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Abstract – The growing number of vehicles in cities has a great impact on our quality of life, such as air and noise pollution,
traffic jams and traffic accidents. Cooperative Intelligent Transportation System (C-ITS) relies on communication technologies
to provide innovative services and applications for transportation and traffic management. In the C-ITS context, users, roadside
infrastructure and vehicles need to be connected and, for this purpose, a wide variety of wireless technologies can be used (e.g,
vehicular WiFi, cellular and visible light communication). In this work we consider a VANET (Vehicular Ad-hoc NETwork)
using vehicular WiFi (based on 802.11p). The communications in VANET networks have been studied for years and several
routing algorithms have been developed for such a kind of network. However, a benchmark to compare the performance of such
algorithms is still lacking. To fill this gap, the present work proposes a benchmark composed by instances of data routing for
different scenarios in the VANET. Moreover, we propose a multi-objective algorithm based on ACO (Ant Colony Optimization)
to compare with such benchmark. The results of simulations show the impact of several factors in the VANET connectivity, such
as vehicle density, geographical location, propagation and fading models. The results are promising and indicate the importance
of choosing appropriated simulation models.
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1 Introduction

The last data available from the International Organization of Motor Vehicle Manufacturers pointed out 1,282,270,000 vehi-
cles in use in 2015 [1]. Since the number of vehicles on the planet is growing fast, it is estimated that there could be up to 2
billion vehicles circulating by 2035 [2]. Such growth has a great impact on our quality of life, specially in developed countries.
For instance, the larger the number of vehicles, the more road traffic, air and noise pollution, traffic jam and traffic accidents.

Cooperative Intelligent Transportation System (C-ITS) provide solutions for a smarter use of transportation networks. C-ITS
applies information and communication technologies for providing innovative services and applications related to transportation
and traffic management. In the C-ITS context, users, roadside infrastructure and vehicles need to be connected anywhere,
anytime, and with anything.

International standardization organisms (e.g., ISO and ETSI) have worked to a convergent ITS architecture that aims at
making these wide variety of communicating devices interoperable [3]. Many technologies for the interconnection of C-ITS
devices are available nowadays. For instance: vehicular WiFi 1, 802.15.4, cellular (3G, 4G, and 5G) and VLC (Visible Light
Communication).

In this work we consider a VANET (Vehicular Ad-hoc NETwork) using vehicular WiFi. VANET is a subgroup of Mobile
Ad-hoc Network (MANET), and they were first introduced by [4]. Until 2015, VANETs were understood for intra-vehicular
communication. However, since then other type of communications started to be explored, between vehicles and the roadside
infrastructure (traffic lights, buildings, antennas, etc.). Therefore, in such networks the communication can be Vehicle-to-Vehicle
(V2V) and Vehicle-to-Roadside Infrastructure (V2I). Consequently, given the dynamics of a transportation system, VANETs
are, at the same time, architectural networks (when considering V2I communication) and ad-hoc networks (considering V2V
communication).The final objective is not only to provide user-focused services (such as internet connectivity) but, also, to
improve the overall flow and security of the transportation network. This can be accomplished by preventing collisions, avoiding
traffic jams, blind crossing. Currently, there is a great interest for VANETs in the scope of smart-cities [5].

Due to the unique features of VANETs, highly dynamic topology, large number of nodes, sparse connectivity in specific
regions, and very small number of static routers, optimization methods are essential for an efficient operation of real-world
systems, particularly routing [6, 7] and clustering [8] methods. Communications in the context of VANETs have been widely
studied [9–11], and variety of routing algorithms have been developed [12, 13]. Amongst them, bio-inspired algorithms can be
highlighted [14], including the Ant Colony Optimization (ACO) [15–17].

The ACO is an algorithm based on the ants’ foraging behavior [15]. Ant colonies are capable of self-organizing into groups
and develop complex tasks. Several works have shown that ants tend to navigate through the shortest path between their colony
and the food source [18]. This behavior is explored in optimizations problems that can be represented by a graph, and a possible
solution is a specific path in such a graph. Currently, there are many applications of ACO to real-world problems, such as: vehicle
routing problems [19], bioinformatics [20], image processing [21], and data mining [22], to cite a few.

1ITS-G5 in Europe and DSRC in North America, both based on 802.11p
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Despite the wide variety of VANET’s routing algorithms in the literature, a benchmark to compare the performance of such
algorithms is still lacking. To fill this gap, the present work proposes a benchmark composed by instances of data routing for
different scenarios in VANET.

The paper is organized as follows. Section 2 overviews the most relevant algorithms based on ACO for routing in VANET.
Section 3 depicts the problem approach. The simulation methodology is given in Section 4. Section 5 presents the configuration
of the experiments for each scenario composing the benchmark. The simulations’ results and their analysis are described in
Section 6. Finally, Section 7 concludes the paper and proposes some future works.

2 Related Work

Few ACO-based routing algorithms were developped for VANET. [23] proposed a reactive routing protocol named MAV-
AODV. This protocol discovers routes of a VANET only when vehicles need to send data. In this algorithm, vehicles exchange
beacon messages in order to gather information about neighbor vehicles’ mobility. Then, each vehicle predicts the geographical
position of other vehicles in their vicinity. With such information, it is possible to evaluate the lifetime of links. MAV-AODV
uses the link’s lifetime and the number of hops to choose a suitable path for data routing.

The hybrid routing protocol named MAZACORNET (Mobility Aware Zone based Ant Colony Optimization Routing for
VANET) was introduced by [17]. According to the vehicle’s speed and their movement pattern, this protocol separates the
vehicles in clusters of interconnected zones. Into each zone, a proactive route discovering process is used, i.e., routes are updated
periodically. To find routes between zones, a reactive route discovering process is performed. Based on the Euclidean distance
between two vehicles, such protocol calculates the probability of a successful message exchange. With this information and the
link stability estimation, the protocol determines the attractiveness of each path.

The Ant Route Search (AntRS) [16] is a proactive algorithm protocol based on the AntSensor protocol [24]. This algorithm
considers that the probability of a connection between two vehicles is directly proportional to the Received Signal Strength
(RSS), i.e., the link with greatest RSS is considered the one with less disconnection probability. From the Friis equation [25] it
concludes that the received signal power between two vehicles is inversely proportional to square of the distance between them.
Therefore, the link with smallest Euclidean distance between vehicles is the one with higher RSS and, consequently, the one with
less disconnection probability. The AntRS applies the number of hops and Euclidean distance to determine the attractiveness of
a given path.

Besides the above-mentioned approaches, other metaheuristic methods were already proposed for different aspects of VANET
routing, such as Moth-Flame Optimization (MFO) [14], Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC)
[26].

In general, ACO-based routing protocols use different variables to determine a routing path. Figure 1 is based on thorough
research and it shows the main variables used by some recent research works [27]. The two variables most frequently used (in
58% of the published works) are the Transmission Time to send packets and the Number of hops in the path.

Figure 1: The most commonly used variables in ACO-based routing algorithm. Values refer to the frequency use in the recent
literature [27].

3 Problem Description

Due to wide variety of protocols developed for data routing in VANETs and the lack of a benchmark to compare them,
the present work aims at proposing a set of instances for routing in VANET networks. This proposed benchmark enables the
comparison of routing protocols in a standardized way.

The basic problem focused here is defined as follows: given a VANET, find the best path to send data between two vehicles.
Since there is a wide variety of issues that impacts data routing, the first step must be to choose the variables that define the
best path. Based on the main variables used by ACO routing algorithms in the literature (as shown in Figure 1), we chose the
two most relevant variables, i.e., transmission time and number of hops. Therefore, the best path is defined as the one with the
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shortest transmission time and lowest number of hops. Moreover, in the present work we propose a multi-objective algorithm
based on the ACO, in order to compare with the newly proposed benchmark.

4 Methods

In order to generate each instance of the benchmark, several simulations were performed. Figure 2 shows an overview of the
environment for such simulations. Each module is explained below.

Figure 2: Overview of the simulation modules.

4.1 Vehicles’ mobility simulation

The VanetMobiSim [28] simulator was used to perform simulations of the vehicles’ mobility. VanetMobiSim is a Java-based
application and it is capable of dealing with Geographical Data Files (GDF) and other standards. The simulator has several
information levels that includes the roads topology, street particularities and traffic signs, and car constraints. It provides realistic
mobility models for vehicular dynamics and includes V2V and V2I interactions at the microscopic level. VanetMobiSim outputs
individualized trace files for each vehicle along the simulation, and these files are, then, used as input to the network simulations.

In this simulator several parameters can be configured, such as the simulation area, number of vehicles, mobility model, and
others. The parameters used in our simulations are shown in Table 2 (Section 5).

4.2 Network simulation

The Network Simulator 3 (NS-3) [29] is an open-source software aimed at simulating discrete-event networks. In this work, it
was used to generate data traffic on the VANET previously created and to measure the transmission data time to send data packets
between neighbors vehicles. Similarly to [28], NS-3 also has several parameters to be configured, such as routing protocol, access
technology of wireless network (802.11p), and propagation model. The values for such parameters are shown in Table 2.

The Flow Monitor framework was used to monitor data traffic over the VANET. Flow Monitor is a framework developed
for NS-3 that enables monitoring flows over each node in the network (e.g., packets sent, received or lost packets and time
transmission) [30]. Flow Monitor allows a deep analysis of the network at each time stamp of the simulation.

The output of such simulation are files representing the network at each instant of time. They contain the neighbors list and
the average measured time to send message between pairs of neighboring vehicles.

4.3 Deterministic analysis

To create a benchmark for data routing in a given network it is necessary to know the best path over such a network. The
Dijkstra algorithm [31] is a deterministic procedure that is capable of finding the shortest path between nodes in of a graph. In
this simulation, the Dijkstra algorithm receives the output of the NS-3 simulation and creates a graph G(V,A) that represents the
VANET. This graph is composed by V vehicles (vertices) and E connection links (edges) between neighbor vehicles. Each edge
has a cost C(Hops, T ime), where Hops is the number of hops and Time is the average time to send a data packet between two
connected vehicles.

Algorithm 1 describes in details the pseudocode of the Dijkstra algorithm used. The main loop begins in the vehicle source
(Vi) and mark this node as visited. All others nodes are marked as unvisited with a infinite cost. At each step, the algorithm
chooses an adjacent node with the lowest cost, relative to the initial node (Vi). Then, such a node (representing a vehicle) is
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added to a set S of the lowest cost path, and it is labeled as visited. Edges belonging to vehicles already in S are ignored. The
algorithm is executed until all connected vehicles are visited.

Algorithm 1: Dijkstra algorithm
// Initialization
G(V,E)← NS-3
Vi ← Source vehicle
Vf ← Destination vehicle
N ← Number of vehicles in the VANET
for j = 0→ (N − 1) do

Cj,i ←∞
Vj ← unvisited

end
CurrentV ehicle← Vi
Vi ← visited
// Main loop
while ((G(V,E) ⊃ unvisited vehicles) & (Vf not yet visited)) do

for k = CurrentV ehicle→ neighbors do
Cost← Cost of Vk related to Vi (Equation 1)
if Cost < Ck,i then

Ck,i ← Cost
NextV ehicle← k

end
end
CurrentV ehicle← NextV ehicle
Vcurrentvehicle ← visited

end

4.4 Objective function

Since this work proposes the use of a multiobjective function to be optimized, the weighted-sum method was used to combine
the two objectives: Number of hops and Transmission time [32]. Considering a generic case,

∑N
i weighti = 1. For our specific

case, it is assumed that both objectives have the same importance (weight) in the objective function. That is, each weight is set
to 0.5. Depending on the situation, weights can be adjusted to reflect user’s preferences regarding different scenarios.

Figure 3 depicts the objective space S (space of possible solutions) for two generic objective functions f1(x) and f2(x). C
is the origin of the objective space, points B and D are the values of functions f1(x) and f2(x), respectively. The projection of
B and D over the concave Pareto front of the solutions’ space (red dotted line) leads to point A, which is the best compromise
between functions f1(x) and f2(x) (considering their minimization).

Figure 3: Objective space of f1(x) and f2(x) functions.

It is observed in Figure 3 that, the closer solution A is to the origin C, the better is the compromise of mutual minimization
between the objectives. Therefore, the objective becomes the minimization of the line segment AC between origin of the
objective space and the solution in S, i.e., minimization of the Euclidean distance between points A and C, given by: dAC =√

(AB)2 + (BC)2 . Replacing functions f1(x) and f2(x) by the functions Number of hops and Transmission time, respectively,
the objective function (FObj) is defined by Equation 1:
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FObj =

√√√√√√√√
(
wH .

Nhops

N − 1

)2

+

wT . Ti
N∑
i=1

Ti


2

(1)

where, N is the number of vehicles in the VANET, wH and wT are the weights of the functions, Nhops are the number of hops,
and Ti is the transmission time.

4.5 Heuristic analysis

For the heuristic analysis, the algorithm receives data from the NS-3 simulator and generates the graph of the network at each
step of the simulation. Then, it starts searching for an optimal path between vehicles’ source and destination in the graph. The
proposed algorithm, named Ant Route Search for VANET (AntRSV), is based in the Ant Colony Optimization (ACO) algorithm
first proposed by [15]. The ACO is a populational algorithm with biological inspiration. Basically, it has two components: an
undirected graph that represents multi-paths between two points (e.g. source and target points), and a number of agents (ants)
capable of moving through the edges of the graph according certain rules. As the ants move through the graph’s edges, they leave
behind certain amount of pheromone which, eventually, can evaporate along time. However, when a given ant reaches a vertex
of the graph, the decision to follow a given edge is biased by the amount of pheromone already found. Along time, depending on
the initial parameters and the dynamics of the system, ants may converge to the shortest path between the source and destination
vertices.

We used a specialized version of the ACO, suited for the problem in hand, as shown in Algorithm 2. It was based on a former
approach known as AntRS [16].

Algorithm 2: AntRSV
// Initialization
G(V,A)← NS-3
Vi ← Source vehicle
Vf ← Destination vehicle
N ← Number of vehicles
// Create ants
for j = 0→ Number Of Rounds do

Pheromone initialization - Equation 2
while counter < Number Of Repetitions do

for k = 0→ (N − 1) do
Move ant (Equation 3)
if ant reached Destination vehicle (Vf ) then

ant← ant in return
ant return to source vehicle (Vi)

end
else

Choose the next vehicle
Send ant

end
end
Pheromone update
Pheromone evaporation - Equation 4
counter = counter + 1

end
end

The main steps of the AntRSV algorithm are:

a) Graph creation: Once the algorithm receives vehicles’ traceability performed by the NS-3 simulator, it creates a full graph
representing network.

b) Pheromone initialization: In the original ACO algorithm [15], the initial value of the pheromones at the edges of the graph
impacts the convergence speed of the algorithm. If the initial amount of pheromone is too low, the solution is quickly biased
by the first ants circulating in the edges. On the other hand, if the initial amount of pheromone is too high, the first iterations
are lost, i.e., the pheromone deposited by the first ants are masked by the excess of initial pheromone values. Therefore, in
this work, we follow [15], and we use the initial pheromone as given by Equation 2:
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Pheromoneinitial =
m

ρ . Cinitial
(2)

where m is the number of ants, ρ is the evaporation coefficient and Cinitial is the cost of an initial path. Such initial path is
found by sending one ant from the source vehicle to a destination one.

c) Sending ants: The probability (Pi,j) for an ant to choose a path between the nodes i and j is given by the Equation 3.

Pi,j =
[τij ]

α[ηij ]
β∑

k ∈ Vi
[τik]α[ηij ]β

(3)

where τij is the amount of pheromone between the nodes i and j; Vi are the neighbors of the node i; ηij is a heuristic
information given by the inverse of the objective function shown in Equation 1; and α and β are parameters that weight the
importance of the pheromone and heuristic parts, respectively.

d) Returning ants: when an ant arrives to the destination vertex, it returns to the source depositing pheromones on the path.
Such pheromone amount deposited on the path is given by Equation 4.

τi,j(t+ 1) = (1− ρ)τi,j(t) +

m∑
k=1

∆τki,j (4)

where τi,j = 1/FObj is the amount of pheromone deposited on the edge between nodes i and j, m is the number of ants and
∆τki,j is the amount of pheromone deposited by the ant k on the edge (i, j), and ρ is the pheromone evaporation rate.

Since ants tend to converge for the best solution over time, such a process of sending and receiving ants should be performed
several times to enable ants to converge toward the best solution. The AntRSV algorithm refers to it as “Number Of Repetitions”.
Moreover, AntRSV is an heuristic algorithm. Therefore, for statistical analysis the AntRSV run several times for each scenario
(i.e., “Number Of Rounds”).

The ACO parameters used in the simulation are shown in Table 1, and follows [15].

Table 1: Values of the ACO parameters used in the experiments.
Parameter Value
α 1
β 2
ρ 0.5
Number of ants (m) 25
Number of rounds 10
Number of repetitions 300

5 Experiments

For the simulation we chose a square area of 360,000 m2 located in downtown Curitiba (Brazil). This is an area of high
density traffic, surrounded by many tall buildings and, therefore, it is ideal for a real-world simulation.

Using the VanetMobiSim simulator, we distributed vehicles in this area and applied the IDM-LC (Intelligent Driver Model
with Lane Changes) mobility model. Such a model was chosen because it better represents vehicles in the real world, making
smart management of vehicles at crossroads and vehicles’ overtake.

Aiming at realistic simulations, in this work we used the Nakagami-m fading model and the Three Log Distance propagation
model. Such a choice was based on [33], who suggested that not all models found in the NS-3 simulator are adequate for VANET
simulations.

The Nakagami-m is a stochastic model based on the signal fading. Therefore, it is a more realistic model for simulations
of wireless communications. The model simulates multiple sources interference to the communication signal that leads to its
fading. The model has parameters that modulate the severity of fading due to multiple path propagation.

The Three Log Distance is a deterministic propagation model frequently used for wireless communications, since it simulates
the propagation of a signal in the presence of obstacles, such as buildings and vehicles. This model supposes that the signal
loss is exponentially proportional to the distance between the emitter and the receptor. Therefore, it applies different losses for
different distance intervals. Actually three distances are considered, so that four propagation regions (or fields) are formed. For
each field a different signal reduction is computed by the simulator [33].

For each scenario we performed simulations with different vehicles’ densities (vehicles/km2): 0.07, 0.14, 0.28, 0.56 and
1.11. For all scenarios the source and destination vehicles were set on fixed and opposite positions on the simulation area, while
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Table 2: Common parameters configured for each scenario.
Simulators Parameter Value

VanetMobiSim

Area (m2) 600 x 600
Mobility model IDM-LC
Vehicles’ speed (Km/h) 0 – 60
Vehicles’ acceleration (m/s2) 0.6
Deceleration (m/s2) 0.9
Simulation time (s) 200
Vehicles density 0.07; 0.14; 0.28; 0.56 and 1.11

NS-3

Propagation model Three Log Distance
Fading model Nakagami-m
Size of data packets (bytes) 512
Transmission rate (bps) 16,384
Transmission power (dB) 16.0206
RSS (dB) -96
Access network 802.11p
Routing protocol AODV
Sampling time (s) 2

the other vehicles were able to change their speed in the range [0..60] Km/h. Table 2 shows a list of parameters common to all
scenarios.

For the simulation scenarios, besides the vehicle density, the configuration of the propagation and fading models were also
varied. Table 3 shows the specific configurations for each scenario 2. The four scenarios are described as follows:

a) Scenario 1: In this scenario vehicles are randomly positioned in the simulation area, following the normal distribution. Such
scenario does not consider any fading model. The main objective of this scenario is to analyze the impact of vehicles’ density
in the VANET environment.

b) Scenario 2: In this scenario, we consider the same initial vehicles’ position of Scenario 1. However, here we apply the
Nakagami-m fading model and the Three Log Distance propagation model.

c) Scenario 3: Similarly to Scenario 1, here, no fading model was considered. However, we distribute 80% of vehicles on the
avenues and 20% of vehicles on the secondary streets. Using such a distribution we aim to better represent the traffic in the
real-world.

d) Scenario 4: Here we consider the same vehicles’ distribution from Scenario 3 (i.e., 80/20), but we used both, the Nakagami-m
fading model and the Three Log Distance propagation model, similarly to what was done in Scenario 2.

6 Results and Analysis

First of all, recall that the Dijkstra algorithm can find the best path for each scenario. Overall, Table 4 shows the numerical
results of the simulations performed. It is shown that no possible path between source and destination was found for networks
with 0.07 and 0.14 vehicles density. However, the method succeeded to find paths for networks with larger number of vehicles.

According to [34] and [35] the connectivity between nodes in a wireless network is proportional with the network density.
This phenomenon can be observed in the Scenario 1, for which no paths were found for networks with low vehicle density (e.g.,
0.07, 0.14 and 0.28 vehicle/km2). Figure 4 shows the cost of paths found by both Dijkstra and ACO (AntRSV) algorithms
for Scenario 1, using 0.56 as vehicles density. For the costs found by the ACO algorithm, we plotted the best value of each
simulation, i.e., the lowest cost among the 300 cycles. In the Tables 5, 6, 7, 8 of the Annex the absolute and relatives values, as
well as the average and the standard deviation are shown. The values of parameters used in such simulation represent vehicles
in a real world, where vehicles are constantly moving. Due to such a high mobility, vehicles suffers of frequent disconnection.
Therefore, in most of time no path was found.

Figure 4 shows that the Dijkstra algorithm found better paths than ACO, i.e., low cost paths. Actually, in the ACO algorithm,
ants tend to converge for the best solution over time. In order to show the convergence of the algorithm, the cost of all paths
found by ants as well as the average cost along the simulation were plotted in Figure 5 (for the same Scenario as before). In the
beginning ants find random paths, and the plot shows many different costs. However, over time ants tend to converge for paths
with more amount of pheromones, i.e., better paths. Then, around cycle 100 all ants tend to converge for the optimal solution:
the path with the lowest cost.

Figure 6 shows the simulation results for Scenario 1 with a density of 1.11 vehicles/km2. As expected, as the density of
vehicles increase, more paths are found. Moreover, the cost average of paths reduces. This cost reduction can be justified by the

2For further details, see: https://www.nsnam.org/doxygen/classns3_1_1_three_log_distance_propagation_loss_model.
html.
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Table 3: Specific configurations for each Scenario. Distance0, Distance1 and Distance2 are, respectively, the beginning of
the first (near), second (middle), and third (far) distance fields. Similarly, Exponent0, Exponent1 and Exponent2 are the
exponents for the first, second and third fields. Parameters m0, m1 and m2 modulate the fading severity of the model for each
field.

Scenarios
1 3 2 4

Vehicles distribution normal 80/20 normal 80/20
Propagation model Three Log Distance
Distance0 (m) 1 1
Exponent0 2.5 2.5
Distance1 (m) 75 75
Exponent1 5 5
Distance2 (m) 114 114
Exponent2 10 10
Fading model Nakagami-m
m0 - 1.5
Distance1 (m) - 60
m1 - 0.75
Distance2 (m) - 145
m2 - 0

Table 4: Simulations performed for each scenario.
Scenario 1

Vehicles density 0.07 0.14 0.28 0.56 1.11
Path found - - - yes yes

Scenario 2
Vehicles density 0.07 0.14 0.28 0.56 1.11
Path found - - - yes yes

Scenario 3
Vehicles density 0.07 0.14 0.28 0.56 1.11
Path found - - - - yes

Scenario 4
Vehicles density 0.07 0.14 0.28 0.56 1.11
Path found - - - yes yes

Figure 4: Cost of paths for Scenario 1 with 0.56 vehicle/km2.

increasing number of paths between source and destination. With more path possibilities, the network tends to be less congested,
thus reducing the average time to send data packets. Consequently, ants can find paths with the lowest cost.

Figure 7 shows the cost of paths for Scenario 2, with 0.56 vehicle/km2. In such scenario we used the Nakagami-m fading
model, and more paths were found, when compared with the Scenario 1. According to [36], the use of a deterministic propa-
gation model such as Three Log Distance with fading model increases the performance of data transmission because a lower
transmission power reduces the signal interference and the packet loss. Although our simulations corroborate with [36], such
improvements in the number of paths may suggest wrong transmission power configuration. Therefore, further studies will be
necessary in the future works to investigate the effects of different range of power transmission in the simulation results.
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Figure 5: Cost of all paths found by each ant for Scenario 1 with 0.56 vehicle/km2.

Figure 6: Cost of paths for Scenario 1 with 1.11 vehicles/km2.

Figure 7: Cost of paths for Scenario 2 with 0.56 vehicle/km2.

In the Scenario 3, 80% of vehicles were distributed in the main avenues while 20% were distributed on the streets. Overall,
such network topology leads to less connectivity between vehicles, representing a drawback to the communication. Unlike
Scenario 1 where paths were found for the network with 0.56 and 1.11 vehicles/km2, for Scenario 3 paths were found only for
the network with 1.11 vehicles/km2 (see Table 4). Such a fact corroborates with the observation of decreased connectivity.

Comparing Scenario 3 and 4 (see Table 4), it is clear what was already seen in Scenario 2 regarding the overall connectivity
improvement when using the Nakagami-m fading model. Although Scenario 3 uses the Three Log Distance propagation model,
the use of the fading model in Scenario 4 improved results in a harder situation (with only 0.56 vehicle/km2).

7 Conclusions and Future Work

The world population and the number of motor vehicles on the planet are growing rapidly. This growth brings negative
impacts to our environment, such as air and noise pollution, traffic jams and traffic accidents. To deal with such scenario,
vehicles need to increase their environment awareness. This can be achieved by enabling vehicles to communicate with their
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environment within the scope of smart-cities.
Besides V2X communications (V2V and V2I), vehicles could communicate with a large variety of devices. In this work,

we considered only ad hoc communication between vehicles (VANET). There are many routing algorithms for VANET in the
literature. However, benchmarks for comparing such algorithms are still missing. Therefore, we proposed a benchmark for data
routing in VANETs.

In our simulations, we observed that several parameters can impact the connectivity in the VANET, for instance: the network
density (i.e, the number of vehicles in a given area), the geographical distribution of vehicles, and the transmission power.

The simulation scenarios were configured to better represent the urban traffic in the real world. The propagation and fading
models simulate the signal interference caused by the presence of obstacles, like buildings and urban canyons. We observed that
such configurations are severe, drastically attenuating the signals transmitted by each vehicle.

In future work we will give some steps ahead by simulating the four scenarios with different levels of power transmission.
Such simulation could be useful to define the ideal transmission power range to be used for each scenario. Moreover, in order to
better evaluate the ACO algorithm, a new scenario will be created with a time-changing asymmetric density of vehicles.
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Annex
A Scenario 1

Table 5: Simulation results of scenario 1.
Vehicle Density
(vehicles/km2)

Simulation
instant

Dijkstra
cost ACO cost

ACO vs.
Dijkstra (%)

ACO
average STD

0.56

104 0.041727 0.098069 235% 0.135374 0.023477
116 0.035344 0.063664 180% 0.10237 0.020532
118 0.035335 0.050468 143% 0.078256 0.017547
120 0.035342 0.060514 171% 0.08822 0.015657
122 0.032765 0.060424 184% 0.076837 0.013988
162 0.03276 0.057949 177% 0.083894 0.016501

1.11

22 0.020092 0.042713 213% 0.058122 0.010853
24 0.020082 0.046424 231% 0.063936 0.012168
26 0.018832 0.037694 200% 0.057847 0.020419
28 0.020087 0.026363 131% 0.047622 0.013003
42 0.018835 0.028878 153% 0.042624 0.009178
44 0.018833 0.032642 173% 0.045134 0.007582
50 0.026388 0.060457 229% 0.089819 0.02839
52 0.017609 0.036426 207% 0.046392 0.011129
56 0.0176 0.035157 200% 0.048475 0.017735
58 0.026402 0.082941 314% 0.106798 0.018576
62 0.017614 0.037734 214% 0.046682 0.008219
68 0.015185 0.032649 215% 0.044708 0.010225
98 0.016987 0.040173 236% 0.054883 0.012312

138 0.017566 0.035119 200% 0.051053 0.016024
160 0.016372 0.060278 368% 0.082536 0.016262
184 0.017612 0.031374 178% 0.044301 0.010843
186 0.020109 0.045189 225% 0.07276 0.017565
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B Scenario 2

Table 6: Simulation results of scenario 2.
Vehicle Density
(vehicles/km2)

Simulation
instant

Dijkstra
cost ACO cost

ACO vs.
Dijkstra (%)

ACO
average STD

0.56

38 0.027913 0.040567 145% 0.09556 0.029659
74 0.04973 0.135129 272% 0.156981 0.013669
76 0.050575 0.103687 205% 0.146491 0.02389
78 0.04295 0.083279 194% 0.102798 0.019429

104 0.04552 0.09353 205% 0.123455 0.027729
120 0.035416 0.055633 157% 0.08356 0.014469
122 0.03289 0.059185 180% 0.091588 0.021952
160 0.033529 0.073111 218% 0.100558 0.022688
162 0.02776 0.052958 191% 0.084231 0.02592
172 0.032942 0.088278 268% 0.132444 0.016539
174 0.030599 0.075806 248% 0.09914 0.018282
176 0.032868 0.063107 192% 0.107062 0.030179
178 0.035357 0.055556 157% 0.096751 0.033243
180 0.030341 0.055577 183% 0.079977 0.018278
182 0.032837 0.080768 246% 0.115209 0.028082

1.11

22 0.02012 0.052787 262% 0.079381 0.020266
24 0.01888 0.051818 274% 0.072322 0.016083
26 0.017831 0.037639 211% 0.067254 0.017048
28 0.018026 0.040157 223% 0.065137 0.017234
38 0.017578 0.028882 164% 0.047355 0.013126
40 0.017574 0.038895 221% 0.059993 0.025107
42 0.018895 0.041504 220% 0.060704 0.017832
50 0.017594 0.036415 207% 0.058792 0.019179
52 0.017636 0.049038 278% 0.061386 0.009354
58 0.016364 0.031393 192% 0.057687 0.016518
60 0.015181 0.037818 249% 0.072681 0.019295
62 0.016374 0.031372 192% 0.054303 0.019074
64 0.026466 0.062793 237% 0.112876 0.035339
72 0.017656 0.030156 171% 0.052931 0.020225
94 0.017586 0.03303 188% 0.046803 0.012172
96 0.017807 0.045294 254% 0.069728 0.015882

126 0.016335 0.055244 338% 0.080432 0.017345

C Scenario 3

Table 7: Simulation results of scenario 3.
Vehicle Density
(vehicles/km2)

Simulation
instant

Dijkstra
cost ACO cost

ACO vs.
Dijkstra (%)

ACO
average STD

1.11

70 0.022593 0.06681 296% 0.091346 0.019099
78 0.01835 0.051923 283% 0.08554 0.02125

122 0.01637 0.045191 276% 0.068169 0.01504
136 0.01634 0.035145 215% 0.051345 0.008958
144 0.023831 0.057713 242% 0.094274 0.02989
146 0.025125 0.048965 195% 0.087317 0.022718
150 0.015072 0.040174 267% 0.050266 0.008844
152 0.016317 0.027612 169% 0.046732 0.011436
154 0.016325 0.031388 192% 0.052016 0.013993
156 0.017569 0.028863 164% 0.04638 0.010657
158 0.016335 0.030106 184% 0.048105 0.011321
160 0.017603 0.030145 171% 0.048341 0.01308
162 0.018842 0.026384 140% 0.039431 0.006538
164 0.017582 0.023882 136% 0.038578 0.008394
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D Scenario 4

Table 8: Simulation results of scenario 4.
Vehicle Density
(vehicles/km2)

Simulation
instant

Dijkstra
cost ACO cost

ACO vs.
Dijkstra (%)

ACO
average STD

0.56
60 0.05049 0.15921 315% 0.185965 0.026284
64 0.063303 0.171774 271% 0.223349 0.028941
72 0.034727 0.065545 189% 0.093493 0.025562

1.11

70 0.025144 0.059037 235% 0.093056 0.020607
88 0.016335 0.031448 193% 0.057551 0.01787
90 0.018846 0.040172 213% 0.065432 0.022481
92 0.017587 0.037695 214% 0.065844 0.024846

100 0.022602 0.077155 341% 0.110554 0.026873
102 0.017643 0.040227 228% 0.069992 0.018821
106 0.023926 0.075435 315% 0.10389 0.015547
110 0.022963 0.078817 343% 0.104738 0.017403
112 0.013805 0.036382 264% 0.060717 0.016665
114 0.017575 0.03521 200% 0.056871 0.015029
116 0.016331 0.033881 207% 0.048796 0.010739
146 0.017597 0.038932 221% 0.058875 0.015523
148 0.01632 0.035143 215% 0.047393 0.00632
150 0.015104 0.025147 166% 0.050542 0.013336
152 0.01764 0.031412 178% 0.052466 0.013262
158 0.017581 0.031451 179% 0.043728 0.008729
160 0.013834 0.02765 200% 0.04134 0.008257
162 0.015125 0.031398 208% 0.043987 0.010104

28


	Introduction
	Related Work
	Problem Description
	Methods
	Vehicles' mobility simulation
	Network simulation
	Deterministic analysis
	Objective function
	Heuristic analysis

	Experiments
	Results and Analysis
	Conclusions and Future Work
	Annex
	Apêndice Scenario 1
	Apêndice Scenario 2
	Apêndice Scenario 3
	Apêndice Scenario 4

