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Incremental learning is a topic of great interest in the current state of machine learning research. Real-world
problems often require a classifier to incorporate new knowledge while preserving what was learned before.
One of the most challenging problems in computer vision is Human Action Recognition (HAR) in videos. How-
ever, most of the existing works approach HAR from a non-incremental point of view. This work proposes a
framework for performing HAR in the incremental learning scenario called Incremental Human Action Recogni-
tion with Dual Memory (IHAR-DM). IHAR-DM contains three main components: a 3D convolutional neural net-
work for capturing Spatio-temporal features; a Triplet Network to perform metric learning; and the dual-
memory Extreme Value Machine, which is introduced in this work. The proposed method is compared with 10
other state-of-the-art incremental learning models. We propose five experimental settings containing different
numbers of tasks and classes using two widely known HAR datasets: UCF-101 and HMDB51. Our results show
superior performance in terms of Normalized Mutual Information (NMI) and Inter-task Intransigence (ITI),
which is a new metric proposed in this work. Overall results show the feasibility of the proposal for real HAR
problems, which mostly present the requirements imposed by incremental learning.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Incremental learning is a topic of great importance in the current
state of machine learning research. Some real-world problems require
incorporating new knowledge into existing models using limited
time and computational resources. Such limitations become even
more apparent when dealing with video data, as the cost of storing
and processing a video is substantially higher than that of static images.
Conventional machine learning models are inadequate for incremental
learning because they need to be retrained from scratch using new
and old data. This approach implies storing all past data in an unbound
memory, quickly becoming impractical.

Different from the conventional models, incremental learners grad-
ually incorporate knowledgewhile preserving computational resources.
Memory size remains fixed or grows very slowly to accommodate new
classes [27], andmodel updates aremore cost-efficient in terms of com-
putational cost when compared to retraining from scratch.

Incremental learning is divided into two subcategories: Task-
incremental learning and Class-incremental learning. Task-incremental
learning assumes the task-id to be known during the prediction phase.
Therefore, the task-incremental classifier only needs to consider classes
from the given task to classify a new instance. We approach the more
M. Gutoski).
difficult problem of Class-incremental learning, which does not require
a task-id to perform prediction [20]. In Class-incremental learning, the
model must be able to classify a data point as any of the classes learned
so far, regardless of the task.

While most of the research in Class-incremental Learning was con-
ducted using image datasets such as ImageNet [41,26], we tackle a
more challenging problem: Human Action Recognition in videos. Most
previous works approached HAR under the classical non-incremental
scenario [44,25,11]. We show that it is possible to achieve high perfor-
mance in HAR, despite the Class-incremental learning restrictions – a
subject still underexplored in the literature. Therefore, to address such
a problem, we propose a framework with three main components:

1. A 3D convolutional neural network trained on the initial data to
transform input videos into fixed representations. We call them
fixed representations because the network is trained only once. The
I3D model [4] was chosen for this task.

2. A Triplet Network that performsMetric Learning using the fixed rep-
resentations as input. The Triplet Network outputs dynamic repre-
sentations by learning new tasks incrementally.

3. An incremental classifier capable ofworkingwith dynamic represen-
tations. The original ExtremeValueMachine (EVM) [29] performs in-
cremental learning by fitting different models to the new data.
However, such a model is limited to fixed feature representations.
On the other hand, the proposed approach cannot operate under
fixed representations because the characterizations of the previous
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EVs change as the Triplet Network learns new classes. Hence, the
EVMwas extended to a dual-memory scheme to allow dynamic rep-
resentation incremental learning. The dual-memory EVM stores both
fixed and dynamical representations to achieve incremental learning
coupled with deep representation learning. The dual-memory EVM
only requires storing the representations of a few Extreme Vectors,
thus having a low memory cost. Although this work is focused only
on incremental learning, the dual-memory EVM is also capable of re-
jection, which is a required step to extend it into open-world recog-
nition.

Accordingly, the main contributions of this work are summarized as
follows:

• A framework for performing Incremental HAR in videos with low
memory cost;

• The introduction of the dual-memory EVM to work with dynamical
representations;

• The introduction of Inter-task Intransigence, a newmetric formeasur-
ing Intransigence in incremental learning problems;

• The proposal of five experimental settings using the UCF-101 and the
HMDB51 datasets, which can be used as a future reference for evalu-
ating Incremental HAR.

The remainder of this paper is organized as follows. Section 2 points
out themain gaps of relatedworks and highlights the original aspects of
this research. Section 3 presents an overview of the proposed approach
supporting themain contributions of this work. The detailed theoretical
aspects that support our method are presented in Section 4. Next, Sec-
tion 5 presents in detail the proposed incremental learning procedure,
task generation, and evaluation protocol. Section 6 details the results,
comparisons, and discussions for different experiments. Finally, Sec-
tion 7 shows the conclusions and suggestions for future works.

2. Related works

Incremental learning has been a topic of interest since the early
stages of Neural Network research [9]. In the past few years, this topic
has received increased attention from the research community [20,8].

Incremental Learning models face additional challenges in compari-
son to traditional classifiers, such as catastrophic Forgetting and Intran-
sigence [24,6]. These challenges require a model to remember previous
knowledgewhile being able to incorporate newknowledge. Another re-
current problem in Incremental Learning is task-recency bias. This prob-
lem refers to the tendency of incremental learning models to wrongly
classify data as one of the recently-learned classes [20].

Recent works have devised a variety of strategies to perform Incre-
mental Learningwhile facing these challenges. Delange et al. [8] catego-
rized these works according to three types of strategies: replay,
regularization, and parameter isolation methods, which will be
discussed in the following sections. We also discuss someworks related
to HAR in the incremental learning setting.

2.1. Replay methods

Replay methods use a small number of exemplars from previous
classes while learning a new task. Replaying samples alleviate Forget-
ting by forcing the network to maintain past knowledge while incorpo-
rating new knowledge. Incremental Classifier and Representation
Learning (iCaRL) [27] was the first method to address Class Incremental
Learning using replay. iCaRL selects and stores exemplars based on
herding, such that the selected samples are close to their respective
class mean in the feature space. Wu et al. [41] introduced the Bias Cor-
rection (BIC) model, which uses exemplars to train a bias correction
layer. The model was developed to handle large-scale incremental
learning, emphasizing the problem of task-recency bias. Similarly,
2

Belouadah and Popescu [3] approached task-recency bias by using the
Incremental Learning with dual memory (IL2M) model. IL2M rectifies
predictions by leveraging information from two memories: stored ex-
emplars and statistics from previous classes. Hou et al. [14] introduced
LUCIR (Learning a Unified Classifier Incrementallu via Rebalancing),
which adopts cosine normalization, less-forget constraint, and inter-
class separation to avoid task-recency bias and alleviate Forgetting.
End-to-End Incremental Learning (EEIL) [5] performs a balanced training
phase using exemplars to reduce task-recency bias.

The main drawback of replay methods is the storage cost. Storage
may become quite expensive depending on the application, especially
whenworkingwith video data. To address this issue, IHAR-DMemploys
feature-rehearsal [20]. Instead of storing raw videos, we store only their
feature representations. This requiresmuch smallermemory usage than
regular exemplar-rehearsal strategies.

2.2. Regularization methods

Regularization methods alleviate Forgetting by introducing penalty
terms to the loss function or by performing knowledge distillation. Pen-
alty terms are obtained by estimating the importance of each weight at
performing a given task. Elastic Weight Consolidation (EWC) [15] was
the first method in this category. EWC slows down the training of the
most relevant weights while learning a new task. Another approach,
Path Integral [43], calculates parameter importance by observing
changes to each weight during the whole training process. Memory
Aware Synapses (MAS) [1] estimates parameter importance in an unsu-
pervised manner by using a hold-out dataset. Riemanian Walk (RWalk)
[6] combines EWC and Path Integral for online parameter importance
estimation. Moreover, exemplars can be used to improve performance.
As pointed out by Delange et al. [8], regularization strategies may not
suffice to avoid Forgetting in earlier tasks with long sequences.

Knowledge distillation is a technique that transfers knowledge from
an old model to a new model. Learning Without Forgetting (LWF) [17]
performs Incremental Learning by using a modified distillation loss.
This approach prevents weights from drifting toomuch from their orig-
inal values. The drawback of this method is its vulnerability to domain
shift between tasks, as shown in Delange et al. [8] and Aljundi et al.
[2]. It is worth mentioning that the method proposed in the present
work does not belong to the regularization family.

2.3. Parameter isolation methods

To prevent Forgetting, parameter isolation methods maintain task-
specific parameters after learning a different model or branch for
each task. However, parameter isolation models may be prohibitive in
memory-constrained applications.Moreover, this type ofmethod usually
requires the task-id to be given during the classification phase. The task-
id can be provided by either a human in the loop or by another classifier.
Some parameter isolationmethods learn task-specific masks to differen-
tiate between tasks while keeping the same network weights. Piggyback
[19] computes binary masks over the weights of a backbone network.
Conversely, Ternary FeatureMasks (TFM) [21] computesmasks at the fea-
ture level instead of at the weights level. Both methods require the task-
ID to be given. Other parameter isolation methods grow the network ar-
chitecture to accommodate new tasks. Progressive Neural Networks
(PNN) [30] duplicates the network for eachnew task. Themain drawback
of thismethod is the quadratic growth of parameters. This issuewas later
improved in Progress and Compress [31]. Expert Gate [2] also used a grow-
ing network architecture. However, Expert Gate uses an Autoencoder to
predict the task-id, thus avoiding the need for a human oracle.

IHAR-DM also contains parameter isolation elements. The EVM [29]
incrementally adds new models to accommodate new classes. Unlike
some othermethods in this category, the EVMdoes not require replicat-
ing any parameters to incorporate new classes, leading to linear growth
in memory size. The rate of growth can also be controlled by adjusting
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the model reduction parameter. Moreover, it does not require the task-
id to be given in advance. The EVM is able to classify samples into any of
the previously learned classes, regardless of the task-id.

2.4. Incremental Learning for HAR

Very fewworks have explored HAR in the Incremental Learning set-
ting. ODN [32] performs Incremental Learning for HAR in the broader
task of Open-world Recognition. The authors introduce the concepts
of Emphasis Initialization and Allometry Training. The method shows
promising results in terms of accuracy but appears to suffer from
class-recency bias. However, the focus of their work is not exclusively
on Incremental Learning, and thus, it lacks an in-depth evaluation of im-
portant metrics such as Forgetting and Intransigence. Reddy et al. [28]
proposed a feature-tree to perform HAR in the KTH [39] and the
IXMAS [38] datasets. However, these datasets were staged by actors
and contain only 6 and 11 classes, respectively [33]. Hence, they became
outdated in comparison to more recent datasets. The work presented a
small incremental learning experiment in which a model was trained
with 4 classes and evaluated with 5, that is, only one class was learned
incrementally.

Other works perform HAR under the related field of online learning,
which operates over streams of data [35]. Some of thoseworks perform
classification at frame-level in very controlled video datasets [40,18,23,
7]. Moreover, older works in this field do not considermore recent eval-
uation metrics such as Forgetting and Intransigence [8]. To the best of
our knowledge, ours is the first work to address Incremental HAR
with modern evaluation protocols.

2.5. IHAR-DM highlights

IHAR-DM combines the advantages of replay and parameter isola-
tion, while also minimizing the drawbacks of these categories. The
main drawback of replay methods is the memory size, which we miti-
gate using feature-rehearsal. As for parameter isolation methods, we
avoid excessive growth of parameters and perform prediction without
a task-id. Moreover, to the best of our knowledge, this work is the first
that applies these concepts to HAR in modern datasets.

3. Overview

This section presents an overview of the IHAR-DM, supporting the
main contributions of this work: (i) the proposed framework for
Fig. 1. Incremental Learning Process of the proposed framework. First, videos go through the I3
goes through the Triplet Network and becomes a 256-dimensional dynamical representation
learning and classification. The EVs defined by the Dual-Memory EVM are used to update the
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performing Incremental HAR; (ii) the proposed experimental settings
for evaluating Incremental HAR; and (iii) the proposed Inter-Task In-
transigence metric.

3.1. Proposed framework for Incremental HAR

Our framework for Incremental Human Action Recognition, named
IHAR-DM, consists of threemain blocks: A 3D convolutional neural net-
work (I3D), a Triplet Network, and theDual-Memory EVM. The relation-
ship between the blocks is shown in Fig. 1.

First, the input videos go through the I3D to generate their fixed
1024-dimensional feature vector representation. It is called “fixed rep-
resentation” because the I3D is trained only once, using the initial train-
ing data. Theweights of the I3D are then fixed for the remaining steps of
the incremental learning process.

The second step is to train a Triplet Network that performs metric
learning using the fixed representations as input. This network is fully
trained using the initial training data and, later, it is updated with a
quick fine-tuning during each of the incremental phases. The Triplet
Network outputs a 256-dimensional feature vector, which we call “dy-
namical representations”, since they change with each new task.

The third step is to train the Dual-Memory EVM. It uses both the
fixed and the dynamical representations of the video to perform incre-
mental learning and classification. The purpose of the dynamical repre-
sentations is to fit the dual-memory EVM and perform predictions,
while the fixed representations are used to update the already existing
models during the incremental learning stages. The fixed representa-
tions of the Extreme Vectors found by the Dual-Memory EVM partici-
pate in the incremental training of the Triplet Network. More details
about the proposed framework are presented in Section 4.

3.2. Proposed experimental settings

Because of the lack of recent models for Incremental HAR, there are
currently no general guidelines on how to perform their evaluation.
Therefore, we propose three experimental settings for the UCF-101
dataset [33] and two experimental settings for the HMDB51 dataset
[16]. The difference between each experimental setting is the number
of tasks and the number of classeswithin each task. This allows evaluat-
ing Incremental HAR models under different scenarios, such as small to
a large number of tasks, or small to a large number of classes contained
in each task. The different settings will be presented in Section 6.1.
D network and become a 1024-dimensional fixed representation. The fixed representation
. Both of the representations are used by the Dual-Memory EVM to perform incremental
Triplet Network in subsequent tasks.



M. Gutoski, A.E. Lazzaretti and H.S. Lopes Image and Vision Computing 116 (2021) 104313
3.3. Inter-task intransigence

Chaudhry et al. [6] defined Intransigence as the inability of a model
to learn new tasks. The authors proposed to compute Intransigence as
the difference in the performance between an incremental model and
a reference model. The reference model was trained with access to all
tasks at once and it was considered the gold standard. Such a metric is
difficult to compute due to the high computational cost of training a ref-
erence model for the only purpose of measuring Intransigence. More-
over, the reference model is also susceptible to parameter tuning.
Therefore, the use of Intransigence leads to a scenario where the mea-
sured performance of the model under test is directly affected by the
parameters of a second completely unrelated model. This also makes
the comparison with other state-of-the-art models quite difficult,
because each work may use a different reference model to measure
Intransigence.

Hence, to overcome the above-mentioned drawbacks of the existing
methods, another metric is proposed here: the Inter-Task Intransigence
(ITI). Thismetric can be computedwithout a referencemodel, and it can
be interpreted as the performance decay of a new task with respect to
the previous one. In other words, ITI measures the inability to learn
new tasks with the same effectiveness as in the previous tasks. Sec-
tion 5.4 presents a formal definition of ITI, along with the other evalua-
tion metrics.

4. Theoretical aspects

This section details the most relevant theoretical aspects of the pro-
posedmethod, including the Inflated 3D Convolutional Neural Network
(I3D),Metric Learningwith Triplet Networks, and theDual-Memory Ex-
treme Value Machine.

4.1. Inflated 3D Convolutional Neural Network

The Inflated 3D Convolutional Neural Network is a model proposed
by Carreira and Zisserman [4] for performing video classification. The
I3D contains two streams of the Inception model with inflated kernels.
Inflation is a process that extends the filters learned on ImageNet from
2D to 3D as an initialization method. The original I3D model contains
two streams of data. The first streamuses RGB images, while the second
stream uses a precomputed Optical Flow. In this work, we employ only
the RGB stream. The model is trained using backpropagation with
softmax cross-entropy loss. We choose the I3D for its state-of-the-art
performance. However, IHAR-DM supports any kind of video classifica-
tion model as the backbone.

4.2. Metric Learning with Triplet Networks

Metric Learning (ML) aims at mapping features into a space where
the distance between two points corresponds to a measure of semantic
similarity. The Large Margin Nearest Neighbors (LMNN) [37] is one of
the most relevant ML models in classic Machine Learning. Inspired by
models such as LMNN, Triplet Networkswere first introduced for learn-
ing face embeddings [13].

The Triplet Network receives three inputs: an Anchor, a Positive, and
a Negative. In our work, the Anchor (a) corresponds to the feature rep-
resentation (obtained by the I3D) of a video of any given class, the Pos-
itive (p) is the representation of a video from the same class, and the
Negative (n) is the representation of a video from a different class.

GivenN (a, p, n) triplets, the Triplet loss function LΘ can be defined as

LΘ ¼ ∑
N

i¼1
Θðgðxa

i Þ, gðxp
i ÞÞ−Θðgðxa

i Þ, gðxn
i ÞÞ þ α

� �
þ, ð1Þ
4

inwhich i is the triplet index, g is the Triplet Network, g(xa), g(xp), g(xn)
are the Anchor, Positive, and Negative output representations, α is the
margin parameter, and + indicates that the loss is ≥0. Θ represents the
cosine distance between two feature representations d and e. The
cosine distance Θ is defined as

Θðd, eÞ ¼ 1−
d � e
∥d∥∥e∥

: ð2Þ

Our Triplet Network contains three fully connected layerswith 1024,
512, and256 neurons. Theweightswere initialized using theGlorot uni-
form initialization method [10].

Triplet mining is of great importance for Triplet Networks [13].
Using all possible combinations of triplets may require huge computa-
tional resources. Moreover, most triplets generated in this way do not
contribute to the learning process since they imply in LΘ ≤ 0. This
effect occurs when an anchor is already closer to the positive sample
than it is to the negative sample, and the difference is larger than the
margin parameter α.

Triplet mining guarantees that only relevant triplets are used for
training. In our work, we employ semi-hard and hard triplets. Semi-
hard triplets are those in which the distance between the Anchor and
Positive is smaller than the distance between the Anchor and Negative,
and also smaller than the margin α:

ΘðgðxaÞ, gðxpÞÞ<ΘðgðxaÞ, gðxnÞÞ
<ΘðgðxaÞ, gðxpÞÞ þ α:

ð3Þ

Hard triplets, on the other hand, are those in which the distance be-
tween the Anchor and Positive is larger than the distance between the
Anchor and Negative:

ΘðgðxaÞ, gðxpÞÞ>ΘðgðxaÞ, gðxnÞÞ: ð4Þ

4.3. Dual-Memory Extreme Value Machine

The Extreme Value Machine (EVM) was first introduced by Rudd
et al. [29] for open-set recognition. In the original EVM, each class is rep-
resented by a number of extreme vectors (EVs), which are represented
by a Probability of Sample Inclusion Ψ.

In the Dual-Memory EVM, we redefine Ψ asΨ′. The first difference
between the original EVM and the Dual-Memory EVM is that we incor-
porate the Triplet Network g into theΨ′models. The second difference
is thatwe store both x00

i and gðx00
i Þ once it is computed for thefirst time to

avoid recomputations during the test phase. Finally, the third difference
lies in the Incremental Learning algorithm, which will be presented in
Section 5.3. Eq. (5) defines Ψ′, as follows:

Ψ0ðx00
i , x

0, κ i,λiÞ ¼ exp −
Θðgðx00

i Þ, gðx0ÞÞ
λi

� �κ i

, ð5Þ

where Θðgðx00
i Þ, gðx0ÞÞ is the cosine distance between gðx00

i Þ and g(x′).
The Weibull shape and scale parameters λi and κi are computed by
fitting a Weibull distribution to the half-margins of the τ nearest points
to gðx00

i Þ using Maximum Likelihood Estimation.
Let x00

i be a training sample (fixed representation obtained by the
I3D) and y00i be its label, and given x00

i and x00
j , where ∀j, y00j ≠y

00
i , and x00

j is

the nearest point to x00
i , the half-margin for the pair (x00

i ,x
00
j ) is given by:

mij ¼
Θðgðx00

i Þ, gðx00
j ÞÞ

2
: ð6Þ
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Ψ′ is a rejection model where Ψ0ðx00
i , x

0, κ i,λiÞ corresponds to the
probability that a sample is not beyond the negative margin. Even
though a point has zero probability around the margin, the EVM also
supports a soft margin. The probability that a point x′ is a member of
class Cl is given by:

P̂ðCljgðx0ÞÞ ¼ argmaxi:yi¼Cl
Ψ0ðx00

i , x
0, κ i,λiÞ: ð7Þ

The final EVM classification function is:

ŷ ¼ argmaxi:yi¼Cl
P̂ðCljgðx0ÞÞ, if P̂ðCljgðx0ÞÞ⩾δ

unknown, otherwise

(
, ð8Þ

where δ is a parameter that defines the boundary between known and
unknown.

Intending to reduce the size of the EVM, most redundant
½x00

i ,Ψ
0ðx00

i ,x
0, κ i,λiÞ� models can be discarded with minimal loss on per-

formance [29]. Let x00
i be a data point and Ψ0ðx00

i ,x
0, κ i,λiÞ be its associ-

ated model. Let x00
j be a point belonging to the same class,

Ψ0ðx00
j ,x

0, κ j,λjÞ its associated model, and ς the probability threshold

above which the pair ½x00
j ,Ψ

0ðx00
j , x

0, κ j,λjÞ� is considered redundant

with respect to ½x00
i ,Ψ

0ðx00
i , x

0, κ i,λiÞ�. If Ψ0
iðx00

i ,x
00
j , κ i,λiÞ≥ς, then

½x00
j ,Ψ

0ðx00
j ,x

0, κ j,λjÞ� is redundant. Finally, Iðx00
i Þ is the indicator function

that maintains or discards a pair as:

Iðx00
i Þ ¼ 1, if〈x00

i ,Ψ
0ðx00

i ,x
0, κ i,λiÞ〉 kept

Iðx00
i Þ ¼ 0, otherwise:

(
ð9Þ

A pair becomes an extreme vector if ½x00
i ,Ψ

0ðx00
i , x

0, κ i,λiÞ� is kept. The
model reduction is defined by the following integer linear programming
objective function:

minimize∑
Nl

i¼1
Iðx00

i Þ, ð10Þ

s:t: ∀j, ∃i ∣ Iðx00
i ÞΨ0ðx00

i ,x
0, κ i,λiÞ⩾ς,

in which Nl is the number of points belonging to class Cl.
Fig. 2.Macro view of the Incremental HAR problem. First, videos go through a random task gen
Training process, which does not suffer the restrictions of Incremental Learning. Then, the sub
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5. Method

IHAR-DM strives to learn classes in a sequence of tasks. The first task
is considered the Initial Training data, while the subsequent tasks must
be learned under the Incremental Learning restrictions. Fig. 2 shows a
macro view of the Incremental Human Action Recognition problem.

First, the video dataset is split into n tasks, defined as {0, 1,…, n− 1}.
The first task goes through an Initial Training process, which is similar to
other non-incremental methods. After the Initial Training, we start the
Incremental Learning steps. IHAR-DM learns each task incrementally
while having access only to the data belonging to a specific task and to
the dual-memory EVM. Each step of the process will be detailed in the
following sections.

5.1. Datasets and task generation

TwoHARdatasetswere used to evaluate theproposedmethod:UCF-
101 [33] and HMDB51 [16]. These datasets are well-known and were
widely used in previously published works [4,42,36].

The UCF-101 dataset contains over 27 hours of people performing
actions such as typing, biking, and bowling, distributed in 13,320 clips.
The dataset contains five main categories: human-object interaction,
body-motion, human-human interaction, playing musical instruments,
and sports. The clips contain camera motion and cluttered background,
making it a challenging dataset.

The HMDB51 dataset contains 6766 video clips distributed into
51 classes. The classes are grouped into five main types: general facial
actions; facial actions with object manipulation; general body move-
ments; body movements with object interaction; and bodymovements
for human interaction [16]. Clips were extracted from movies and
YouTube videos. The use of this dataset is very challenging, because it
includesmany sceneswith large cameramotion, cluttered backgrounds,
viewpoint variations, and low-quality clips. The authors also provide 3
training/test splits for evaluating this dataset. Fig. 3 shows sample
frames from the UCF-101 and the HMDB51 datasets.

For the UCF-101 dataset, datawere split into 30% for testing, and 70%
for training and validation. Since the UCF101 dataset [33] contains sub-
groups of very similar videos inside each category (snippets cut from
the same long-duration video), care was taken to ensure that the
eration process. Then, tasks are learned sequentially. The first task goes through an Initial
sequent tasks are learned using our Incremental Learning approach.
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train/test splits encompass every video of the same group. This prevents
the test set from containing “easy” videos, which have been seen during
the training phase. For the HMDB51 dataset, we used the 3 training/test
splits provided by the authors.

With the training and test splits, tasks were generated by randomly
selecting classes for each task. Each class appears in only one of the
tasks. The number of tasks varies according to each experiment, as
will be described in Section 6.1.

5.2. Initial Training process

The Initial Training process seeks to generate the initial models of
the proposed framework. First, videos were transformed into feature
representations. This was achieved by training a 3D Convolutional Neu-
ral Network (CEL) with standard cross-entropy loss:

CELðy, ŷÞ ¼ −∑
i
yi log ŷi, ð11Þ

where y are the true labels, and ŷ are the predictions for each data point
i. The I3D model [4] was chosen for this task. Both, the parameters and
training protocol proposed by the original author were used here. The
input at training time consisted of a window of 64 consecutive frames.
This window was selected at random at each training epoch for aug-
mentation purposes. A random spatial cuboid of 224 × 224 × 64 was
also selected to perform a horizontal flip (mirror) with 50% probability.
The batch size was set to six. We used 30% of the training set for valida-
tion and optimize the network using the Stochastic Gradient Descent
(SGD) optimizer with a learning rate of 0.1, weight decay of 10−5, and
the Nesterov momentum of 0.9. The network was trained for 10 epochs
or until the loss stagnates. At the test time, a window of 250 frames was
selected from the center of the video. A spatial cuboid of 224 × 224 ×
250 was also taken from the center of the video.

The I3D outputs a 1024-dimensional feature vector which repre-
sents an input video. The next step of the framework is to use the I3D
representations to train a fully connected Triplet Network, which per-
forms the Metric Learning. The margin parameter α was set to 0.2, the
learning rate to 0.001, and the batch size to 128. These parameters
were defined after a small set of preliminary experiments. In the Initial
Training phase, the Triplet Networkwas trained for 10 epochs. Hard and
semi-hard triplets were mined at the start of each epoch as shown in
Section 4.2.

The next step of the process was training the Extreme Value Ma-
chine, which procedure was described in Section 4.3. The tail size τ for
fitting the Weibull distribution was set to 20% of the training set size,
and the classification threshold δ was set to 0.001. These parameter
values were chosen after a set of preliminary experiments that pointed
out a good trade-off between performance and computational cost.

The variable δ controls the rejection rate of the EVM. Although Incre-
mental Learning does not require a rejection mechanism, the frame-
work supports this possibility. The ability to reject samples from
unknown classes becomes a requirement once the problem evolves to-
wards an open-world setting, which will be addressed in the future.

The cover threshold ςwas set to 0.99. Setting ς to a higher valuemay
cause more EVs to remain after the model reduction process. It was ex-
perimentally found that the method achieved better performance with
higher values of ς, at the cost of a larger Extreme Vector Memory. Nev-
ertheless, the size of the Extreme Vector Memory is still smaller than
that of other concurrent models. Table 1 shows the number of EVs ob-
tained by the model in five runs of experiments using the UCF-101
dataset with different random seeds. The larger ς, the more EVs are
stored in memory. At the maximum value of ς, an average of 18.7 EVs
per classwere stored. For a fair comparison, thememory size of the con-
current methods was set to 20 exemplars per class.

Since the proposed method requires two different feature repre-
sentations to be stored (fixedwith 1024 features and dynamical with
6

256 features), thememory cost becomes 1280 32-bits floating points
per EV. Table 1 shows the number of EVs for a wide range of ς values.
According to this Table, and using an average of 1892 EVs, the dual-
memory costs around 9 megabytes to learn all the 101 classes of
videos of the UCF-101 dataset.

5.3. Incremental learning process
Algorithm 1. Incremental learning process

With the arrival of a new task, the Incremental Learning process be-
gins by forwarding the current videos through the already trained I3D to
obtain their 1024-dimensional (fixed) representations. Next, both, the
Triplet Network and the dual-memory EVM are incremented. For the
former, the fixed representations x″ from all previous Ψ′ models (EVs)
were gathered and added to the triplet mining pool along with the
new data. The Triplet Network was initialized with the weights from
the last task and perform a single-epoch fine-tuning.

For incrementing the dual-memory EVM, first, all the existing Ψ′
models (EVs) were recomputed using the representations obtained
from the updated triplet network g. In practice, this step involves
recomputing gðx00

i Þ, κi, and λi. The term gðx00
i Þ is recomputed with a

single forward through a branch of the Triplet Network, while κi and
λi are computed by fitting a Weibull distribution using Maximum
Likelihood Estimation to the half-margins of the nearest τ points



Fig. 3. (a) Samples from the UCF-101 dataset. (b) Samples from the HMDB51 dataset.
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(Eq. (6)). Once gðx00
i Þ is computed for the first time, it is stored in the

dual-memory alongwith x00
i , hence the termdual-memory EVM. Storing

gðx00
i Þ is beneficial because Ψ0ðx00

i , x
0, κ i,λiÞ can be computed multiple

times during the prediction phase, i.e., once for each test point x′.
We included the new task data as well as the existing EVs as eligible

for recomputing the Weibull parameters. This process is significantly
faster than learning from scratch because the EVs are sparse and have
already been defined. Model reduction is performed only when first
learning a class and, therefore, it is not executed at this step. New
tasks are added incrementally by learning new Ψ′ models for each
class and performingmodel reduction to define the new EVs. The entire
proposed incremental learning process is shown in Algorithm 1.

5.4. Evaluation protocol and metrics

All results reported in this work present the averages of 5 initial-
izations with different random seeds on the UCF-101 dataset, and
3 initializations on the HMDB51 dataset (each with a different train-
ing/test split provided by the authors of the dataset). Different ini-
tializations change the order in which classes appear within the
tasks. All methods received the same sequence of classes/tasks at
Table 1
Number of EVs obtained per ς value.

Threshold Experiment # Mean Mean EVs

ς 1 2 3 4 5 EVs Per Class

0.1 580 573 601 582 647 596.6 5.907
0.25 784 771 832 769 871 805.4 7.974
0.5 1031 1013 1100 1010 1125 1055.8 10.453
0.75 1256 1288 1359 1271 1354 1305.6 12.927
0.9 1458 1504 1613 1501 1570 1529.2 15.141
0.99 1790 1870 2010 1850 1940 1892 18.733

7

each run. We omit the initialization averaging from the following
equations in this section for simplicity.

TheNormalizedMutual Information (NMI) score [34]was used as the
main performancemeasure. NMI is independent of exact label matching
and is often used in clustering applications [22]. NMI is also a suitable
metric for the future natural extension of this work, the open-world rec-
ognition. NMI for task t after learning up to task k is defined as:

NMItkðy, ŷÞ ¼
Iðy, ŷÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðyÞHðŷÞ

q , ð12Þ

where H is the entropy, y are the ground truth labels, and ŷ are the pre-
dictions. Iðy, ŷÞ is the mutual information between y and ŷ:

Iðy, ŷÞ ¼ ∑
i
∑
j

yi⋂ŷj
�� ��

N
log

N yiŷj
�� ��
yij j ŷj
�� ��

 !
, ð13Þ

in which N is the total number of samples, and �j j represents the cardi-
nality. The entropy H is defined as:

HðyÞ ¼ −∑
i

yij j
N

log
yij j
N

� �
: ð14Þ

Forgetting is computed at the task level, based on themaximumNMI
achieved by a task since it has first arrived, minus its NMI after the final
task has been learned, as suggested by Chaudhry et al. [6]. Forgetting for
task t after incremental training up to task k is defined as:

f tk ¼ max
l∈ 0..., k−1f g

NMItl−NMItk, ∀t<k: ð15Þ

TheMean Forgetting of amodel is obtained by averaging the Forget-
ting of each task (after training up to the final task k).

Moreover, we also used theMean ITI as a performance metric in our
experiments. For computing ITI, the NMI of each task t is subtracted by
the NMI of the previous task t− 1, up to the final task k. Then, all values
are averaged, as shown in Eq. (16):

ITItk ¼
1

k−1
∑
k

t¼1
NMItk−NMIt−1

k : ð16Þ

ITI can be either positive or negative. The former reflects an overall gain
in performance as tasks are learned, while the latter means a decay in
the performance of new tasks as they are learned.

6. Experiments, results and discussion

6.1. Experimental settings

As previously mentioned in Section 3.2, we propose five experimen-
tal settings for evaluating Incremental HAR. Table 2 shows the experi-
mental settings and their parameters. The first column contains the
reference code for each experiment. In the following sections, we pres-
ent and discuss the results obtained in each setting.
Table 2
Experimental settings proposed for each dataset.

UCF-101 setting # Initial CLASSES # Classes/task # Tasks

UCF-S1 6 5 20
UCF-S2 11 10 10
UCF-S3 21 20 5

HMDB51 setting # Initial classes # Classes/task # Tasks

HMDB-S1 6 5 10
HMDB-S2 11 10 5



Fig. 4.Mean NMI between all tasks in five experimental settings. The error bars represent the standard deviation.
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6.2. Comparison settings

The proposed method was compared with several state-of-the-art
models that were presented in Section 2: BIC [41], EEIL [5], EWC [15],
ICARL [27], IL2M [3], LUCIR [14], LWF [17], MAS [1], Path Integral [43],
and Riemannian Walk [6]. The implementation provided by Masana
et al. [20]1 was used in the experiments. It greatly facilitated the com-
parison with existing methods.

Since thiswork tackles video classification, the I3D networkwas used
as the backbone for allmethods. The Initial Training stepwas followed by
first training the I3D network on the first task, using a regular softmax
cross-entropy loss function. The I3D converts videos from all tasks to fea-
ture representations. These representations are used as input to all the
above-mentioned state-of-the-art methods.

Since all comparisonmethods are based on neural networks, we em-
ploy a Multilayer Perceptron (MLP) to receive the input features. The
MLP had four layers with 1024, 512, and 128 neurons respectively,
each one followed by Rectified Linear Units (ReLUs). The output layer
contains the number of neurons equals to the number of classes in the
current task.

For the methods that use exemplars, the sampling strategy was set
to “herding” [27]. Herding selects exemplars based on their feature rep-
resentation so that they are close to the class mean. The memory size
was set to 20 exemplars per class. For methods that use knowledge dis-
tillation, the Temperature Scaling parameter was set to 2, the same
value in most works in the literature [41]. The remaining parameters
were set according to Masana et al. [20].

6.3. Results

This section is organized as follows. First, in Section 6.3.1, we discuss
the Mean Forgetting and the Mean NMI obtained by each method in all
experimental settings. The second part (Section 6.3.2) presents the re-
sults concerning the ITI. Finally, in the third part (Section 6.3.3), we
present and analyze the confusion matrices of each method in each
1 https://github.com/mmasana/FACIL.
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dataset. All table data used to generate the charts can be found in the
Appendix Section.

6.3.1. Experimental Results in Terms of NMI and Forgetting
The average NMI among all tasks indicates the general classification

performance of a model. Fig. 4 shows the performance of each model in
five experimental settings (refer to Table 2). In general, IHAR-DM pre-
sented both higher NMI and smaller standard deviation in comparison
with other methods in all experimental settings, indicating a more sta-
ble performance throughout tasks.

Fig. 4 also shows that all methods achieved a better overall perfor-
mance in settings with fewer tasks. In the UCF-101 experiments, shown
in (a), (b), and (c), there is an overall positive trend in performance from
settings UCF-S1 (20 tasks) to UCF-S2 (10 tasks), and finally to UCF-S3 (5
tasks). The same trend can be observed in the HMDB-51 experiments, as
shown in (d) and (e), going from HMDB-S1 (5 tasks) to HMDB-S2 (10
tasks). However, IHAR-DM had the least difference in NMI between UCF-
S1, UCF-S2, and UCF-S3 when compared to all other methods. The same
holds true for HMDB-S1 and HMDB-S2. This indicates that IHAR-DM is ro-
bust with respect to the number of tasks, while other methods struggle to
maintain performance in settings with a large number of tasks.

All methods presented higher values of NMI on the UCF-101 ex-
periments when compared to the HMDB51 experiments. This was
expected, since that HMDB51 is a more challenging dataset than
UCF-101. This difference in performance among the datasets was
also observed in Carreira and Zisserman [4].

Next, we investigate the Forgetting obtained by each method, as
shown in Fig. 5. Overall, LUCIR and ICARL presented the lower Forgetting
values considering all experimental settings. IHAR-DM presented a
slightly higher forgetting when compared to other methods in (b), (c),
and (d). However, Forgetting often comes as a trade-off with Intrans-
igence [6]. Next, we investigate whether this trade-off is also true for
Forgetting and ITI.

6.3.2. Experimental results in terms of ITI
ITI is a metric that measures the ability of an incremental classifier to

maintain its performance on new tasks, relative to the previous tasks.

https://github.com/mmasana/FACIL


Fig. 5.Mean Forgetting between all tasks in five experimental settings. The error bars represent the standard deviation.
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Fig. 6 shows the mean NMI of eachmethod in each task. A serious prob-
lem is clearly observed: most methods suffered a performance decay as
new tasks were learned. This performance decay is reflected by the ITI,
as shown in Fig. 7. On the other hand, the proposed IHAR-DM keeps a
more stable performance along with the tasks. IHAR-DM was the only
to achieve a positive ITI among all methods, indicating a performance
gain instead of decay when learning new tasks. The second method
with the least performancedecaywas LWF. This contrastswith thevalues
of Forgetting (Fig. 5), inwhich IHAR-DMandLWFpresented theworst re-
sults. Additionally, LUCIR, which has shown the lowest Forgetting, pre-
sented the largest performance decay as measured by the ITI. This fact
suggests that there exists a trade-off between Forgetting and ITI.
Fig. 6. Mean NMI per task in five experimental settings. Figure best viewed in color. (For inter
version of this article.)
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6.3.3. Analysis of confusion matrices
Confusion matrices have been previously used to diagnose task-

recency bias in Incremental Learning models [27]. Task recency bias
is visible when many samples get misclassified as belonging to
the recently learned task. Fig. 8(a) shows the confusion matrices of a
single experiment on the UCF-S1 setting. In this experiment, none of
the models have shown task-recency bias. Notwithstanding, some
of the models have shown the opposite effect, where samples were
misclassified as one of the classes in earlier tasks. This preceding-task
bias can be clearly observed in EWC, ICARL, IL2M, LUCIR, MAS, Path In-
tegral, and RWALK by inspecting the higher density of errors in the left-
most columns of the confusion matrices. The most likely cause for this
pretation of the references to color in this figure legend, the reader is referred to the web



Fig. 8. (a) Confusion matrices obtained from a single experiment on the UCF-S1 setting. (b) Percentage of data on the main diagonal of the corresponding confusion matrix. The red line
represents the tendency line, obtained through a Ridge Regression. Figure best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7.Mean ITI between all tasks in five experimental settings. The error bars represent the standard deviation.
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Fig. 9. (a) Confusionmatrices obtained from a single experiment on the HMDB-S1 setting. (b) Percentage of data on themain diagonal of the corresponding confusionmatrix. The red line
represents the tendency line, obtained through a Ridge Regression. Figure best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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preceding-task bias is overcompensating to alleviate Forgetting in the
trade-off with Intransigence. The methods that did not suffer from
preceding-task bias were LWF and IHAR-DM, where errors are evenly
distributed across tasks. These methods were also the least impacted
by performance decay as reflected by the ITI, suggesting an overcom-
pensation to alleviate Forgettingwhile sacrificing the ability tomaintain
a stable performance as new classes were learned.

The main diagonal of most methods also shows a performance
decay after the earlier tasks. A more detailed view of the main diag-
onal of the confusion matrices is shown in Fig. 8(b). Here, each class
in the confusion matrix is represented by a vertical bar that indicates
the percentage of data at a specific point of the main diagonal (cor-
rect classifications). In order to show the overall trend in perfor-
mance as new tasks are learned, a linear interpolation was added
to the plot, shown as a red line. It was obtained by fitting a Ridge re-
gression [12]. This Figure shows that IHAR-DM was the only method
that did not suffer from performance decay. The performance of
IHAR-DM had a positive trend, suggesting that the proposed model
became even more robust as new classes were learned. The same
tendencies can be observed in Fig. 9. The figure shows the confusion
matrices and main diagonals of a single experiment on the HMDB-S1
setting. Despite using a different and more challenging dataset,
IHAR-DM still maintained a stable performance as new tasks were
learned.

7. Conclusions and future works

This work presented a framework for performing Incremental
HAR in videos. We introduced the dual-memory EVM, which
11
synergizes with a Convolutional Neural Network and a Triplet
Network to perform incremental learning coupled with deep
representation learning.

The proposedmethodwas comparedwith ten state-of-the-art incre-
mental learning models. Results show that the proposed method
achieved superior performance in terms of mean NMI. This result sug-
gests that Metric Learning, as done by the Triplet Network, combined
with a task-agnostic parameter isolation classifier (dual-memory
EVM), forms a powerful framework for incremental video classification.
Hence, representation learning should receive more attention in future
research.

Regarding Forgetting and ITI, the proposed method achieved
interesting results. Despite having a higher value of Forgetting,
IHAR-DM did not suffer from performance decay as indicated by
the ITI, unlike other methods. We observed that most methods
tend to overcompensate for alleviating Forgetting, thus leading to
a significant performance decay. It should be kept in mind that a
stable performance is vital for real-world applications, where the
number of tasks may grow indefinitely over time. In this sense,
classifiers that suffer from performance decay quickly become
obsolete.

Regarding the different experimental settings, we observed that the
overall performance of most methods was lower in settings with a
larger number of tasks. In terms of NMI, IHAR-DMwas the least affected
by this phenomenon. Thismay also be related to the performance decay
measured by the ITI.

Futureworks include the extension of the Incremental HAR problem
to open-world HAR. Open-world HAR is a challenging problem that in-
volves dealing with previously unseen classes in unlabeled data. This



M. Gutoski, A.E. Lazzaretti and H.S. Lopes Image and Vision Computing 116 (2021) 104313
task requires differentiating between known and unknown data in a
growing world. We believe that the dual-memory EVM coupled with a
metric representation learning offers a promising framework for this
task.
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Appendix A
In this section we provide the experimental results in table format to facilitate future comparisons. Table 3 shows the NMI and standard deviation of
the experiments presented in Fig. 4. Table 4 shows the Forgetting and standard deviation of the experiments presented in Fig. 5, and Table 5 shows
the ITI and standard deviation of the experiments presented in Fig. 7.

Table 3
Mean NMI and standard deviation between all tasks in five experimental settings. The values are equivalent to those of Fig. 4.
Setting
 BIC
 EEIL
 EWC
 IL2M
 LUCIR
 LWF
 MAS
 Path Int
 R WALK
 ICARL
 IHAR-DM
CF-S1
 0.808 ±
0.078
0.792 ±
0.084
0.657 ±
0.096
0.661 ±
0.095
0.771 ±
0.083
0.843 ±
0.047
0.691 ±
0.102
0.666 ±
0.102
0.656 ±
0.102
0.807 ±
0.084
0.889 ±
0.023
CF-S2
 0.863 ±
0.048
0.857 ±
0.060
0.812 ±
0.071
0.817 ±
0.073
0.816 ±
0.081
0.889 ±
0.027
0.818 ±
0.088
0.818 ±
0.072
0.815 ±
0.077
0.861 ±
0.068
0.914 ±
0.014
CF-S3
 0.899 ±
0.039
0.898 ±
0.045
0.890 ±
0.045
0.891 ±
0.044
0.853 ±
0.079
0.915 ±
0.021
0.884 ±
0.059
0.891 ±
0.046
0.891 ±
0.048
0.896 ±
0.044
0.924 ±
0.009
MDB-S1
 0.589 ±
0.101
0.619 ±
0.101
0.586 ±
0.089
0.591 ±
0.085
0.597 ±
0.108
0.628 ±
0.079
0.598 ±
0.092
0.581 ±
0.087
0.580 ±
0.094
0.633 ±
0.101
0.662 ±
0.051
MDB-S2
 0.641 ±
0.096
0.674 ±
0.062
0.666 ±
0.066
0.674 ±
0.061
0.653 ±
0.104
0.696 ±
0.066
0.667 ±
0.073
0.663 ±
0.070
0.664 ±
0.074
0.684 ±
0.076
0.697 ±
0.046
Table 4
Mean Forgetting and standard deviation between all tasks in five experimental settings. The values are equivalent to those of Fig. 5.
Setting
 BIC
 EEIL
 EWC
 IL2M
 LUCIR
 LWF
 MAS
 Path Int
 R WALK
 ICARL
 IHAR-DM
CF-S1
 0.014 ±
0.012
0.014 ±
0.017
0.062 ±
0.050
0.057 ±
0.053
0.010 ±
0.007
0.034 ±
0.021
0.041 ±
0.035
0.052 ±
0.041
0.058 ±
0.051
0.011 ±
0.004
0.049 ±
0.005
CF-S2
 0.019 ±
0.012
0.009 ±
0.004
0.025 ±
0.002
0.020 ±
0.003
0.002 ±
0.001
0.027 ±
0.004
0.013 ±
0.002
0.018 ±
0.005
0.019 ±
0.003
0.006 ±
0.001
0.032 ±
0.005
CF-S3
 0.018 ±
0.011
0.009 ±
0.012
0.016 ±
0.013
0.014 ±
0.015
0.001 ±
0.002
0.020 ±
0.017
0.008 ±
0.009
0.012 ±
0.014
0.010 ±
0.014
0.013 ±
0.010
0.024 ±
0.004
MDB-S1
 0.016 ±
0.019
0.018 ±
0.024
0.035 ±
0.037
0.029 ±
0.035
0.010 ±
0.014
0.037 ±
0.027
0.025 ±
0.036
0.029 ±
0.042
0.031 ±
0.033
0.011 ±
0.015
0.058 ±
0.062
MDB-S2
 0.016 ±
0.013
0.017 ±
0.031
0.026 ±
0.031
0.021 ±
0.031
0.008 ±
0.012
0.022 ±
0.019
0.020 ±
0.027
0.027 ±
0.029
0.022 ±
0.028
0.011 ±
0.015
0.026 ±
0.037
Table 5
Mean ITI and standard deviation between all tasks in five experimental settings. The values are equivalent to those of Fig. 7.
Setting
 BIC
 EEIL
 EWC
 IL2M
 LUCIR
 LWF
 MAS
 Path Int
 R WALK
 ICARL
 IHAR-DM
CF-S1
 −0.013 ±
0.040
−0.016 ±
0.031
−0.021 ±
0.039
−0.020 ±
0.040
−0.018 ±
0.060
−0.006 ±
0.040
−0.019 ±
0.039
−0.022 ±
0.040
−0.021 ±
0.039
−0.015 ±
0.031
0.001 ±
0.030
CF-S2
 −0.015 ±
0.029
−0.021 ±
0.024
−0.027 ±
0.026
−0.026 ±
0.030
−0.030 ±
0.038
−0.009 ±
0.021
−0.032 ±
0.035
−0.026 ±
0.026
−0.029 ±
0.022
−0.023 ±
0.025
0.004 ±
0.016
CF-S3
 −0.028 ±
0.032
−0.030 ±
0.017
−0.030 ±
0.019
−0.030 ±
0.020
−0.051 ±
0.037
−0.014 ±
0.020
−0.040 ±
0.023
−0.031 ±
0.017
−0.032 ±
0.016
−0.029 ±
0.016
0.001 ±
0.013
MDB-S1
 −0.031 ±
0.092
−0.030 ±
0.103
−0.028 ±
0.077
−0.028 ±
0.076
−0.030 ±
0.111
−0.022 ±
0.077
−0.027 ±
0.084
−0.027 ±
0.072
−0.030 ±
0.075
−0.029 ±
0.098
−0.003 ±
0.081
MDB-S2
 −0.060 ±
0.096
−0.039 ±
0.071
−0.036 ±
0.096
−0.034 ±
0.085
−0.063 ±
0.113
−0.028 ±
0.108
−0.046 ±
0.094
−0.042 ±
0.097
−0.047 ±
0.096
−0.043 ±
0.100
−0.008 ±
0.083
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