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Recent research has shown that features obtained from pretrained Convolutional Neural Net-

work (CNN) models can be promptly applied to a variety of problems they were not originally

designed to solve. This concept, often referred to as Transfer Learning (TL), is a common

practice when labeled data is limited. In some ¯elds, such as video anomaly detection, TL is still
an underexplored subject in the sense that it is not clear whether the architecture of the

pretrained CNN model impacts on the video anomaly detection performance. In order to clarify

this issue, we perform an extensive benchmark using 12 di®erent pretrained CNN models on
ImageNet as feature extractors and apply the features obtained to seven video anomaly de-

tection benchmark datasets. This work presents some interesting ¯ndings about video anomaly

detection using TL. The highlights of our ¯ndings were revealed by our experiments, which have

shown that a simple classi¯cation process using One-Class Support Vector Machines yields
similar results to state-of-the-art models. Moreover, a statistical analysis suggests that archi-

tectural di®erences are negligible when choosing a pretrained model for video anomaly detec-

tion, since all models presented similar performance. At last, we present an in-depth visual

analysis of the Avenue dataset, and reveal several aspects that may be limiting the performance
of state-of-the-art video anomaly detection methods.

Keywords : Transfer learning; anomaly detection; dataset analysis; deep learning.

1. Introduction

The increasing concern with public security, allied to the decreasing cost of hard-

ware, has made surveillance cameras omnipresent in private and public spaces.

However, the number of available human observers has not grown in the same

proportion as the number of surveillance cameras. In this scenario, the e®ectiveness

of the footage is greatly hindered, since the human endeavor required for e®ectively
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observing it is still too high. The main drawback of human-based video surveillance is

that the security footage is often used in a reactive, rather than in a proactive way.

That is, footages are often analyzed after a fact has occurred, e.g. for identifying the

author of a prohibited act. In such a scenario, an automatic online anomaly detection

system could detect misconduct immediately, alerting the appropriate authorities

and allowing for quick corrective action. Hence, automatic video anomaly detection

is a subject of great importance to public security and has drawn great attention

from the Computer Science community.9

Recently, Deep Learning (DL) methods have achieved the state-of-the-art results

on many image-related problems, including abnormal event detection and recogni-

tion in video sequences,15,21 face recognition,7 object tracking and segmentation,26

video prediction and analysis,30 among countless other applications.

Despite the excellent performance of the above-mentioned DL methods, per-

forming automatic video anomaly detection still remains a di±cult task, mainly

because anomalous events in videos are ill-de¯ned and strongly context dependent.

For instance, an agitated crowd can be considered normal or anomalous, depending

on the context of the scene.4

Since contextual knowledge is not always included in the training data, it may be

necessary to acquire it from an external source. One way to tackle this problem is to

incorporate knowledge acquired at a di®erent, yet similar, task. For instance, a

network trained for classifying images of objects may have acquired important

knowledge about shapes, textures, and colors during its training phase. Thus,

somehow this previously acquired knowledge may be useful for solving tasks

that include similar objects. This concept is often referred to as Transfer Learning

(TL).14,19

In the recent literature, very few works have explored TL in the context of

anomalous event detection in surveillance videos,4,21 achieving state-of-the-art

performance and encouraging further research.

Both of the above-cited works employ pre-trained Convolutional Neural Network

(CNN) models as feature extractors. However, the experiments performed by the

authors only explored a small number of models and benchmark datasets. Refer-

ence 21 employs the VGG-f1 model as a feature extractor and argues that deeper

models, such as GoogLeNet,24 ResNet3 and VGG-verydeep1 may achieve better

anomaly detection performance. Hence, a more extensive benchmarking of pre-

trained CNN models, ranging from relatively shallow to very deep, is important for

better understanding their performance on video anomaly detection tasks.

Reference 4 also points out another important issue regarding a particular

benchmark dataset (Avenue), which is one of the most popular video anomaly de-

tection dataset. It is argued that some static objects that appear in the test set were

incorrectly labeled as normal. This raises an important question: is the performance

of current video anomaly detection methods limited due to incomplete or mislabeled

datasets? A possible way to tackle this question is by performing a thorough analysis

M. Gutoski et al.

2152003-2

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

21
.3

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 T

E
C

N
O

L
O

G
IC

A
 F

E
D

E
R

A
L

 D
O

 P
A

R
A

N
A

 o
n 

01
/0

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



of the classi¯cation results and attempt to understand the reason behind the mis-

classi¯cation of frames.

This work has two main parts. First, we perform video anomaly detection by

employing TL as a way to extract feature representations from surveillance video

data. Frames are then classi¯ed as normal or anomalous using One-Class Support

Vector Machines. Our method is signi¯cantly simpler than other state-of-the-art

methods in the literature, since we do not split frames into patches or use any

complex form of temporal learning. Instead, we employ a simple moving average

¯lter over time to minimize the impact of noise. Other factors that make our ap-

proach much simpler are: (1) Easy implementation using current Deep Learning and

Machine Learning frameworks; (2) Low computational power requirements, since we

employ pre-trained Deep CNN models. The only training required in our method is

performed by the One-Class SVM; (3) Low computational time, since the full al-

gorithm can be executed in just a few minutes on a moderate machine. Nonetheless,

we show that our method can achieve results that are comparable to other state-of-

the-art methods for anomalous event detection at the frame level. The main problem

we tackle with this approach is the lack of general guidelines for choosing a feature

extraction model. The second part of this work focuses on a visual analysis of the

misclassi¯cation cases in the Avenue dataset so as to have insights on the classi¯-

cation limits imposed by the data, not the methods.

The highlights of this paper are as follows:

. A simple yet e®ective method for performing anomaly detection in security videos

using TL, achieving results comparable to other state-of-the-art approaches;

. An extensive benchmarking and performance evaluation of 12 CNN models on

seven video anomaly detection benchmark datasets;

. A visual-level analysis of the results obtained in the Avenue dataset,11 which

points to possible problems that may be limiting the classi¯cation performance of

anomaly detection models.

This paper is organized as follows: Section 2 presents theoretical aspects about

TL. Section 3 presents a detailed explanation of the method used for performing

video anomaly detection. Section 4 presents the experiments and results. Section 5

presents the visual analysis of the results, and ¯nally, Sec. 6 presents the ¯nal

remarks of this work.

2. Transfer Learning

Machine learning algorithms work under the premise that the training and test data

belong to the same distribution, which is a strong assumption for real-world pro-

blems.14,19 Contrariwise, TL assumes that these distributions may be di®erent, and

a robust model may achieve satisfying results when applied to completely new

problems.10
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Reference 14 de¯nes TL as follows: given a source domain Ds, a source task Ts, a

target domain Dt and a target task Tt, TL aims at improving the learning of a target

predictive function ftð�Þ in Dt by using the previously acquired knowledge in Ds and

the knowledge in Ts, given that Ds 6¼ Dt and Ts 6¼ Tt.

TL is commonly used when facing two main problems: insu±cient computing

power to train a large model or the lack of a substantial amount of labeled training

data. The computing power problem is softened by not having to train the model

from scratch. In its turn, the lack of labeled data also becomes a smaller problem,

since it was shown that a ¯ne-tuning process of the last layer with a small amount of

data can lead to a satisfactory performance on classi¯cation problems.29 Speci¯cally,

CNNs can be used as a feature extractor by forwarding a new image throughout the

network and capturing its latent representation at any hidden layer. Hence, labeled

data is not required in this approach, given that the CNN model in question was

originally trained to solve a similar problem. According to Ref. 14 formalism, our

approach is classi¯ed as feature-representation-transfer under inductive TL.

While the data used to train a model play an important role in obtaining robust

features, the architecture of the model itself may also impact on the features. In

general, deeper models have shown better performance than shallow models on image

classi¯cation tasks, such as the ILSVRC.3,24 This performance gain may be attrib-

uted to the high-level features, learned at the deeper layers of the network. However,

it is not clear if such features are ideal for tasks outside of the scope of the original

problem, since they may be overly adapted to it. To circumvent this issue, one can

extract features from a layer in the middle of the network. Nonetheless, this solution

can be computationally costly, since the dimensionality in the middle layers is usu-

ally much higher than those of the ¯nal layers. For instance, they can reach hundreds

of thousands in models such as GoogleNet and ResNet152. Another option is to

extract the features from the ¯nal layers of shallowest networks. This may produce

lower-level features while keeping dimensionality on a reasonable range of a few

thousands.

Some experimental works in the recent literature have shown that the depth in

which the features are extracted may a®ect the ¯nal classi¯cation results.21 However,

to date, there are still no general guidelines for selecting the most appropriate model

or choosing the most appropriate layer to perform feature extraction. Hence, trial-

and-error has been the current approach.

3. Method

In this work, we use models trained for classifying images of the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC).16 The dataset contains approxi-

mately 14 million images and 1000 di®erent classes. Such models are easily accessible,

given the growing amount of pre-trained models available at the repositories of major

DL frameworks. An overview of the proposed method is shown in Fig. 1. Each part

will be detailed in the following sections.
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3.1. Data preprocessing

All video anomaly detection benchmark datasets used in this work are publicly

available. All videos were discretized into a sequence of frames covering the full video

duration. Each frame was previously labeled as normal or anomalous by the original

creators of the datasets.

The ¯rst preprocessing step was to resize the frames to 224� 224 pixels using an

interpolation algorithm, similar to Ref. 21. The second step was to normalize the

pixels between ½�1; 1�. Since the networks take RGB inputs and some of the datasets

provide grayscale frames, we replicate the grayscale channel three times.

3.2. Feature extraction

In this work, 12 CNNs were used as feature extractors, as follows: AlexNet8; the

original GoogLeNet model and Inception v3, which is an improvement upon the

original model24; the ResNet model variations3; the VGG model variations1; and the

more recent DenseNet.5 All of the model's weights can be found in either Ca®e,

TensorFlow,20 or Keras model repositories.

Feature extraction was done by forwarding each frame throughout the network

and capturing the information at the last pooling layer. No ¯ne tuning process is

done before the feature extraction.

It is important to note that the dimensionality at the last pooling layer is sig-

ni¯cantly smaller when compared to any other convolutional or pooling layer in the

network, making the process computationally feasible. To further reduce the di-

mensionality, we employ the Principal Component Analysis (PCA) algorithm. The

PCA model is ¯t by using the features obtained from the training set. This model is

then used to reduce the dimensionality of the test set. We aim at minimizing the

number of principal components, under the constraint that at least 98% of the

variance has to be preserved. This reduces both the dimensionality from thousands

to, in some cases, less than a hundred features, and the computational e®ort of the

classi¯cation process, described in the following section.

3.3. Classi¯cation using OC-SVM

Once the features are extracted, the classi¯cation process is performed by an

OC-SVM. Therefore, only normal examples are used in the training phase.

Fig. 1. Overview of the proposed video anomaly detection method.
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In order to perform the classi¯cation, we compute the distance of each test data

point z to the decision border of the hypersphere by using Eq. (1). We used this

distance as an anomaly score (AS), which is considered anomalous if it is less

than zero:

AS ¼
X
i

�iKðz;xiÞ �
1

2
1þ

X
i;j

�i�jKðxi;xjÞ � R2

" #
; ð1Þ

where ® are the Lagrange multipliers, K is the Gaussian kernel function, R is the

radius of the hypersphere, and xi and xj are a pair of support vectors. Since we

employ the Gaussian kernel, the formulation of the SVDD model is equivalent to the

OC-SVM proposed in Ref. 18, as pointed out by Ref. 25.

3.4. Moving average ¯lter

In videos, anomalies generally occur over time, which means that temporal factors

are relevant for the classi¯cation task, as shown by Ref. 31. Moreover, several prior

works have used temporal descriptors to perform video anomaly detection.22,28

Hence, a simple moving average ¯lter is used to remove some noise in the classi¯-

cation process.

For each frame i on a continuous video sequence, a Smoothed Anomaly Score

SASi is proposed, which is the smoothed ASi (Eq. (1)). The SASi is computed by

using a moving average ¯lter, according to Eq. (2), where s is the size of the moving

average mask and i is the current frame.

SASi ¼
1

s

Xs�1

j¼0

ASiþj: ð2Þ

This strategy ensures that the current frame SASi is in°uenced by forthcoming

frames. Since most of the datasets used in this work provide a sequence of di®erent

videos that have time gaps between them (cuts and changes of scenario), the SASi is

calculated over continuous (uncut) video sequences only.

In a real-life application, this ¯lter has the downside of forcing the anomaly

detection system to operate s frames behind the real-time footage. However, for most

applications, this small time gap will be neglectable.

3.5. Evaluation

For evaluating the results, we use the Area Under the Receiver Operating Charac-

teristic Curve (AUC). This measure ensures that the classi¯er is evaluated at many

di®erent thresholds, i.e. the distance cutting points above which a sample is con-

sidered anomalous.
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4. Experiments and Results

All experiments done in this paper were run on a computer with an Intel Core i7

processor at 3.30GHz, Nvidia Titan X GPUs, and minimal installation of Ubuntu

18.04 LTS. Despite using GPUs for forwarding frames throughout the Deep Learning

models, this task could be easily accomplished using regular CPUs.

4.1. Benchmark datasets

Seven video anomaly detection benchmark datasets were used for evaluating the

performance of the proposed method:

UTFPR-HSD1 and UTFPR-HSD2a are video anomaly detection datasets

aimed at detecting tra±c anomalies on busy highways. They were shot at Curitiba,

Brazil, by the Federal University of Technology, Paran�a. In order to avoid tra±c

jams in rush hours, long trucks are restricted during certain times of the day.

Therefore, scenes containing at least one long truck are considered anomalous,

whereas scenes containing any other vehicles are considered normal. UTFPR-HSD1

and UTFPR-HSD2 di®er due to the di®erences in camera angle, elevation, illumi-

nation and location. The UTFPR-HSD1 dataset is composed of 6 602 frames in the

training set, and 1 660 frames in the test set. In its turn, UTFPR-HSD2 contains

5 640 frames in the training set and 1 986 frames in the test set. These datasets are

fully labeled in such a way they can be used for other purposes such as multi-label

classi¯cation.

The Avenue dataset11 currently serves as a benchmark for video anomaly de-

tection. Normal events are de¯ned by people walking in di®erent directions.

Anomalous events occur when people run, throw objects or loiter. The training

dataset contains 15 328 frames, and the test dataset contains 15 324 frames. Re-

cently, a modi¯ed version of the Avenue dataset was introduced by Ref. 4, named

Avenue17. In this version, the train set remains the same, while the test set is

smaller because some videos were removed. The author argues that some objects in

these videos were not annotated properly. This version contains 15 328 frames in the

training set and 10 622 frames in the test set. Further discussion about this subject

can be found in Sec. 5.

UCSDPed1 andUCSDPed212 are video anomaly detection datasets captured

by stationary cameras in a pedestrian walkway. Walking pedestrians are considered

normal events, and anomalies occur when vehicles, skateboarders, bicycles, and

wheelchairs pass throughout the scene. The Ped1 dataset contains 6 800 frames in

the training set and 2 000 frames in the test set. In its turn, the Ped2 dataset contains

2 550 frames in the training set and 2 010 frames in the test set.

The UMN dataset13 contains footage of crowd behavior in three di®erent loca-

tions. Normal events are de¯ned by people walking randomly, while anomalies occur

aUTFPR-HSD1 and UTFPR-HSD2 are Highway Surveillance Datasets available at https://github.com/

bioinfolabic/UTFPR-HSD.
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when the crowd evades the scene by running outwards. The training set contains

5 122 frames and the test set contains 1 382 frames.

4.2. Experiments

The experiments presented in this section aim at answering important questions that

arise in TL applications: (i) Which model should be chosen for the video anomaly

detection problem? (ii) How does the performance of TL is compare with other

methods in the literature?

As an attempt to answer these questions, we evaluate the performance of 12

di®erent pretrained CNN models (in the object recognition task in images), and used

them as feature extractors for the video anomaly detection problem. Moreover,

results are compared to the state-of-the-art methods and a simple baseline. The

baseline method uses the well-known Histogram of Oriented Gradients (HOG) with

its default parameters as a feature extractor. HOG was used as feature extractor in

the very same way as the CNN models, as shown in Fig. 1.

The experiments follow the description provided in Sec. 3. The OC-SVM is sen-

sitive to its control parameters, hence, we used a factorial experiment to ¯nd the best

set of parameters, with the following values: f0:001; 0:01; 0:05; 0:1; 0:2; 0:5; 0:9g and

f0:001; 0:01; 0:05; 0:1; 0:2; 0:5; 1:0g for the kernel and the regularization parameter,

respectively. We repeat this process for every model and dataset for fairness in the

comparison, i.e. all models are compared using their best combination of parameters.

Regarding the Moving Average Filter, we also perform a parameter search for de-

termining the best value for s. The set of parameters includes the arbitrarily chosen

values f2; 3; 5; 7; 10; 15; 20; 30; 50; 75; 100; 150; 200g. Only the results obtained by the

best set of parameters are reported in the following section.

4.3. Results

The experimental results for all datasets are presented in Table 1.

While many of the models present similar results for a given dataset, some of them

stand out. AlexNet, for instance, outperformed all other models on the UCSD Ped1

dataset, which is one of the most challenging among the datasets used in this work.

This is surprising, due to the simplicity of AlexNet when compared to some of the

deeper models. Another case is the VGG-M network applied to the UCSD Ped2

dataset, which achieved signi¯cantly higher performance than the other models. A

more recent model, DenseNet, has presented the best results in three out of seven

datasets. However, it still performed below VGG-M in average.

An important issue is raised when all datasets are considered: are there signi¯cant

di®erences in the performance of the models? The average anomaly detection per-

formance, shown in Table 1, indicates that the di®erence in performance between the

models is quite small. Notwithstanding, this small di®erence may not be convincing

without a statistical analysis. Therefore, the Friedman test2 was used to measure
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whether there is a signi¯cant di®erence between the performance of each model

considering all datasets. This test does not assume that the data follow a normal

distribution. Hence, it is adequate for analyzing our results. Apply the results shown

in Table 1 (with swapped rows and columns) to the Friedman test equation:

�r
2 ¼ 12n

pðpþ 1Þ
Xp
j¼1

�rj �
1

2
ðpþ 1Þ

� �
2

; ð3Þ

where n is the number of rows, p is the number of columns, and �rj is the mean rank of

the jth column of a new matrix obtained by ranking the standard deviations of each

row of Table 1. This computation yields a �r
2 value of 14.87. The p-value for the test

is given by Pð�2
p�1 � �r

2Þ, which results in a p-value of 0.188. Given that

0:188 � 0:05, the null hypothesis is not rejected,2 indicating that there is no signif-

icant di®erence between the models. In other words, there is no evidence that any

particular model extracts better features in comparison to other models for video

anomaly detection in the particular scenario studied in this work. This suggests that

the architecture of the model may not be a decisive factor for selecting a feature

extractor for this speci¯c problem. Moreover, the similarities in performance may be

partially explained by the fact that all models were trained using the same data, i.e.

the ImageNet dataset.

Table 2 compares the baseline feature extractor (HOG) and the state-of-the-

art methods for each dataset in terms of AUC. TL performed much better than

HOG as feature extractor, considering the best result obtained for each dataset.

Moreover, our approach performs very similar to the state-of-the-art methods on

most datasets.

Our experimental results have shed some light on both of the questions posed at

the beginning of this section, as follows: (i) Since no signi¯cant di®erence was found

Table 2. Anomaly detection performance comparison measured by the AUC. (left) The results of our

approach using HOG and TL (right) the state-of-the-art found in the literature.

Dataset Baseline (HOG) TL (best) State-of-the-art Method Reference

UTFPR-HSD1 0.851 0.972 — — —
UTFPR-HSD2 0.552 0.956 — — —
Avenue 0.798 0.847 0.878 Narrowed Motion

Clusters

Ref. 6

Avenue17 0.863 0.904 0.904 Narrowed Motion

Clusters

Ref. 6

UCSD Ped1 0.616 0.719 0.927 Local Spatio-Tem-

poral Anomalies

Ref. 17

UCSD Ped2 0.701 0.893 0.908 Appearance and

Motion DeepNet

Ref. 27

UMN 0.873 0.992 0.997 Online Growing
Neural Gas

Ref.23

Average 0.750 0.895 — — —

M. Gutoski et al.
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between the performance of the models over all datasets, it may be the case that

di®erences regarding the architecture of the models (such as their depth) are not

decisive factors for video anomaly detection. Hence, a good choice may be a simple

model, since the computational e®ort is much lower than using other deeper and

more complex models. (ii) Features obtained using the TL approach yield signi¯cant

results on video anomaly detection tasks. Our experiments have shown that such

features outperforms classical methods such as HOG, and perform similar to the

state-of-the-art methods. Precomputed features for the best results and sample

evaluation code can be found at https://github.com/bioinfolabic/Transfer-

Learning-Issues-in-Video-Anomaly-Detection.

5. Visual Analysis

Most of the current research in the video anomaly detection ¯eld relies on popular

benchmark datasets for performance evaluation. However, very few works have

addressed the solidity of the human made annotations that indicate whether an

event is normal or anomalous.4 This is an important issue, since mislabeled data may

prevent methods from correctly classifying some anomalous events. Notwithstand-

ing, this may partially explain the gap between the current state-of-the-art

performance and the ideal 100% classi¯cation accuracy.

In some datasets, anomalies are well-de¯ned, such as in the UCSD Ped1 and Ped2

datasets (objects such as bicycles, skateboards, vehicles and wheelchairs establish the

anomaly), the UMN dataset (a panic situation establishes the anomaly), and in the

UTFPR-HSD datasets (long trucks clearly characterizes the anomalies). However, in

some datasets such as Avenue, anomalies are ill-de¯ned since they depend on context

and human behavior. This makes the task of annotating the data much trickier, and

leaves some aspects of abnormality open to interpretation. Notwithstanding, this

may lead to uncertainty when evaluating anomaly detection methods.

The Avenue dataset is one of the most used in anomaly detection studies. How-

ever, no method has, yet, achieved 100% of classi¯cation accuracy. Recently, Ref. 4

raised some issues about the correctness of the annotation of frames. This lead to the

creation of another \cleaned" dataset, Avenue17. Therefore, we performed a deep

analysis of all frames of the original Avenue dataset, so as to unveil possible problems

not previously known. In order to perform this analysis, we use the SAS (Eq. (2))

obtained by using the VGG-16 features. We choose this model because it presented

the best performance on the Avenue dataset. Within our analysis, we identify

four categories of problems that occur in the Avenue dataset that may cause

misclassi¯cation.

We de¯ne the ¯rst category as continuity interruption. This problem happens

when the ground truth changes abruptly because the agent that causes the anomaly

brie°y leaves and then re-enters the scene. This type of problem happens for many

reasons, such as the occlusion of a person when running behind a pillar, or an object

A Comparative Study of Transfer Learning Approaches for Video Anomaly Detection
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leaving the frame momentarily after being thrown upward. This issue occurs due to

the way the data was annotated, which is at pixel level. That is, the frame-level

annotations are generated by the user as follows: a frame is considered anomalous if

at least one pixel was annotated as such. This causes continuity interruptions in the

ground truth, i.e. it oscillates very rapidly within a small time window. We argue

that a certain continuity should be considered when the frame-level ground truth is

generated, since anomalous events generally occur over time. Figure 2(a) shows a

case where the ground truth oscillates rapidly because the person running passes

behind pillars. This is also a case where our model fails to recognize the person

running as an anomaly. This may be partially explained by the fact that some train

videos contain people running.

The second category is de¯ned as abrupt change in the ground truth. That is,

the ground truth changes from normal to anomalous in the middle of a continuous

event. For instance, a person walking away from the camera ceases to be considered

anomalous after crossing an invisible proximity threshold. An example from this type

of problem can be seen in Fig. 2(b). Note that the SAS follows a gradual decrease as

the person walks away from the camera. This type of problem is not exclusive to the

Avenue dataset, since the problem of de¯ning the exact point in which an anomaly

ceases (or starts) to exist is common among all datasets.

The third category is de¯ned as static object mislabeling. This category of

problems was originally observed by Ref. 4. It refers to anomalous static objects or

Fig. 2. Visual Analysis of Avenue dataset and the Four Categories of Annotation Problems. The letters

in the ¯gure indicate the categories as follows: (a) Continuity interruption: The next couple frames are

considered normal since the person running is behind the pillar. Notice the oscillations in the ground truth.

(b) Abrupt change in the ground truth: The next frame is considered anomalous, despite being strictly
similar to the current frame, which is considered normal. (c) Static object mislabeling: Some static objects

are not included in the training videos, yet, they are considered normal. (d) Labeling inconsistency: The

person running is considered normal, despite being considered an anomalous event in multiple other
videos. Refer to the text for more details.
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people that were labeled as normal. We support the idea of the authors, since, in our

point of view, static objects that were not included in the training set should be

considered anomalous objects when they appear in the test set. The solution to this

problem was simply removing the videos in which this type of problem occurred,

which lead to the creation of the Avenue17 dataset. Figure 2(c) illustrates an

instance of this type of problem.

The fourth category is de¯ned as labeling inconsistency. In some cases, the

labels completely ignore some ongoing events that should logically be considered

anomalous. For instance, people running were considered anomalous in some

situations, but normal in others. Figure 2(d) shows an example of this type of

problem. In this situation, frames where a person appears running were labeled as

normal. In this case, our model did not detect the person running as an anomaly, but

it was considered a hit from the AUC perspective. Notice that label errors may cause

both inadequate increases and decreases in terms of AUC, hindering the evaluation

consistency. Finally, Table 3 presents the video ID in which each of the problems

described before occur. The frame window in which the problem takes place is also

included, indicating the number of the frame when the problem starts (Initial frame)

Table 3. Summarization of the problems identi¯ed and their indexes in the
Avenue dataset test videos. Each case is shown in the Appendix Section.

Problem Video ID Initial Frame Final Frame

Abrupt change in GT 1 930 10102
6 175 630

11 240 360

15 400 600

19 1 248

Labeling inconsistency 1 1290 1439
13 230 285

17 33 56

Continuity interruption 1 74 124

390 440

863 910
9 548 550

10 580 805

11 95 115

12 655 675
13 465 475

14 410 420

Static object mislabeling 1;2;8;9;10 entire video duration

6 830 850
11 1 15

11 125 145

12 578 593

800 820

Note: GT: Ground Truth.
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and when it ends (Final frame). Each table entry is shown graphically in the

appendix section.

6. Conclusions

In this work, we proposed a simple method based on TL and OC-SVMs for per-

forming anomaly detection in videos. TL was used as a way for extracting features

from video frames. Our results suggest that the features extracted this way contain

valuable information that can discriminate between normal and anomalous events.

Despite the simplicity of the method, we have shown that CNNs pretrained on

ImageNet yield powerful feature extractors, leading to nearly state-of-the-art per-

formance on video anomaly detection.

Additionally, we have performed a benchmark evaluation of 12 di®erent CNN

models. Our results suggest that there is no signi¯cant di®erence in performance

between the models when applied to video anomaly detection, despite of the archi-

tectural di®erences. While some models perform best on speci¯c datasets, their

performance tends to be even when averaging across all datasets. This may be

partially explained by the No Free Lunch theorem, which states that the perfor-

mance of optimization algorithms are equal when averaged across all possible pro-

blems. Hence, the choice of a model that performs feature extraction for video

anomaly detection may be as simple as picking the model with fewer parameters,

since it is computationally cheaper.

Although TL methods have achieved good practical results, there are still open

issues regarding the method. It is not clear what is being transferred between pro-

blems/domains. Similarly, there are still no guarantees regarding the extensibility of

TL, it has evolved much more in the practical than in the theoretical grounds. These

issues shall be addressed in the future.

Our ¯nal contribution in this paper is a criticism to the current evaluation

strategy used in recent video anomaly detection research. We performed an in-depth

visual analysis of a popular benchmark dataset (Avenue), and concluded that some

ground truth annotations are not fair to classi¯cation methods. This may explain the

reason why state-of-the-art methods were, to date, unable to classify the entirety of

the dataset correctly. Since the ground truth in this dataset is dependent on sub-

jective human interpretation, maybe the intrinsic features of the data, not the

methods, are the main factor that set an upper-bound to the overall classi¯cation

performance. This observation raises some issues. First, it is possible that current

video anomaly datasets, in general, have inconsistencies in the ground truth. Second,

it is clear the need for a representational formalism to deal with the subjectiveness of

human interpretation of visual scenes. Third, more robust evaluation methods are

needed, capable of being less sensitive to the complex nature of the semantic noise,

which is intrinsic to real-world data.
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Appendix

In this section, we present a graphical analysis of the problems shown in Table 3.

Figures are presented in the same order as shown in the table.

Abrupt change in ground truth

We de¯ne abrupt changes in ground truth as events that cease to be considered

normal or anomalous abruptly in the middle of a continuous event.

This is the case in Fig. A.1, where a girl walks from the front to the back of the

scene. In this case, the anomaly is de¯ned by the proximity of the girl to the camera.

Hence, as she walks away, the scene becomes less and less anomalous.

The problem arises because of the discrete nature of the annotations. At some

point, it is necessary to change the annotation from \completely normal" to

Fig. A.1. Abrupt change in GT (Video 1). Here, the ground truth changes from anomalous to normal

when the girl crosses an invisible proximity threshold.
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\completely anomalous" without any transitional state in between. The same hap-

pens in Figs. A.2–A.5.

Labeling inconsistency

We de¯ne labeling inconsistencies as events that are considered normal in some

situations and anomalous in other situations with no apparent reason.

Fig. A.3. Abrupt change in GT (Video 11). The problem is the same as in Fig. A.2.

Fig. A.2. Abrupt change in GT (Video 6). Here, the ground truth changes from normal to anomalous

when the man reaches a certain proximity to the camera.
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For instance, in Fig. A.6, people running in the background were considered

anomalies as shown in (a) and (b). However, some other people running in the same

video were not considered anomalous, as seen in (c) and (d).

In Fig. A.7, the man holding papers was considered normal up to the point where

he turns to the camera. This is not in accordance with the annotation procedure,

since there are no other instances in the dataset where this kind of action was

considered anomalous. The simple act of facing the camera was considered

Fig. A.5. Abrupt change in GT (Video 19). The problem is the same as in Fig. A.2.

Fig. A.4. Abrupt change in GT (Video 15). The problem is the same as in Fig. A.2.
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anomalous, even though the scene looks very similar to what it was a few frames

earlier. We consider this to be a very weak reason for de¯ning this action as an

anomaly.

In Fig. A.8, there seems to be a delay when updating the ground truth. The

subject highlighted in the scenes was intended to be considered anomalous while

dancing, which occurred from frames 0 up to about 45. Then, the subject stops

dancing and stands still, which was considered a normal event (a person standing).

The problem occurs in the approximate window of frames 45 through 58, where the

ground truth remains anomalous while the subject is standing still. According to the

procedure proposed, i.e. dancing is considered anomalous and standing still is con-

sidered normal, this window of frames should be labeled as normal.

Continuity interruption

We de¯ne continuity interruption as anomalous events that get interrupted because

of occlusion or the anomalous object leaving the frame momentarily.

Fig. A.6. Labeling inconsistency (Video 1). In (a) and (b), people running were considered anomalous,
while in (c) and (d), people running were considered normal.

M. Gutoski et al.

2152003-18

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

21
.3

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 T

E
C

N
O

L
O

G
IC

A
 F

E
D

E
R

A
L

 D
O

 P
A

R
A

N
A

 o
n 

01
/0

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Since we are dealing with anomaly detection in videos, some kind of temporality

should be taken into account when de¯ning anomalies. It is more natural to assume

that, once an event started, it will have a certain continuity over time. That is, even

if the agent that causes the anomaly brie°y leaves the scene or gets occluded (for very

Fig. A.7. Labeling inconsistency (Video 13). The scene changes from normal to anomalous because of the

action performed by the actor, which was facing the camera. However, this is an isolated instance in the

dataset and seems to be a very weak reason for de¯ning an anomaly.

Fig. A.8. Labeling inconsistency (Video 17). Subject highlighted is considered anomalous in one frame

and anomalous in other frames, while performing exactly the same action.
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few frames), the whole window in which the event occur should be considered

anomalous.

For instance, in Fig. A.9, the event in which a person appears running rapidly

oscillates between normal and anomalous because of brief occlusion caused by the

pillars. This kind of annotation only makes sense in a frame-by-frame analysis, which

Fig. A.9. Continuity interruption (Video 1). The ground truth rapidly oscillates because of very brief

occlusions caused by the pillars.

Fig. A.10. Continuity interruption (Video 9). The ground truth rapidly oscillates because of very brief

occlusion of the boy caused by the girl.
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defeats the purpose of having methods that take temporality into account. The same

kind of problem occurs in Fig. A.10, where the boy gets brie°y occluded by the girl.

Figures A.11–A.13 present the same scenario, where the backpack being thrown

in the air de¯nes the anomaly. For a very brief moment, the backpack leaves the

frame, causing a continuity interruption in the ground truth. This happens several

times throughout the videos.

Fig. A.11. Continuity interruption (Video 10). The ground truth rapidly oscillates when the backpack

brie°y leaves the scene.

Fig. A.12. Continuity interruption (Video 11). Same problem as in Fig. A.11.
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Figures A.14 and A.15 are very similar to the backpack scenario, except that this

time the objects in question are sheets of paper. Again, the ground truth oscillates

very rapidly as the sheets of paper leave the scene from above.

Static object mislabeling

Most of the problems presented in this section were already reported by Ref. 4.

Nevertheless, we reinforce them.

Fig. A.13. Continuity interruption (Video 12). Same problem as in Fig. A.11.

Fig. A.14. Continuity interruption (Video 13). The ground truth rapidly oscillates when the sheets of

paper brie°y leave the scene.
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Static object mislabeling refer to objects that are considered normal but should

be considered anomalous, since they were never seen in the training videos.

Since one class classi¯ers rely on normal events to properly classify anomalous

events, the static objects and agents shown in this section should be classi¯ed as

anomalous.

Fig. A.15. Continuity interruption (Video 14). Same problem as in Fig. A.14.

Fig. A.16. Static object mislabeling (Video 1, 2). Despite objects similar to the bags never appearing in

the training set, these objects were considered normal during the entire video duration.
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The bags shown in Fig. A.16 and the girl in the foreground shown in Fig. A.17 are

novel in the test dataset, that is, there is no similar instance in the training set.

Figures A.18–A.20 show instances where a backpack on the ground was consid-

ered normal. In our view, this should also be considered anomalous, since there is no

instance like this in the training set.

Fig. A.17. Static object mislabeling (Video 8–10). Despite there not being any similar instance in the

training set (person standing still in the foreground), the girl is considered normal for the entire duration of
the video.

Fig. A.18. Static object mislabeling (Video 6). The backpack on the ground is considered normal, even

though there is no instance similar to this in the training set.
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