video

classification problem with a different idea. For

instance, [45] employed 3D convolution filters to learn

both spatial and temporal information from video

sequences. This approach is commonly referred to as 3D

convolutional network (or C3D, for short). These filters

operate over both spatial and temporal dimensions, gen-

erating 3D feature maps. Actually, 3D convolutional net-

works have since become popular for video classification

tasks [7, 16, 27, 46, 50, 52, 53, 59]. The main issue with

this approach is that 3D CNNs have substantially more

parameters than a regular CNN and, thus, require more data

to be trained.

It was not until the work of [6] that a sufficiently large

video dataset was introduced: Kinetics. With 400 classes

and over 240K training videos, the dataset leveraged the

performance of succeeding models. Another contribution

of [6] was the inflated 3D convolutional neural network

(I3D). The I3D model pre-trained on Kinetics has been

shown to generalize well to other datasets and has inspired

other research projects [46, 59].

Despite their impressive performance in video classifi-

cation tasks, most of the current works were designed for a

closed-set scenario [2, 10, 15, 22, 44, 47] and provide no

means for rejecting data belonging to previously unseen

classes. Some works approach this problem by introducing

a reject mechanism in neural network models. Bendale and

Boult [4] presents the OpenMax model that is capable of

estimating the probability of an input belonging to an

unknown class by using meta-recognition. Shu et al. [37]

introduces the deep open classification (DOC) model for

open set classification of text documents using a 1-vs-rest

final layer of sigmoids.

Other works have approached the open-set problem with

non-deep classifiers such as the 1-vs-set machine [33],

W-SVM [32], nearest non-outlier (NNO) [4], POS-

SVM [34] and, more recently, the extreme value machine

(EVM) [31].

Unlike deep learning-based classifiers, non-deep classi-

fiers do not learn representations automatically, and thus

are sensitive to the quality of the features used as input.

Ideally, features should be extracted such that similar

inputs are mapped close from each other and dissimilar

inputs are mapped far from each other. This kind of rep-

resentation is often achieved through metric learning

(ML) [20, 25].

ML consists of learning a distance function that mea-

sures the similarity between inputs. Classic ML algorithms,

such as the large margin nearest neighbor (LMNN) [54],

have inspired more recent deep ML models. Many of these

models have been used for facial recognition [28], such as

Deep Face [42], FaceNet [36], SphereFace [24], and Cos-

Face [49]. Other works have also successfully applied deep

ML for object classification [18, 58], one-shot learn-

ing [48], and video-related tasks [23, 57]. As a matter of

fact, the relationship between ML and open-set recognition

is still under-explored in the literature. Some very recent
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works have accessed the impact of ML in open-set image

and product classification [26, 60]. However, to the best of

our knowledge, this is the first work to address open-set

HAR in videos using deep ML.

Regarding open-set human action recognition, very few

recent works can be found in the literature. Shu et al. [38]

presents the Open Deep Network (ODN) model, which

uses multi-class triplet thresholding to detect unknown

classes. Yang et al. [61] employs micro-Doppler signatures

for recognizing human activities. Busto et al. [5] investi-

gates domain adaptation strategies, and [30] proposes a

voting-based system for novelty detection in open-set

action recognition. Despite tackling a similar problem, our

work differs from the above-mentioned works in the sense

that our model focuses on feature learning for open-set

HAR, instead of novelty/unknown detection or classifica-

tion mechanisms. The classification task is handled by the

EVM in all cases to ensure a fair comparison between

different feature learning models. In principle, TI3D could

serve as the backbone network for other open-set classifiers

as well, including some of the above-cited works.

3 Theoretical aspects

3.1 Inflated 3D convolutional neural networks

The inflated 3D convolutional neural network (I3D) was

proposed by [6] for human action recognition in videos.

The model consists of two streams of the Inception V1

model with inflated kernels. The inflation consists of

extending kernels learned on ImageNet from 2D to 3D to

initialize the I3D model. As in previous models, one of the

streams uses RGB images as input, while the other uses

precomputed OF features. The optimization is performed

using standard backpropagation with a softmax cross-en-

tropy loss.

Because of its state-of-the-art performance and sim-

plicity, we used the I3D model, pre-trained on ImageNet

and Kinetics, as the backbone network for open set video

classification. Since the goal of this work is not an in-depth

exploration of the temporal aspect of the model, we dis-

carded the Optical Flow stream and used only the RGB

stream. For more details about the model, refer to [6].

3.2 Extreme value machine for open-set
recognition

The Extreme Value Machine (EVM) was introduced

by [31] as an open-set classifier. In the EVM, each class in

the training set is represented by a set of extreme vectors,

each of which associated with a Probability of Sample

Inclusion W.

The EVM uses the concept of margin distributions,

which is the distribution of the half margin distances of the

observed data. Let xi be a training sample and yi be its

label, and given xi and xj, where 8j; yj 6¼ yi, and xj is the

nearest point to xi, the margin estimate for the pair (xi; xj)

is given by:

mij ¼
jjxi � xjjj

2
: ð1Þ

Computing Eq. (1) for the s nearest points allows for

estimating a distribution of the margins. To estimate this

distribution, the extreme value theorem (EVT) is used. The

margin distribution for the minimum values of xi is then

given by a Weibull distribution [31]. The probability of

inclusion W for a point x0 is given by

Wðxi; x0; ji; kiÞ ¼ exp � xi � x0k k
ki

� �ji

; ð2Þ

where xi � x0k k is the distance between x0 and xi, ki and ji
are the Weibull shape and scale parameters, respectively.

W is an EVT rejection model where Wðxi; x0; ji; kiÞ
corresponds to the probability that a sample does not lie

beyond the negative margin. Despite having zero proba-

bility around the margin, the model still supports a soft

margin. The probability that a point x0 belongs to class Cl is

given by Eq. 3:

P̂ðCljx0Þ ¼ argmaxi:yi¼Cl
Wðxi; x0; ji; kiÞ: ð3Þ

Then, the final classification function is:

y� ¼
(
argmaxi:yi¼Cl

P̂ðCljx0Þ; if P̂ðCljx0Þ > d

unknown, otherwise
; ð4Þ

where d is a threshold that defines the boundary between

known and open space.

In order to reduce the size of the model, many redundant

½xi;Wðxi; x0; ji; kiÞ� pairs can be discarded with minimal

impact on performance. Let xi be a point and

Wðxi; x0; ji; kiÞ be its corresponding model. Let xj be a

point in the same class and Wðxj; x0; jj; kjÞ be its corre-

sponding model. Let 1 be the probability threshold above

which the pair ½xj;Wðxj; x0; jj; kjÞ� is considered redundant

with respect to ½xi;Wðxi; x0; ji; kiÞ�. If Wiðxi; xj; ji; kiÞ� 1,
then ½xj;Wðxj; x0; jj; kjÞ� is redundant. Finally, let IðxiÞ be

an indicator function that keeps or discards a pair:

IðxiÞ ¼ 1; if xi;Wðxi; x0; ji; kiÞh i kept
IðxiÞ ¼ 0; otherwise.

�
ð5Þ

If the pair ½xi;Wðxi; x0; ji; kiÞ� is kept, it becomes an

extreme vector. The model reduction is, then, defined by

the following integer linear programming objective

function:
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minimize
XNl

i¼1

IðxiÞ;

s.t. 8j; 9i j IðxiÞWðxi; x0; ji; kiÞ > 1;

ð6Þ

where Nl is the number of training points of class Cl. For a

more detailed explanation about the EVM, refer to the

original paper [31].

4 Method

An overview of the proposed method for evaluating the

performance of TI3D, as well as baseline approaches, is

shown in Fig. 2. Initially, known and unknown classes are

randomly selected from the UCF-101 dataset. Next, videos

are preprocessed and passed through one of the base net-

works, which are used to precompute video representations

and initialize the TI3D model. The TI3D model is then

trained to maximize inter-class and minimize intra-class

cosine distances between videos. Finally, new representa-

tions are extracted from TI3D and classified by the EVM.

This process is repeated 30 times for each experiment with

different random seeds. The following sections will detail

each step of the processes.

4.1 Data sampling

In this work we used the UCF-101 [40] dataset. This

dataset has been used in other human action recognition

works in the literature [6, 46, 59]. It contains 101 classes of

human actions and over 27 hours of video data.

The fold selection strategy consists of randomly

selecting Ck known classes from the pool of 101 classes.

Once the known classes are selected, 70% of the videos

belonging to these classes are used for training and 30% for

testing. The test set is further incremented with Cu

unknown classes, which are also selected at random. This

data sampling protocol generates subsets of data under

different degrees of openness. We compute openness as

suggested by [33]:

openness ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Tr

Teþ Ta

r
; ð7Þ

where Tr, Te, and Ta stand for the number of training, test,

and target classes. Since all training classes are included

during the test time, we set Tr = Ta. This is equivalent to

the redefined openness equation suggested by [12].

The UCF101 dataset demands additional attention con-

cerning how the known classes are split into training and

test sets. Within each class of the dataset, there are groups

of videos that have been sampled from the same source

video, rendering them very similar to each other. Hence,

we ensure that all videos belonging to a given group remain

in the same split.

4.2 Data preprocessing

The data preprocessing steps follow the guidelines pro-

posed by [6]. RGB frames are normalized in the range

½�1. . .1� and resized so that the smallest side contains 256

pixels, preserving the aspect ratio.

4.3 Base network models

Since TI3D requires a base network to build upon, we

consider two variants of the I3D model. The first model

was pre-trained on ImageNet and Kinetics, as provided by

the original authors [6]. The second model consists of the

original I3D model with an additional fine-tuning step

using data from the known classes of the UCF-101 dataset.

For fine-tuning the I3D, we removed the original clas-

sification block used in kinetics and replaced it with a new

classification block with Ck output neurons, softmax acti-

vation, and cross-entropy loss.

Fig. 2 Overview of the proposed method
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The training steps follow those proposed in [6]. A

package of 64 frames is used at a time. These frames are

selected using a random temporal crop. Moreover, a ran-

dom spatial crop selects a 224� 224� 64 region of the

cuboid. Last, the cuboid has a 50% chance to receive a

horizontal flip (mirror). These steps are applied at each

epoch of training for data augmentation purposes.

Once again the set of known classes is split into train

and validation sets at a 70%/30% ratio for fine-tuning the

I3D. We use the stochastic gradient descent (SGD) opti-

mizer with a learning rate of 0.1, weight decay of 10�5, and

the Nesterov momentum of 0.9. The model was trained for

10 epochs or until the validation accuracy stagnated in 0.95

or higher. In most cases, the validation reached near-per-

fect accuracy since the reduced number of classes and

closed-set scenario makes the problem trivial for I3D. The

batch size was set to 6, due to hardware constraints.

4.4 Triplet inflated 3D convolutional neural
network (TI3D)

Triplet networks were introduced by [18] and popularized

in [36] for learning face embeddings. Its formulation was

inspired by a classic metric learning approach called large

margin nearest neighbors (LMNN) [54].

The main idea behind triplet networks is to map data to a

space where distance corresponds to a measure of semantic

similarity. The triplet network model takes three inputs:

anchor, positive, and negative. For instance, in a human

action recognition task, the Anchor (a) is a video of any

given class, the positive (p) is a video of the same class,

and the negative (n) is a video of a different class.

Given N(a, p, n) triplets, the triplet loss function L is

defined as shown in Eq. 8, where i is the triplet index,

f ðxaÞ, f ðxpÞ, f ðxnÞ are the anchor, positive, and negative

embeddings, a is a margin parameter, and þ indicates the

loss is � 0.

L ¼
XN
i¼1

k f ðxai Þ-f ðx
p
i Þ k22 - k f ðxai Þ-f ðxni Þ k22 þa

� �
þ: ð8Þ

In principle, optimizing the model using the triplet loss

function produces discriminant features and well-separated

classes by a margin of at least a in the Euclidean space.

However, based on previous experiments, we find that the

Euclidean distance is not the most appropriate for the task

of video HAR. Therefore, we turn to the cosine distance.

The cosine distance H between two feature vectors a

and b is given by:

Hða; bÞ ¼ 1� a � b
k a kk b k : ð9Þ

The updated cosine triplet loss function becomes:

LH ¼
XN
i¼1

Hðf ðxai Þ; f ðx
p
i ÞÞ �Hðf ðxai Þ; f ðxni ÞÞ þ a

� �
þ:

ð10Þ

Our TI3D network is built by discarding the softmax layer

of the pre-trained I3D and appending two additional fully

connected layers to the end of the model, with 512 and 256

output neurons. The weights in new layers are initialized

with the Glorot uniform method [13]. During the opti-

mization, we freeze the weights of the I3D network and

optimize only the newly added fully connected layers. This

way, we can use precomputed features and greatly speed up

the training process. The main drawback of this approach is

that it requires a backbone network to build upon. How-

ever, it has been shown that starting from a pre-trained

model can lead to much better results than training a model

from scratch [6].

The TI3D is optimized using the triplet loss (Eq. 10)

with the cosine distance (Eq. 9) as the distance function.

We chose this function empirically, based on previous

experiments that have shown a significant performance

gain compared to the Euclidean distance. This difference in

performance with respect to high-dimensional feature

vectors was also observed in [31] and elaborated in [1].

4.5 Triplet mining

Once the base network was defined, we used its weights to

initialize TI3D. An important aspect of our TI3D model is

the formation of training triplets. Since using all possible

combinations of triplets is both unfeasible and does not

lead to good performance (see [36]), we turned to a triplet

mining strategy. For each training epoch, semi-hard and

hard triplets were mined. Semi-hard triplets are those in

which the distance between the anchor and positive videos

is smaller than the distance between the anchor and nega-

tive videos, and such distance is smaller than the desired

margin, i.e.,

Hðf ðxaÞ; f ðxpÞÞ\Hðf ðxaÞ; f ðxnÞÞ

\Hðf ðxaÞ; f ðxpÞÞ þ a:
ð11Þ

Hard triplets are those in which the distance between the

anchor and positive videos is larger than the distance

between the anchor and negative videos, i.e.,

Hðf ðxaÞ; f ðxpÞÞ[Hðf ðxaÞ; f ðxnÞÞ: ð12Þ

In our experiments, the margin parameter a was set to 0.2.

The network was trained for 50 epochs or until no more

semi-hard or hard triplets could be mined. In all experi-

ments, we used SGD with learning rate of 0.001 and a

batch size of 128.
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4.6 Video feature extraction

During the feature extraction step, a package of 250 frames

was fed to the trained network. These frames were not

selected at random. Instead, a central temporal crop was

employed. In cases where the video did not contain 250

frames, we loop the video to obtain the remaining frames.

The spatial crop was also taken from the center of the

image with a resolution of 224� 224 pixels. This process

resulted in a feature vector of 1024 dimensions (I3D) or

256 dimensions (TI3D) per video.

4.7 Classification with the extreme value
machine

The EVM parameters were adjusted as follows. The tail

size s for fitting the Weibull distribution was set to 10,

since the original authors state that there is well-established

for selecting this parameter [31]. The cover threshold 1 was
set to 0.1, so as to simulate a more realistic scenario where

smaller models are preferred because they require less

computational resources. These parameters were kept fixed

in all experiments, since performing parameter optimiza-

tion would require a prohibitively large number of exper-

iments. Moreover, a more in depth investigation regarding

the parameters was presented in [31].

However, we investigated the impact of varying the

probability of inclusion (d). On one hand, [31] searched for

values of d in the range

½1� 10�1; 1:5� 10�1; . . .; 3� 10�1�. On the other hand,

we found that this range was not enough to obtain the best

classification performance. Hence, our search for d was

expanded to smaller and larger probability values, in the

range [1� 10�8, 1� 10�7, ..., 1� 10�1�, and

½4� 10�1; 5� 10�1; . . .; 9� 10�1; 9:9� 10�1�,
respectively.

4.8 Evaluation protocol

The evaluation protocol proposed in this work used the

macro-averaged F1-score, as suggested by previous works

in the context of open-class classification [4, 31, 33]. We

also compute the Youdens index [62] suggested by [34].

The macro-averaged F1-score is the harmonic mean

between macro-averaged precision and recall. In the open

set recognition, only the known classes are used to compute

the F1-score. When a sample that belongs to a known class

is predicted as unknown, it is considered a false negative.

The macro-averaged precision P and recall R are pre-

sented in Eqs. 13 and 14, respectively:

P ¼ 1

Ck

XCk

i¼1

TPi

TPi þ FPi
; ð13Þ

R ¼ 1

Ck

XCk

i¼1

TPi

TPi þ FNi
; ð14Þ

where Ck is the number of known classes during test time;

TP, FP, and FN stand for true positives, false positives, and

false negatives, respectively. Then, the macro-F1-score is

computed as shown in Eq. 15:

F1 ¼ 2� P� R

Pþ R
: ð15Þ

Many previous works consider the macro-F1-score, as

described above, to be an open metric [4, 31, 33]. How-

ever, [34] classifies it as a closed metric. According to the

authors, closed metrics should measure the classifier’s

capability to discriminate known classes from one another,

and open metrics should measure the capability to dis-

criminate known from unknown. In our view, the macro-

F1-score measures the potential to distinguish between

known classes, while also measuring the capability of

rejection in a weak way. We consider it weak because it

only accounts for incorrectly rejected data, but does not

directly account for the data that belongs to unknown

classes.

For measuring the capability to distinguish known from

unknown more directly, we used the Youdens index. It

combines the recall R and the specificity S, as defined in

Eq. 16:

S ¼ TN

TNþ FP
: ð16Þ

The Youdens index J is given by J ¼ Rþ S� 1, and it is

computed as a binary metric, where all samples from

known classes are assigned the known label and unknown

samples are assigned the unknown label. J is defined in the

range ½�1. . .1�, where a score of �1 is achieved by a

classifier that incorrectly classifies all samples, 0 by an

uninformative classifier, and 1 by a perfect classifier.

We compared our method with two variants of the I3D

model, namely I3D trained on ImageNet and Kinetics

(I3D-K) and I3D-K fine-tuned using the known classes

with standard softmax cross-entropy loss (I3D-K ? I3D-

101). The TI3D builds upon these models by performing an

additional fine-tuning step using the cosine triplet loss

(Eq. 10).

In current open-set recognition literature, some works

use evaluation protocols with fixed training, validation and

test sets (no cross-validation) [4, 34, 38, 60], while some

works use 10-fold or less cross-validation proce-

dures [3, 11]. In this work, we consider that cross-valida-

tion is quite important to obtain a robust performance
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measure, since some combinations of classes may be

‘‘easier’’ than others, thus leading to a non-realistic per-

formance evaluation. Actually, in our experiments, the

number of possible known/unknown class combinations is

quite large and, therefore, we report the average results of

30-fold to reduce the possible result bias generated by

random class selection. Although a thorough evaluation

using all possible combinations of classes would be

desired, it is computationally unfeasible to perform such a

large number of experiments with our computational

resources. However, we expect that a 30-fold cross-vali-

dation provide a good approximation to the actual perfor-

mance of our model.

5 Experiments and results

For clarity, this section is divided as follows: Sect. 5.1

reports the experimental parameters, Sect. 5.2 presents the

results obtained in terms of the F1-score and Youdens

index. Section 5.3 provides an analysis of the results with

respect to openness and the classification threshold d.

5.1 Control parameters

For a thorough evaluation of the proposed method in dif-

ferent scenarios, experiments in multiple settings (regard-

ing the number of training and test classes) were

performed. A total of 25 combinations were done, as

shown in Table 1. For instance, in the first experiment 2

random known classes and 2 random unknown classes

(totaling 4 test classes, where 2 are known and 2 are

unknown) were selected for training and testing, respec-

tively. This sampling strategy allows the evaluation of the

models under different degrees of openness.

Each experiment was evaluated under a set of d values,

as mentioned in Sect. 4.7. Moreover, all experiments

reported in this section were performed in a 30-fold cross-

validation procedure, except for the experiment with 30

train classes and 101 test classes, which was performed on

a 10-fold trial for reasons of computational resources.

5.2 Results

The experimental results are shown in Table 2, and it

includes the mean and standard deviation obtained in the k-

fold cross-validation procedure. Only the results using the

best value of d are presented.

Several observations can be made with respect to the

experimental results. First, it can be observed that on

average, fine-tuning the I3D-K model on the known classes

using a standard softmax cross-entropy loss (I3D-K ? I3D-

101) boosts the open-set performance in terms of F1-score

and Youdens index.

Second, fine-tuning the models with TI3D yields better

results in almost all cases, with a few exceptions where the

models presented the same performance. None of the

experiments have shown a decrease in performance when

using TI3D. It can also be observed that TI3D, on average,

obtained a lower standard deviation than the other methods,

showing that it is more robust regarding the possible

combinations of training and test classes. Finally, the

combination of the three models (I3D-K ? I3D-101 ?

TI3D), followed by I3D-K ? TI3D, which are the main

contributions of this work, presented the best overall

performance.

Figure 3 shows the F1-score in the form of boxplots for

the experiments with 3 known classes (Tr) and 6, 9, 12, and

15 test classes (Te). The line inside the box represents the

mean, the lower and upper limits of the box represent the

first and third quartiles, and the lower and upper lines

outside the box represent the minimum and maximum

values. The boxplot shows that TI3D increased the mean

Table 1 Number of training classes, test classes, and openness of each

experiment

# Train classes # Test classes Openness

2 4 0.18

6 0.29

8 0.36

10 0.42

3 6 0.18

9 0.29

12 0.36

15 0.42

4 8 0.18

11 0.27

15 0.35

18 0.4

5 10 0.18

13 0.25

17 0.32

20 0.37

6 12 0.18

15 0.24

18 0.29

22 0.35

7 14 0.18

18 0.25

22 0.31

25 0.34

30 101 0.32
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F1-score and decreased the deviation in relation to their

non-metric learning baseline models. This suggests that the

ML performed by our model produces feature representa-

tions that are more suitable for open-set tasks. We omitted

the boxplots that measure the Youdens index because they

showed very similar behavior.

5.3 Result Analysis

In open-set recognition, it is a good practice to measure the

performance of the model at increasing degrees of open-

ness [33]. Figure 4a, b present the mean F1-score of each

experiment ordered by degree of openness. The first issue

that comes to attention is the decrease in performance at

the 0.32 openness mark. This decrease corresponds to the

largest experiment, which uses 30 classes for training and

101 for testing. It is also observed that fine-tuning with

TI3D was beneficial in almost every case, emphasizing the

robustness of the technique proposed in this work.

To further analyze the performance of TI3D as com-

pared to non-metric learning models, we perform two

statistical tests: the Friedman test for repeated measures [9]

and the Wilcoxon signed-rank test [55]. We observed a

statistically significant difference in F1-score between

models presented in Table 2 when applying the Friedman

test. The test resulted in a x2r of 40.404 and a p value

\1� 10�5, indicating that there is a significant difference

among the feature extraction models (columns of the

Table). We also performed an analysis using a two-tailed

Wilcoxon signed-rank test, which compares pairs of mod-

els to verify whether they are significantly different. Sta-

tistically significant results were found when comparing

I3D-K and I3D-K ? TI3D (z ¼ �4:37, p value

Table 2 Mean and standard deviations of the k-fold cross-validation procedure obtained with different number of classes used during the training

and test phases

F1 score Youdens index

# Train/test

classes

I3D-K I3D-K ?

TI3D
I3D-K ?

I3D-101

I3D-K ?

I3D-101 ? TI3D
I3D-K I3D-K ?

TI3D
I3D-K ?

I3D-101

I3D-K ?

I3D-101 ? TI3D

2/4 0.87 (0.13) 0.88 (0.11) 0.82 (0.15) 0.91 (0.09) 0.90 (0.10) 0.91 (0.09) 0.87 (0.11) 0.93 (0.07)

2/6 0.87 (0.11) 0.88 (0.09) 0.84 (0.16) 0.88 (0.10) 0.87 (0.12) 0.88 (0.10) 0.86 (0.12) 0.87 (0.10)

2/8 0.87 (0.11) 0.89 (0.08) 0.83 (0.12) 0.85 (0.09) 0.88 (0.10) 0.88 (0.10) 0.81 (0.14) 0.83 (0.11)

2/10 0.90 (0.09) 0.91 (0.07) 0.85 (0.08) 0.89 (0.07) 0.89 (0.10) 0.89 (0.09) 0.85 (0.10) 0.87 (0.09)

3/6 0.85 (0.10) 0.89 (0.07) 0.82 (0.14) 0.87 (0.10) 0.88 (0.08) 0.92 (0.05) 0.88 (0.09) 0.90 (0.08)

3/9 0.84 (0.09) 0.88 (0.06) 0.87 (0.08) 0.89 (0.07) 0.86 (0.08) 0.88 (0.07) 0.88 (0.08) 0.89 (0.07)

3/12 0.85 (0.09) 0.89 (0.07) 0.86 (0.09) 0.89 (0.07) 0.83 (0.10) 0.87 (0.08) 0.85 (0.11) 0.87 (0.07)

3/15 0.84 (0.11) 0.89 (0.04) 0.86 (0.08) 0.88 (0.07) 0.82 (0.09) 0.86 (0.06) 0.82 (0.10) 0.84 (0.08)

4/8 0.83 (0.15) 0.89 (0.07) 0.83 (0.11) 0.87 (0.08) 0.88 (0.07) 0.91 (0.06) 0.87 (0.08) 0.90 (0.07)

4/11 0.84 (0.13) 0.87 (0.07) 0.85 (0.10) 0.89 (0.07) 0.86 (0.08) 0.89 (0.06) 0.87 (0.08) 0.89 (0.07)

4/15 0.83 (0.09) 0.87 (0.06) 0.85 (0.06) 0.87 (0.06) 0.82 (0.08) 0.86 (0.07) 0.81 (0.07) 0.83 (0.08)

4/18 0.86 (0.08) 0.89 (0.07) 0.88 (0.07) 0.89 (0.06) 0.82 (0.10) 0.86 (0.09) 0.86 (0.08) 0.86 (0.08)

5/10 0.79 (0.14) 0.85 (0.13) 0.88 (0.07) 0.89 (0.06) 0.86 (0.09) 0.90 (0.08) 0.91 (0.06) 0.92 (0.05)

5/13 0.83 (0.07) 0.86 (0.06) 0.85 (0.09) 0.87 (0.08) 0.85 (0.07) 0.88 (0.06) 0.87 (0.08) 0.88 (0.07)

5/17 0.82 (0.09) 0.86 (0.06) 0.86 (0.06) 0.88 (0.06) 0.81 (0.10) 0.84 (0.07) 0.85 (0.07) 0.87 (0.06)

5/20 0.80 (0.07) 0.85 (0.04) 0.88 (0.05) 0.88 (0.04) 0.78 (0.08) 0.81 (0.07) 0.85 (0.06) 0.86 (0.07)

6/12 0.81 (0.10) 0.88 (0.09) 0.85 (0.08) 0.86 (0.07) 0.85 (0.08) 0.91 (0.06) 0.89 (0.06) 0.90 (0.05)

6/15 0.83 (0.07) 0.87 (0.06) 0.85 (0.07) 0.86 (0.07) 0.84 (0.07) 0.88 (0.06) 0.88 (0.06) 0.88 (0.06)

6/18 0.80 (0.10) 0.85 (0.06) 0.85 (0.06) 0.87 (0.06) 0.82 (0.07) 0.85 (0.07) 0.85 (0.07) 0.86 (0.07)

6/22 0.81 (0.08) 0.87 (0.05) 0.87 (0.06) 0.87 (0.06) 0.80 (0.07) 0.85 (0.05) 0.84 (0.07) 0.85 (0.07)

7/14 0.79 (0.08) 0.84 (0.06) 0.88 (0.05) 0.88 (0.05) 0.84 (0.06) 0.88 (0.05) 0.90 (0.05) 0.91 (0.04)

7/18 0.82 (0.06) 0.86 (0.06) 0.87 (0.06) 0.87 (0.05) 0.84 (0.06) 0.88 (0.04) 0.88 (0.06) 0.88 (0.05)

7/22 0.79 (0.07) 0.83 (0.07) 0.88 (0.05) 0.88 (0.04) 0.80 (0.07) 0.83 (0.06) 0.88 (0.06) 0.88 (0.06)

7/25 0.79 (0.07) 0.84 (0.07) 0.85 (0.06) 0.86 (0.05) 0.77 (0.09) 0.81 (0.09) 0.83 (0.07) 0.83 (0.06)

30/101 0.64 (0.03) 0.70 (0.05) 0.74 (0.03) 0.75 (0.03) 0.63 (0.03) 0.68 (0.04) 0.72 (0.03) 0.73 (0.03)

Mean 0.82 (0.09) 0.86 (0.07) 0.85 (0.08) 0.87 (0.07) 0.83 (0.08) 0.86 (0.07) 0.86 (0.08) 0.87 (0.07)

Best results are highlighted
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\1� 10�5), I3D-101 and I3D-101 ? TI3D (z ¼ �3:91,

p value ¼ 8� 10�5), I3D-K and I3D-101 (z ¼ �2:54,

p value ¼ 1:1� 10�2). These results suggest that fine-

tuning with TI3D increases open-set HAR performance.

Results also suggest that fine-tuning the model using the

known classes with a standard softmax cross-entropy loss

also improves the performance, however, at a lower sig-

nificance level when compared to TI3D.

Another interesting factor is that there is no clear

decrease in performance as openness increases, unlike

many other works in open-set recognition [4, 31–33]. This

suggests that in our case, the difficulty of the problem

increases as a function of the raw number of classes, as

opposed to the openness. This is shown in Fig. 4c, d, where

the experiments are sorted by the number of training and

test classes. Notice that the experiment with 30 training

classes and 101 test classes produced a clear drop in per-

formance, despite of having an openness of 0.32 (Table 1).

This observation was only possible because our experi-

ments allow the same degree of openness to be produced

by different numbers of training and test classes, which is

often neglected in other works.

Finally, we analyzed the parameter choice related to the

EVM classifier. As mentioned in Sect. 4, different values

of d were tested. Finding the optimal value of d for the base
models and the for TI3D is quite different. As shown in

Fig. 5a, the I3D-K model reached its optimal F1 score at

d ¼ 1� 10�5, the I3D-K ? I3D-101 model at d ¼ 1�
10�4 and the TI3D model at d ¼ 1� 10�2.

It is also noticed that the optimum values of d are dif-

ferent between F1 score and Youdens index, as shown in

Fig. 5b. This suggests that the value of d should be chosen

according to the interest of the user, where the F1 score

gives more emphasis on correct classification of known

classes, and the Youdens index favors the rate of correct

acceptance or rejection, that is, the rate in which the

classifier successfully discriminates knowns from

unknowns.

Overall, the plots show that it is important to perform a

search over the EVM d since very different outcomes can

be produced, depending on this parameter. Moreover, it

becomes clear that the range of d values must be wide. A

search for d only in the range of ½1� 10�1; 1:5�
10�1; . . .; 3� 10�1�, as proposed by [31], would have

missed the optimal values by a large margin in the cases of

I3D-K and I3D-K ? I3D-101.

6 Conclusions and future works

Human action recognition is a naturally open problem that

is often approached as a closed-set scenario. Despite some

recent works exploring this issue, open-set HAR is still in

its early stages of research. The combination of HAR and

open-set recognition inherits the complexities of recog-

nizing intricate spatiotemporal patterns and rejecting those

that are unknown, making it a difficult problem to solve.

This work presented a method for performing open-set

HAR in videos using a deep metric learning approach

named TI3D coupled with the extreme value machine

(EVM). The TI3D is built upon the well-known I3D model

using a cosine triplet loss function, which maps complex

videos to a 256-dimensional feature space.

We have shown that in several experimental settings, the

features generated by TI3D consistently outperform the

original I3D trained with the standard softmax cross-en-

tropy loss. In this sense, TI3D can be viewed as an

extension of the original I3D for open-set classification

tasks. Overall, the results suggest that the feature learning

process should not be overlooked, even when using an

open-set classifier such as the EVM. In other words, more

attention should be given to the feature learning part of the

process.

This work also introduced an evaluation protocol for

open-set HAR using the UCF-101 dataset. Our evaluation

was performed using a 30-fold cross-validation procedure.

This was done to minimize the chance of randomly

selecting ‘‘easy’’ class combinations and produce arguable

results. Overall, results revealed that in our case, it was not

the degree of openness that dictated the difficulty of the

problem, but instead, it was the raw number of training and

test classes. It is important to remark that such result was

observed because our evaluation protocol allows similar

degrees of openness to be achieved by different numbers of

training and test classes. This evaluation protocol can be

Fig. 3 F1 Score boxplots of four experiments with 3 known classes.

From top to bottom, the lines represent maximum value, third

quartile, mean, first quartile, and minimum value
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extended to other datasets, and higher degrees of openness

can be achieved by including experiments with a more

substantial portion of unknown classes.

Regarding the evaluation metrics, we observed that both

F1-score and Youdens Index presented similar (but not

equal) results. This is expected since both metrics use

Fig. 4 Comparison between TI3D and the baseline models of experiments ordered by degree of openness (a, b) and by number of training and

test classes (c, d)

Fig. 5 Mean F1-Score and Youdens Index averaged across all experiments for each value of d
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recall. The small difference comes from the fact that the

F1-score uses precision, emphasizing true positives, while

the Youdens index uses the sensitivity, emphasizing true

negatives.

Finally, we investigated the impact of d on the classi-

fication performance of each model. The results suggested

that a wide range of d values should be tested since the

EVM seems to be very sensitive to the choice of this

parameter. Also, it became clear that there is no universal

value for d, since each model achieved its best performance

with different values.

Several research directions can be pointed out for future

works. The simpler, yet computationally expensive, is

searching for other network architectures, classifiers, and

parameters for boosting the classification performance.

However, challenges such as new class detection and

inclusion of knowledge in existing models are more

interesting paths that should be explored. Achieving these

goals in HAR is a challenging and under-explored task and,

therefore, future work will focus on developing new

methods to address HAR as an open-set problem.
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