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ABSTRACT In One-Class Classification (OCC) problems, the classifier is trained with samples of a class
considered normal, such that exceptional patterns can be identified as anomalies. Indeed, for real-world
problems, the representation of the normal class in the feature space is an important issue, considering
that one or more clusters can describe different aspects of the normality. For classification purposes, it is
important that these clusters be as compact (dense) as possible, for better discriminating anomalous patterns,
which is a recurrent problem in OCC tasks. This work introduces a hybrid approach using deep learning and
One-Class Support Vector Machine (OC-SVM) methods, named Convolutional Autoencoder with Compact
Embedding (CAE-CE), for enhancing the compactness of clusters in the feature space. Such an approach
is still underexplored in the literature, being restricted to models within the context of metric learning.
Additionally, the absence of anomalous samples during training makes it difficult to determine when to
interrupt the learning process, so as to avoid over-compression of the normal examples, thus resulting in
overfitting of the model. In this work, we propose a novel sensitivity-based stop criterion, and its suitability
for OCC problems was assessed. Using an OC-SVM for the classification task, several experiments were
done using publicly available image and video datasets. We also introduce other two new benchmarks,
specifically designed for video anomaly detection in highways. The final performance of the proposed
method was compared with a baseline Convolutional Autoencoder (CAE). Overall results suggest that
the enhanced compactness introduced by the CAE-CE improved the classification performance for most
datasets. Also, the qualitative analysis of frames at the visual level indicated that features learned by CAE-
CE are closely correlated to the anomalous events.

INDEX TERMS Anomaly detection, compact embedding, convolutional autoencoder, deep learning, feature
extraction, one-class classification.

I. INTRODUCTION
Detecting anomalous behaviors is a recurrent subject in the
pattern recognition field, especially because in real-world
applications only one of the classes (that related to the nor-
mal behavior) is available during the training phase of the
classifier [1]–[6]. When a single class is known, the usual
approach for classifying patterns is the use of one-class clas-
sifiers. This sort of classifier is sometimes referred to as nov-
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elty or anomaly detector, because it is trained with previously
known patterns that are arranged as one or more clusters (in
the feature space) of normal concepts. Then, it is used to
identify patterns, known as novelties or anomalies [7], which
are somewhat different from those present in the original
training dataset.

Three different approaches can be used for One-Class Clas-
sification (OCC) problems [7], [8]. The first one is based on
the estimation of the probability density function (PDF) of the
input patterns (density methods). From the PDF it is possible
to establish if a given input pattern is an anomaly or not, based
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FIGURE 1. Representation of instances in feature space for OCC. The
normal class comprises two types of animals (birds and cats), whilst all
other examples (cars and aircraft) are considered anomalies. Standard
hand-crafted feature descriptors for one-class problems are
pictographically presented in (a). Such representation may lead to a high
overlap between normal and abnormal concepts, impairing the OCC
performance. The ideal feature extractor and the main objective of this
work are presented in (b): a compact representation of the normal class
leading to a large separation between normal and abnormal examples.

on its probability value. The second approach is concerned
by reconstruction methods that use clustering to find out if a
given input pattern is an anomaly or not, based on the distance
from the input pattern to clusters previously defined in the
training process. The last approach comprises models that
impose boundaries upon the training dataset, assuming an
unknown distribution. In this case, a boundary optimization
problem is solved in order to represent the data. The most
popular methods that use such an approach are One-Class
Support VectorMachine (OC-SVM) and Support Vector Data
Description (SVDD), which become identical under certain
conditions [7].

The use of one-class classifiers for real-world problems,
independently of their approach, encompasses a very impor-
tant issue: the representation of the normal class in the feature
space. Keeping in mind that it is possible to have more than
one cluster (in the feature space) representing the normal
class, the overall normal concept must be as compact (or
dense) as possible, so that the classifier can better discrimi-
nate anomalies [9], [10]. Notice that the compact representa-
tion and dense representation terms are considered synonyms
in this work. For the particular case of images and videos, it is
known that the features extracted by standardmethodsmay be
inefficient when applied directly to OCC problems [11]–[14].
Hand-crafted image descriptors [15]–[19], and [20], such as
the Histogram of Oriented Gradients (HOG), may perform
well in particular problems where the gradient orientation is
relevant for discriminating between the normal and abnormal
classes. However, it may lead to poor classification perfor-
mance in other sorts of problems where no a priori knowl-
edge regarding such orientation is available. Consequently,
the mapping performed by hand-crafted descriptors does not

guarantee a compact representation of the normal class in the
feature space.

Figure 1 highlights the importance of the compactness of
the feature space. Suppose that, during the training process,
the feature extractor is applied without attempting to achieve
a compact representation in the feature space. Thus, normal
and abnormal classes can be, eventually, overlapped in the
feature space representation, see Figure 1 (a). This compro-
mises the classification performance, regardless of the OCCs.
On the other hand, Figure 1 (b) shows a feature extractor
that creates an idealized dense representation. It groups in
a compact form all the different normal concepts creating a
wide separation margin between the normal and the abnormal
concepts. Therefore, such representation may significantly
improve the final classification performance, as suggested
in [10], [21].

Currently, Deep Learning (DL) methods, such as the Con-
volutional Neural Networks (CNNs), are considered state-
of-the-art for image classification problems. They have the
advantage of learning, at the same time, the feature extractor
and the classifier. The first is accomplished by many convo-
lution filters at successive layers, and the latter, by adjust-
ing the weights of the connections between neurons. This
is done by minimizing the training error, considering that
the class labels are given [22], [23]. Features learned this
way can improve the intra-class separation since both the
classifier and the feature extractor are optimized to increase
the overall classification performance. However, CNNs are
specially designed for supervised classification problems and
are not directly applicable to OCC problems. However, recent
works [12], [24], [25], and [26] have shown that both, Stacked
Denoising Autoencoders (SDAE) and Convolutional Autoen-
coders (CAE) can be alternatives for OCC problems. This
is possible because they are trained to minimize the Recon-
struction Error (RE) of the normal class, and this error can
be used as a classification score. However, in the bottleneck,
i.e., the latent space where the number of neurons is the
smallest, compactness is not always accomplished, since the
patterns are mapped to minimize the RE of all instances.
As a consequence, poor classification results were obtained in
OCC problems for particular datasets, in the context of video
anomaly detection, as shown in [24] and [12].

Similar results are observed when hand-crafted descriptors
and DL methods are applied in the unsupervised context,
i.e., clustering problems, such as [27]–[30], and [31]. A clus-
tering algorithm aims at finding a set of objects in such a way
that intra-cluster similarities are larger than those observed
in inter-clusters. Usually, the similarity measure is defined
in terms of pairwise distances. In other words, regions of
the feature space that present the lower pairwise distances
(compactness) may characterize a cluster. However, the com-
pactness is highly dependent on the feature extraction and,
in the unsupervised context, it is even more complex, since no
class labels are available when clusters are being constructed.
However, recent efforts have been done in learning represen-
tations from the clustering perspective – see, for instance,
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in [31]. The general idea is to jointly learn representations
and cluster assignments using deep neural networks, by rein-
forcing the compactness and increasing clusters separability.
It follows the main purpose of CNNs, but in an unsupervised
way. As a result, clustering accuracy in terms of assignment
and the ground truth is highly increased when compared with
the state-of-the-art feature extraction and clustering methods.

The compactness formulation presented in [31] was
adapted to the one-class classification context in [32], result-
ing in relevant improvements for experiments with specific
datasets (MNIST and STL-10). However, for datasets with
large image sizes, fully-connected Autoencoders (AE) are no
longer capable of capturing the 2D structure in both, images
and video sequences. In other words, they use 1D vectors
as input, removing local and correlated information that may
characterize particular behaviors in the scene. This is a fun-
damental feature to detect anomalies. To cope with this issue,
the CAE architecture seems to bemore appropriate [24], [26],
and [33], but it requires a modification of the original formu-
lation presented in [31]. Another limitation discussed in [32]
is the lack of a stop criterion for the cluster optimization
process. This fact results in a very compact representation for
the training set (in our case, examples of the normal class),
but, on the other hand, a significant overlap between normal
and anomalous events in the test set, due to the overfitting
phenomenon [10], [34]. Such a limitation requires devising
an adequate stop criterion, in order not only to improve the
classification accuracy but, also, to improve the generaliza-
tion capability of the model. The compact embedding and
a regularization procedure in the anomaly detection context
were initially proposed in a previous work of the authors
of this paper [35], indicating the feasibility of this type of
approach. The scope of the previous work (a Ph.D. thesis)
was to present several aspects of anomaly detection in videos
and images, using different approaches with deep learning
methods.

Based on the above-mentioned issues, this paper extends
the idea presented by [31] and [35], and introduces a CAE-
CE (Convolutional Autoencoder with Compact Embedding)
as a feature learning stage specifically suited for OCC prob-
lems. The main idea is to increase the compactness of the
normal class during the training step and, next, to achieve an
improved separation between normal examples and anoma-
lies in the test set. The proposed method has three main steps.
First, features are learned with the compact representation,
using our proposed formulation and architecture for the CAE-
CE. Second, a one-class classifier is used to establish bound-
aries around the compact (dense) normal concepts. In the last
step, OCC is accomplished using the test set (which includes
normal examples and anomalies). In short, this work aims at
filling some of the gaps in current OCC problems, as follows:

1) The Deep Embedding Clustering proposed in [31] is
extended to the anomaly detection context with a con-
volutional architecture, thus allowing to capture the 2D
structure of image and video sequences and perform
anomaly detection in different datasets.

2) A dense representation for image and video anomaly
detection is learned and such representation ends up
significantly increasing the final classification perfor-
mance on real-world datasets, especially when com-
pared with CAE-based approaches [24], [26].

3) A stop criterion is proposed for the CAE-CE optimiza-
tion, providing to the proposed method a regularization
procedure and increasing the performance on the test
set.

This paper is organized as follows. Section II presents
some related works found in recent literature, mainly focused
on compact representations for OCC. Section III addresses
the fundamental topics related to CAEs, the proposed CAE-
CE, and the OCC trained with the compact learned features.
Section IV describes in detail the proposedmethod. SectionV
presents how the experiments were done, their results, and
a short discussion. Finally, Section VI reports the general
conclusions drawn and suggests future research directions.

II. RELATED WORK
A common approach for reducing the effect of the feature
descriptor in the OCC performance is to search or build the
most appropriate similaritymeasure (metric) between pairs of
examples in the normal dataset. An increase in classification
performance is expected by minimizing the distance between
those data pairs that belong to the same class (reducing intra-
class distances and increasing compactness), subject to the
constraint that the data pairs that belong to different classes
are well separated (increasing inter-class distances) [36].
In OCC, the learning process of a metric is ill-posed, mainly
because only the normal set is available during the training
stage [37]. A possible way to overcome such limitation is to
minimize distances in the normal set, including a constraint
to prevent the solution from being achieved by shrinking the
entire space to a single point [38]. The most common solution
to this problem is presented in the Relevant Component Anal-
ysis (RCA) [36]. However, the main limitation of RCA and its
kernel version (kernel-RCA) is that they preserve most of the
pairwise distance characteristics in the mapped space, that is,
they are not locally adaptive. Such limitation implies that the
anomaly detector that is fitted in one part of the feature space
will be suboptimal for other parts, even with a preprocessing
stage using RCA and kernel-RCA [39].

In order to circumvent the limitation presented in RCA-
based solutions, [10] proposed an approach that eliminates
the constraint that prevents the convergence to the single
point solution. The authors present a kernel null-space for
anomaly detection in the multi-class classification context,
which makes all known classes to have zero intra-class vari-
ance. Results using Caltech-256 and ImageNet datasets show
that the proposed method outperforms standard models for
multi-class anomaly detection problems. Similar results were
obtained by [40], who applied the kernel null-spacemethod to
five person re-identification benchmarks. The method signif-
icantly overcame state-of-the-art alternatives in some cases.

86522 VOLUME 8, 2020



M. Ribeiro et al.: OCC in Images and Videos Using a CAE-CE

An extension for local learning in the context of multi-
class anomaly detection is presented in [21]. The idea is
to use the nearest neighbors of a test sample in the train-
ing set to learn a local model that improves the final clas-
sification. The limitation of the kernel null-space method
and its variants is that the feature extraction and anomaly
detection are performed at different stages, so that the fea-
tures extracted in a preprocessing stage may not be the most
appropriate in the anomaly detection context, even with a
classifier based on the null-space representation, as briefly
suggested in [21]. DL methods, on the other hand, have been
investigated for several classification problems in the recent
literature, and have already achieved state-of-the-art perfor-
mance for object recognition in supervised classification of
images and videos [22], [23], and [24]. As a matter of fact,
this high performance is associated to the features that are
learned automatically in the training process, especially when
compared with hand-crafted image or video descriptors [15]
that, in general, are not designed for particular classification
problems. However, in the context of OCC, DL methods are
still in the early stages of development. Autoencoders and
its variants are, to date, one of the most frequently used
models [24].

In [12], an appearance and motion SDAE was proposed
to extract features of video surveillance datasets. Based on
the features learned, multiple OC-SVM models were used
to predict the anomaly scores and classify each frame as
normal or anomalous. A similar procedure was presented
in [26], where two AEs (SDAE and CAE) were used to
learn regularmotion patterns from video sequences. Themain
advantage of this approach is the possibility of jointly captur-
ing regularities (degrees of normality) frommultiple datasets.
Nevertheless, the anomalies may be characterized by motion
and appearance features, thus requiring that the input of the
CAE includes such sort of features. In [41], a performance
comparison of a deep AE with the proposed hybrid model
for different anomaly detection problems was presented. The
hybrid model is composed of an unsupervised deep belief
network (to extract generic underlying features) and a linear
OC-SVM, leading to a scalable and computationally efficient
model. More recently, [24] proposed a CAE in the anomaly
detection context for automated video surveillance, by using
the RE of each frame as the anomaly score. In that work,
a method for aggregating high-level spatial and temporal fea-
tures was also introduced, leading to increased performance
in anomaly detection using public-domain datasets.

The application of an SDAE in the context of unsupervised
classification was proposed by [31]. In this method, a set of
data points is clustered by simultaneously learning represen-
tations and cluster assignments. The optimization was based
on the Kullback-Leibler (KL) divergence between a centroid-
based probability distribution and an auxiliary target distribu-
tion. By minimizing the KL divergence, the clusters become
denser at each iteration, increasing cluster cohesion and sep-
aration, and producing semantically meaningful and well-
separated representations. In terms of unsupervised clustering

accuracy, the proposed method outperformed the state-of-
the-art clustering methods for MNIST, STL, and REUTERS
datasets and it is significantly less sensitive to the choice of
the hyperparameters.

An extension of this method was presented by [32] in the
context of one-class image classification. Relevant results
were achieved for MNIST and STL datasets, but the main
limitation of the proposedAE is that it does not capture the 2D
local structure in image and video sequences since it is based
on a fully-connected architecture. Such characteristic results
in significant redundancy in the network’s parameters, and
removes the local information that can be extracted from the
images [42]. Of course, this can be particularly relevant in the
anomaly detection context, since anomalies can be character-
ized by different low and high-level local features in a scene.
Additionally, the authors do not address the stop criterion
when training the SDAE, which may result in overfitting of
the model, causing an excessive compression of the clusters.
Good results for the training set can be achieved, but at the
expense of a huge overlap among examples in the test set.

Inspired by the relevant results obtained for multi-
class anomaly detection with kernel null-space representa-
tions [10], [21], the recent advances with CAEs in image
and video anomaly detection, and the Deep Embedding Clus-
tering presented in [31], we propose here a Convolutional
Autoencoder with Compact Embedding (CAE-CE) for OCC
in images and videos. The CAE-CE simultaneously learns a
set of cluster centers that represent the normal concept and
a set of the parameters (weights) that map data points into
the bottleneck with dense representation (w.r.t. each center),
in order to increase the discrimination between normal exam-
ples and anomalies.We extend the method present introduced
before in [31] by including a stop criterion and a convo-
lutional approach, maintaining the compactness constraint.
This results in a relevant improvement of the final classifi-
cation performance for real-world datasets, particularly when
compared to other CAE-based approaches [24], [26].

III. DEEP LEARNING WITH AUTOENCODERS
A. CONVOLUTIONAL AUTOENCODER
The AE was introduced by [43] and is an unsupervised fully
connected one-hidden-layer neural network that learns from
unlabeled datasets. The idea is that the AE is trained to
reconstruct the input pattern at the output of the network.
An AE takes an input x ∈ Rd and first maps it to the latent
representation (hidden layer) h ∈ Rd ′ . This is done using the
mapping function h = f2 = σ (Wx+ b) with weights (W)
and bias (b). The set of parameters are represented as 2 =
{W, b}, and σ is the activation function. For reconstructing
the input, a reverse mapping f : y = f2′ (h) = σ (W′h + b′)
is used, such that 2′ = {W′, b′}. The parameters W learned
from the input layer to the hidden layer define the encoder,
and the parameters W′ learned from the hidden layer to
the output layer define the decoder. Optionally, the decoder
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parameters W′ may be constrained by W′ = WT , which is
known as tied weights [42].

CAEs, as proposed in [42], are similar to the ordinary AE,
but the difference between them is the fact that the weights in
the CAE are shared among the inputs, preserving the spatial
locality, similarly to a CNN [44]. The loss function is given
by:

e(x, y,W) =
1
2N

N∑
i=1

‖xi − yi‖22 + λ ‖W‖
2
2 , (1)

where λ is the regularization parameter for the term ‖W‖22,
used during the training procedure of the CAE. Similarly to
CNNs, CAEs architectures contain convolutional, deconvo-
lutional, pooling, and unpooling layers.

The convolutional layer abstracts the information of a filter
into a scalar value parameterizing the number and size of
maps, as well as the kernels’ size. It connects multiple input
activations within the fixed receptive field of a filter to a
single activation output in the feature map. For the input x,
the hidden layer mapping (latent representation) of the k− th
feature map is given by Equation 2:

hk = σ (x ∗Wk + bk) , (2)

where b is the bias, σ is the hyperbolic tangent, and the sym-
bol ∗ corresponds to the 2D-convolution. The reconstruction
is obtained using Equation 3:

y = σ

(∑
k∈H

hk ∗ W̃k + b

)
, (3)

where there is one bias b per input channel and H identifies
the group of latent feature maps. W̃ corresponds to the flip
operation over both dimensions of the weightsW.
The deconvolutional layer performs the inverse operation

of the convolution layer, and reconstructs the input taking
into account the required shape of the output [26]. Convo-
lutional and deconvolutional layers can be stacked to build
deep CAE architectures. The filters in the first convolutional
layers extract low-level features, whilst the middle layers
extract high-level features from the input frames. In this work,
the high-level features are basically appearance features.

Pooling layers were originally intended for fully super-
vised feed-forward architectures for downsampling the latent
representation by a constant factor. The idea of the pool-
ing layer is to obtain translation-invariant representations,
allowing more complex representations when combined with
convolutional layers. It also reduces the spatial size of the
representation, reducing the number of parameters and com-
putation in the network, by using operations such as the max-
imum value over non-overlapping rectangular sub-regions
(patches). On the other hand, unpooling layer performs the
reverse operation, reconstructing the original size of each
rectangular sub-region.

B. CONVOLUTIONAL AUTOENCODER WITH COMPACT
EMBEDDING
The CAE-CE introduced in this work follows the idea pre-
sented in [31]. Clusters are constructed using data mapped
by the bottleneck (latent representation or feature space) of
a deep CAE. The proposed approach simultaneously learns a
set of K cluster centers

{
µk
}K
k=1 in the feature space and the

parameters (weights) of the deep CAE that maps data points
into the bottleneck. Notice that, in our work, the clusters
represent the normal concepts of the OCC problem.

Given the initial mapping provided by the AE and the
initial K cluster centers, the idea is to alternate, iteratively,
between two main steps: (1) compute a soft assignment
between the embedded points and the cluster centroids; (2)
update the deep mapping (weights of the AE) and refine the
cluster centroids by learning from current high confidence
assignments (an auxiliary target distribution is used for this
purpose). To do so, the optimization is performed by mini-
mizing the KL divergence loss between soft assignments qij
and the auxiliary distribution pij [45]:

DKL = KL (P ‖Q ) =
∑
i

∑
j

pij log
pij
qij
. (4)

The soft assignment is defined as the probability of assign-
ing a mapped sample zi (in the bottleneck) to cluster µk ,
using the Student’s t-distribution as a kernel to measure such
similarity, i.e.:

qij =

∑
k

(
1+

∥∥zi − µk
∥∥2)

1+
∥∥zi − µj

∥∥2 . (5)

On the other hand, the auxiliary distribution is calculated
using soft assignments with the following relationship:

pij =
q2ij/

∑
m
q2mj∑

k

(
q2ik/

∑
m
q2mk

) . (6)

The choice of the distribution P is the most important step
to achieve compactness for each cluster centroid. According
to [31], this distribution must present the following proper-
ties: strengthen predictions (improve normal class purity), put
more emphasis on data points assigned with high confidence,
and normalize loss contribution of each centroid to prevent
large clusters from distorting the bottleneck embedding.

Notice that, in our case, the degree of freedom of the
Student’s t-distribution was set to 1, following the recommen-
dations of [45] and [31]. By using this auxiliary distribution,
it is possible to improve cluster purity, putting more emphasis
on data points assigned with high confidence, and normalize
the loss contribution of each centroid to prevent large clusters
from distorting the latent representation [31].

The cluster centers are then optimized jointly with the CAE
parameters using the Stochastic Gradient Descent method
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with momentum, and the standard backpropagation to com-
pute parameters’ gradients, which are defined as:

∂L
∂zi
= 2

∑
k

(
pij − qij

) (
zi − µk

)(
1+

∥∥zi − µk
∥∥2) , (7)

∂L
∂µk
= −2

∑
i

(
pij − qij

) (
zi − µk

)(
1+

∥∥zi − µk
∥∥2) . (8)

The optimization continues iteratively until the stop crite-
rion is met. This is discussed in Section IV-C.

C. ONE-CLASS SUPPORT VECTOR MACHINE
In this work, we use the formulation proposed in [7] for
the OC-SVM, i.e., SVDD. For a given input class, with N
examples and features (x1, . . . , xN ), we assume that there is
a closed surface (hypersphere) that surrounds it. The hyper-
sphere is characterized by its center a and radius R. In the
original formulation, the SVDD model contains two terms.
The first term (R2) is related to the structural risk and the sec-
ond term penalizes objects located at a large distance from
the edge of the hypersphere, keeping the trade-off between
empirical and structural risks. The minimization problem can
be defined as:

ε(R, a, Eξ ) = R2 + C1

∑
i

ξi, (9)

grouping almost all patterns within the hypersphere:

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i, (10)

in which C1 gives the trade-off between the volume of the
description and the errors that are represented by the distance
between outliers and the edge of the hypersphere, ξi. The
parameterC1 is related to the ν of the standard one-class SVM
presented in [46]. The solutions of the SVDD and the one-
class SVM are identical when the Gaussian kernel is used,
and C1 = 1/νN . The SVDD optimization problem is usually
solved through its Lagrangian dual problem, which consists
of maximizing:

L =
∑
i

αiK (xi, xi)−
∑
i,j

αiαjK (xi, xj), (11)

with respect to the Lagrangian multiplier α, subject to the
following constraint:

0 ≤ αi ≤ C1, ∀i. (12)

The main feature of the SVDD model is the representation
of the input data in a high-dimensional space without the
need of large additional computational effort [7]. This rep-
resentation allows more flexible descriptors of the input data,
following the same general idea of Support Vector Machines.
The RBF kernel (used in this work), is given by:

K (xi, xj) = exp

(
−
∥∥xi − xj

∥∥2
υ2

)
, (13)

where υ represents the kernel parameter (width). In this
representation, a new pattern z is classified as an anomaly
if:

AS =
∑
i

αi exp

(
−‖z− xi‖2

υ2

)

−
1
2

1+∑
i,j

αiαj exp

(
−
∥∥xi − xj

∥∥2
υ2

)
− R2

 < 0,

(14)

where AS is the anomaly score of the pattern z. With the RBF
kernel, the formulation of the SVDD model is equivalent to
the OC-SVM proposed in [47], and discussed in [7].

IV. THE PROPOSED METHOD
The proposed method for anomaly detection has four main
steps. The first step, defined as data preparation aims at
arranging the datasets for OCC, as presented in Subsec-
tion IV-A. Next, the pretraining step is dedicated to training
a CAE using examples of the normal class. The optimiza-
tion is done by minimizing the RE between the input and
output images, as in standard AEs. Once the CAE is opti-
mized, the decoder part of the network is discarded. The third
step consists of fine-tuning the encoder using CAE-CE for
increasing the compactness of the normal class, as discussed
in Subsection III-B. The fine-tuning is repeated until the stop
criterion is met. Finally, an OC-SVM is trained and used
for classifying. Figure 2 presents a high-level overview of
the proposed approach, which will be detailed in the next
sections.

A. DATA PREPARATION
All datasets used in this work are publicly available, includ-
ing those first introduced in this work (UTFPR-HSD1 and
UTFPR-HSD2). Each dataset is composed of a number of
video clips, and each video frame was previously labeled as
normal or abnormal. Frames were extracted from video clips
to produce the training and test sets. Notice that the training
set is composed of normal samples whilst the test set has both,
normal and anomaly samples. See Section V-B for further
details.

B. CAE PRETRAINING
The CAE training method uses the backpropagation algo-
rithm [48] to minimize the RE, as mentioned in Section III-
A. To optimize the loss function, we use the adaptive sub-
gradient method AdaGrad. It computes a dimension-wise
learning rate that adapts the rate of gradients as a function of
all previous updates in each dimension. AdaGrad is widely
used due to its theoretical guarantee of convergence and
empirical success [49]. The weights are initialized using the
Xavier algorithm, which automatically determines the scale
of initialization based on the number of input and output
neurons [50].
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FIGURE 2. Overview of the proposed method.

Training a CAE does not require label information of the
input data. However, as usual in OCC problems [24], [26],
we use indirect labeling, i.e, all training instances belong to
the group of videos without anomalies.

The CAE architecture used was similar to the model
recently proposed by Hasan et al. [26] and also used in our
previous work [24]. It is composed of three convolutional
layers and two pooling layers in the encoder side, and the
same mirrored structure in the decoder side. However, in this
work, three fully connected layers were added to the archi-
tecture, besides the bottleneck layer. Table 1 summarizes the
structure of the layers. The column Size presents the filter size
for convolution and deconvolution operations, as well as the
kernel size for max pooling and max unpooling operations.
The column Dimension presents the shape of the output data
after each layer. A stride of 4 is used in the first convolutional
layer, followed by a stride of 1 in the remaining convolutional
layers. Each fully connected layer is followed by a dropout
layer with 50% drop probability. All convolutional and fully
connected layers use the hyperbolic tangent activation func-
tion. The decoder part follows the exact inverse structure of
the encoder but uses deconvolutional and unpooling opera-
tions.

The CAE-CE architecture is inherited from the original
CAE used in the pretraining step. The decoder part of the
CAE is discarded, and the bottleneck becomes the output
layer of the CAE-CE. Hence, the CAE-CE architecture is
equivalent to the encoder part of the CAE.

C. CAE-CE OPTIMIZATION AND STOP CRITERION
The CAE-CE is initialized with the weights learned by the
CAE. Recall that the goal now is to simultaneously opti-
mize the representations and the cluster centers through

TABLE 1. Convolutional autoencoder layers and output sizes.

an unsupervised and iterative process. The centers are ini-
tialized using the k-means algorithm, where k is a user-
defined parameter. In this work, experiments were done with
{2, 3, 4, 5, 10} clusters, and the best-performing value was
used in further experiments. The model was trained using
SGD with momentum in a standard backpropagation proce-
dure. For more details refer to Subsection III-B.
In real-world OCC problems, samples of the abnormal

class are often difficult or even impossible to obtain, but
samples of the normal class are abundant. Therefore, using
only the normal class samples, we propose a stop criterion
based on sensitivity to estimate the best epoch to stop the
optimization process.

The sensitivity, or true positive rate (TPR), measures the
rate of positive examples that are correctly classified as pos-
itive. In order to define a stop criterion, we use a validation
set composed exclusively of normal examples extracted from
the test set, meaning that no instance of the anomalous class
was used for validation. Sensitivity is evaluated after every
training epoch, and the best stopping epoch is the one in
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which the highest sensitivity value is achieved. This is done
by retaining the network parameters every time TPR reaches
a new maximum value. The stop criterion is, then, defined
by a quality metric (TPR = 1) or by the stagnation of the
optimization (no improvement after a number of epochs).

To evaluate the TPR as a stop criterion, it was compared
with the product of sensitivity and specificity (TPR×TNR),
where TNR is the true negative rate (specificity). This product
indicates the best performance obtained by the classifier con-
sidering the balance between positive and negative classes.
Therefore, we can evaluate whether the TPR stop criterion
is a good approximation to the best performance that could
be achieved, measured by TPR×TNR. The analysis of the
effectiveness of our proposed stop criterion is shown in Sub-
section V-C.

D. CLASSIFICATION AND EVALUATION
The next step of the proposed method is to perform OCC.
The optimized CAE-CE is used for extracting features from
the training and test sets. This is done by forwarding every
instance throughout the network and capturing its embed-
ded representation at the bottleneck. For the classification
task, we employ the OC-SVM, which was described in
Section III-C.
Since the OC-SVM depends on parameter tuning, we use

a combinatorial search strategy [12]. Experiments were done
to find the most appropriate values for the main parameters,
kernel and regularization (C1), and the following ranges were
tested for them: {0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.9} and
{0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0}, respectively. Once the
parameters are defined and the optimization has converged,
we used Equation 14 to compute the distance, in the hyper-
space, of each data point (of the test set) to the OC-SVM’s
decision border. We represent this distance as either posi-
tive or negative. A positive distance indicates that the given
data point is within the hypersphere, whilst a negative dis-
tance indicates that it is outside the decision border.

At first, the distance sign could be used as the classification
result itself, considering zero as the classification threshold.
However, this method can be misleading, since it prioritizes
the overall accuracy, and does not consider a balance between
sensitivity and specificity. Therefore, another approach based
on the Area Under the ROC Curve (AUC) and Equal Error
Rate (EER) is proposed.

The EER selects the threshold that leads to equal sensitivity
and specificity, i.e., the ideal balance between TPR and TNR.
This measure is independent of a classification threshold and
provides direct analysis of the classification performance.
Moreover, it enables the comparison of results with other
approaches in the literature [12], [26], [51], [52].

Based on the anomaly score of Equation 14, a Normalized
Anomaly Score (NAS) was proposed. Both, NAS and AS,
are normalized in the range [0, 1]. Then, NAS is smoothed by
using a moving average filter and taken its one’s complement,

yielding the score SNAS , according to Equation 15:

SNAS (n) = 1−
1
N

N−1∑
j=0

NAS(n+ j), (15)

where N is the number of samples of the moving average and
SNAS is the smoothed normalized AS of the frame n.

V. EXPERIMENTS, RESULTS AND DISCUSSION
The CAE-CE model proposed in this work was built using
Theano [53] and Lasagne [54], running in the Ubuntu
14.04.3 LTS operating system. Theano is written in Python
and used for computing mathematical expressions, and
Lasagne is a library to build neural networks in Theano. All
experiments were run in a dedicated GPU server with Intel
i7-5820K CPU at 3.3 GHz, 32GB of RAM, and two NVIDIA
Titan XP GPUs.

The experiments are presented in the following order: in
Section V-Awe perform a preliminary experiment to evaluate
the viability of the compact representation idea proposed in
this work. In Section V-B, the datasets used in this work are
presented in detail, including two novel video anomaly detec-
tion datasets. Section V-C presents the main experiment and
a discussion about the results obtained. Next, in Section V-D,
we present experiments and analysis of the stop criterion
discussed in Section IV-C. Finally, in SectionV-E, we provide
a visual analysis of the results for two datasets.

A. PRELIMINARY ANALYSIS OF THE CAE-CE
OPTIMIZATION
Ourworking hypothesis is that a dense feature space increases
the separability between normal and abnormal classes. There-
fore, a Proof of Concept (PoC) was conducted in this prelim-
inary experiment. For this purpose, we used two well-known
datasets: MNIST [55] and notMNIST.1 The first one (only
images of numbers) was considered as the normal class, and
the former (only images of letters), as the anomaly class.

A CAE is optimized by minimizing the RE between input
and output. This process maps similar features near to each
other in the bottleneck feature space. However, in the tradi-
tional CAE, there is no attempt to achieve a dense bottleneck
representation. This effect is shown in Figure 3 (a), where it
is observed a significant overlap between normal and abnor-
mal samples mapped by the CAE’s bottleneck. This overlap
hinders the performance of the classifier.

In contrast, when the CAE-CE introduces compactness in
the representation, a significant reduction of the overlapped
areas takes place, as shown in Figure 3 (b). Observe that
the representation of normal samples has been segmented
into three highly compact clusters when compared with the
mapping provided by the traditional CAE. This suggests that
the ideal feature space for the normal class should be dense to
improve the classification performance. Notice that both Fig-
ures are aimed at illustrating the principle behind the method,

1Available at yaroslavvb.blogspot.com.br/2011/09/notmnist-dataset.html
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FIGURE 3. Examples of two feature space representations. The normal
class comprises only numbers (MNIST dataset), whilst the anomaly class
is comprised of letters (notMNIST dataset). The CAE’s feature space
representation is presented in (a), showing a high overlap between both
classes. In (b) the compact representation of the normal class is shown,
leading to a higher separation between classes, when compared with (a).

since axes x and y are the two first principal components of
the Principal Component Analysis (PCA) of the data.

B. DATASETS
In this work, we used three benchmark video datasets (Ped1,
Ped2, and Avenue) frequently used for anomaly detection
problems. Additionally, we introduce two video anomaly
datasets, namely UTFPR-HSD1 and UTFPR-HSD2. Finally,
an image dataset (STL-10) is used in the context of OCC,
with the purpose of showing that the proposed method works
for both, videos and images, as discussed in the following
subsections.

1) STL-10
The STL-10 dataset [56] has 10 classes and contains a large
number of unlabeled image data (not used in this work) as
well as a small set of labeled images. The dataset was orig-
inally devised for unsupervised learning and classification.
However, in this work, the dataset was adapted to fit the
OCC context using the labeled part of the dataset. We used
the classes with more training examples, as follows: classes
containing images of animals were considered the normal
class, whilst anomalies were composed of the remaining data.
The training set had 3000 images and test set 8000 images
(4800 belong to the normal class and 3200 are anomalies).

2) UTFPR-HSD1 AND UTFPR-HSD2
These two video datasets, first introduced in this work, aimed
at detecting anomalies in highways, traffic monitoring, vehi-
cle identification, and vehicle counting. They were acquired
at Curitiba, Brazil, on a busy highway that crosses the city
in which traffic control is very important. To avoid traffic
jams, heavy truck traffic is not allowed at given times of
the day on this highway. Hence, the automatic detection
of unauthorized vehicles in this route is extremely relevant
for traffic control. Video surveillance is used to monitor the
highway, and videos were captured in both normal (without
trucks) and abnormal (with trucks) scenarios. Videos with
normal traffic include not only cars, but, also vans, pickups
(and small trucks), motorcycles, and buses. Anomalies are
found when at least one (large) truck is in the scene. The

UTFPR-HSD1 dataset is composed of 6602 frames in the
training set, and 1660 frames in the test set. UTFPR-HSD2,
in its turn, contains 5640 frames in the training set and
1986 frames in the test set. The difference between those
datasets is the position of the camera regarding the highway.
In the UTFPR-HSD1 dataset, videos were acquired almost
at the ground level, transversely to the highway. On the
other hand, UTFPR-HSD2 videos were acquired at three
different scenarios, from an elevated level above the highway,
including the incoming and outgoing traffics. All datasets
were annotated by a human expert considering the specific
anomaly detection context described here.

The UTFPR-HSD1 dataset contains 23 training clips and
6 test clips, whilst the UTFPR-HSD2 training set contains
25 clips and the test set contains 7 clips. The videos were cap-
tured with a resolution of 1920× 1080 pixels at 25 fps. Both
datasets are publicly available,2 including the ground truth
and training/test splits used in this work. It is important to
emphasize that similar datasets are not available in the related
literature, and this was the main motivation to introduce those
new datasets.

3) AVENUE
The Avenue dataset [57] was captured in an avenue of the
Chinese University of Hong Kong campus, and was also
devised as an anomaly detection dataset. The training set
contains approximately 15328 frames, and the test set about
15324 frames. The normal class contains people normally
walking from/to different directions, and the abnormal class
contains people running, throwing objects, and loitering.

4) UCSD Ped1 AND Ped2
The UCSD Pedestrian [52] is a video anomaly detection
dataset captured by a stationary camera in a pedestrian
walkway. The normal class includes only pedestrians, whilst
the anomalies include vehicles, bicycles, skateboarders, and
wheelchairs passing throughout the pedestrians in the walk-
way. The dataset is divided into two subsets, Ped1 and
Ped2. Ped1 has about 5500 frames of the normal class and
3400 frames of anomalies. Ped2 subset is smaller and con-
tains 346 frames of the normal class and 1652 frames of
anomalies.

C. CLASSIFICATION PERFORMANCE
This is the main experiment and its objective is to evaluate
the hypothesis that the dense representation achieved by the
CAE-CE increases the classification performance when com-
pared to a regular CAE by increasing the separability between
normal events and anomalies.

The baseline for comparisons is the classification results
achieved by the CAE’s bottleneck representations. We also
included, when available, results obtained by the state-of-the-
art methods for each dataset. Notice that the computational
cost of these experiments was very high. For instance, the set

2https://github.com/bioinfolabic/UTFPR-HSD
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TABLE 2. AUC/EER results for all datasets using CAE, CAE-CE, and the current state-of-the art found for four video datasets and one image dataset.

TABLE 3. Confusion matrices of the classification results using the EER for all datasets. ‘‘N’’ represents the normal class, ‘‘A’’ represents the abnormal
class, and ‘‘Pred.’’ means the predicted class.

of experiments only for the Avenue dataset required about
45 hours running.

Results are shown in Table 2. In this table, it is observed
that, when the feature space is optimized by the CAE-CE,
the classification tends to be better when compared with the
baseline CAE, for both images and videos. In some cases,
such as UCSD Ped1, the AUC is about 15% better. A similar
result is observed in the image dataset (STL-10), in which
an improvement over 5% was achieved. Notice that STL-
10 is a challenging dataset since it contains images with
different appearance characteristics (background, sizes, and
shapes) [32].

Table 2 allows a broad comparison between the state-of-
the-art results and the proposed CAE-CE for video datasets.
In the Avenue dataset, our results are better than those
achieved by [26], but inferior compared to [14]. However, it is
worth mentioning that in [14], different preprocessing stages
are applied to the image frames, mainly including optical
flow. Also, for UCSD Ped2, we achieved satisfactory results,
but not as good as those obtained by [12] and [58]. For the
UCSD Ped1 dataset, our results are worse than those of [51].
It is important to mention that the above-mentioned state-
of-the-art approaches are very elaborate, including special
schemes not used in our work, such as data-augmentation,
the division of frames into patches, and large CAE architec-
tures. However, as a matter of fact, no method achieves the
state-of-the-art for all datasets.

Table 3 presents the confusion matrix obtained with the
EER threshold at the event level, i.e., the classification result
of each frame of all videos of the test set. Using the table, TPR
and TNR can be computed. For all datasets, the table shows
that the CAE-CE achieved better results when compared
with the CAE. For instance, the TPR and TNR gains for
UTFPR-HSD1 were 5.93% and 5.88%, respectively; 9.13%
and 9.47% for the UCSD Ped2 dataset; and 17.59% and

17.79% for UCSD Ped1 dataset. Furthermore, both TPR and
TNR increased for all datasets.

D. STOP CRITERION
This experiment aims at analyzing the effectiveness of the
stop criterion proposed in Section IV-C. Recall that the
working hypothesis is that the TPR can be used as a stop
criterion for CAE-CE with a similar effectiveness of the TPR
× TNR approach. Figure 4 shows the behavior of the KL-
divergenceminimization (KL loss) represented by a blue line,
and both TPR (green line) and TPR×TNR (red line) along
1000 training epochs. For this study, a small learning rate
value was used, and all plotted values are normalized in the
range of [0, 1].
Figure 4 (top) shows that, in the early epochs, the KL loss

increases abruptly because of the latent space geometry is
beingmodified to assign samples with respect to their centers.
However, after this initial transient, the KL loss decreases and
tends to converge along time. Furthermore, improvements
in TPR and TPR × TNR are observed until they achieve
their maximum values (around epoch 280), highlighted by
the dashed vertical red line. After that, they tend to decrease
abruptly despite the convergence observed for the KL loss.
Moreover, after the best point is achieved, TPR and TPR
× TNR tend to diverge, thus suggesting the overfitting of
the model to the normal samples. For this reason, the best
point for stopping the optimization process is when the
TPR achieves the maximum value. Notice that this does not
necessarily occur when the KL loss achieves its minimum.
However, proceeding beyond the suggested stopping point
will lead the model to be overfitted to the normal samples,
impairing the classification performance.

In Figure 4 (a), normal samples are represented with two
clusters (red and green) plotted in a 2D space after the CAE
optimization. Figure 4 (b) shows the compactness of the
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FIGURE 4. (top) KL loss convergence, and both TPR and TPR×TNR curves for a video clip from the UTFPR-HSD1 dataset. (bottom) Figures in the
boxes are a compact representation accomplished by using Principal Component Analysis: (a) shows the bottleneck representation after the CAE
optimization is done; (b) shows the CAE-CE bottleneck representation at the best optimization point; (c) shows the CAE-CE bottleneck
representation when the training process converged w.r.t. KL loss.

two clusters imposed by the CAE-CE approach when the
optimization reaches the suggested stopping point. Since the
KL loss has not yet converged, the optimization could go
further, reaching the point shown in Figure 4 (c), which is
the best possible compactness obtainable by the CAE-CE
approach. However, at this point, the compactness level is not
adequate for anomaly detection problems, since the model is
overfitted to normal samples and leads to a poor classification
performance (observed in TPR and TPR×TNR curves).

Concerning the generality of the TPR approach, Figure 5
shows the behavior of both TPR (dashed blue line) and
TPR×TNR (red line) over 75 CAE-CE training epochs, for
all the datasets. Values were individually normalized in the
[0, 1] range, so that the plots can be observed on the same
scale, as well as to see if their peaks overlap. The peaks are
pointed in blue for TPR and red for TPR×TNR.

In the figure, it is observed that in most cases the TPR peak
matches with the TPR× TNR peak in the same epoch or very
close to it. Also, notice that, in general, the plots follow
similar orientation on both TPR and TPR×TNR. These facts
reinforce our hypothesis that TPR can have a similar effec-
tiveness as the TPR×TNR approach to find the stop point.

E. QUALITATIVE ANALYSIS
In order to better understand the practical differences between
our method and the baseline CAE, we perform a visual anal-
ysis of some video fragments extracted from the datasets.
To accomplish this, we plot the distance of each frame to
the OC-SVM decision border in the hypersphere over time,
as explained in Section IV-D. This analysis is performed for
two different situations, the first when our method showed
improvements over the baseline and, the other when no sig-
nificant improvement was achieved.

FIGURE 5. Stop criterion based on sensitivity for all datasets: (a) Avenue,
(b) UTFPR-HSD1, (c) UTFPR-HSD2, (d) USCS Ped1, and (e) UCSD Ped2.
Axes x and y represent the training epochs and the normalized values,
respectively.

Figure 6 (top) shows the plot of the SNAS for both the
CAE (green line) and the CAE-CE (blue line), computed
as described in Section IV-D, and using a fragment of the
UTFPR-HSD1 dataset. The ground truth, annotated by a
human expert, and the EER threshold for anomaly detec-
tion are shown as red and dashed black lines, respec-
tively. Recall that values above the EER threshold are
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FIGURE 6. SNAS scores computed on a fragment of the UTFPR-HSD1 dataset.

FIGURE 7. Another example of SNAS scores for the UTFPR-HSD1 dataset.

considered anomalies. Basically, this video shows cars cross-
ing the highway background. In a given moment a truck
(the anomaly) appears, crosses the highway, and leaves the
scene.

Figure 6 (bottom) shows six frames extracted from a video
fragment from the UTFPR-HSD1 dataset. An analysis of the
SNAS curve and related events in the video are provided for
each frame:

1) In this frame, there are only cars crossing the highway,
and, therefore, this is a normal event. The SNAS line
of the CAE-CE is under the EER threshold whilst the
CAE SNAS line is above. In this case, the CAE leads to
a misclassification, however, the CAE-CE corrects the
mistake.

2) Around frame 20, some false-positives for abnormal
behavior happen when using the EER threshold. Both
the CAE and the CAE-CE SNAS ’s are oscillating, thus

indicating that the events are located near the normal-
abnormal decision border. Thus, if the event is outside
the decision border (beyond normal concept), the CAE-
CE optimization enforces it to be a pronounced abnor-
mal event. Considering that the SNAS wrongly classified
this event in both CAE andCAE-CE, it is suggested that
the training dataset does not contain a sufficient repre-
sentative amount of this particular pattern to recognize
it as a normal event.

3) Between frames 35 and 82 of the clip, there are some
fluctuations in the SNAS under the EER threshold. Once
more, the CAE-CE has corrected the classification
error.

4) The anomaly appears around frame 83 when a truck
enters the scene. Soon after this point, the CAE-
CE’s SNAS scores became higher than those of the
CAE, meaning that CAE-CE detected the anomaly
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FIGURE 8. SNAS scores computed on a fragment of the Avenue dataset.

with more confidence. Also, it is observed that the
CAE-CE detected the anomaly precisely at the time
that it started, whilst the CAE wrongly classified some
previous frames as abnormal.

5) The truck is partially occluded by a car. This happens
from around frame 88 of the clip all the way to frame
123. Whilst the truck stays in the scene, the CAE-
CE enforces the SNAS scores to be higher than the
CAE scores. Around frame 120, a transition from an
abnormal to a normal event starts, where both the CAE
and the CAE-CE present some fluctuations. At this
point, we can observe once again the effect of compact-
ness since, despite the classification error, the CAE-CE
was able to keep the SNAS score near the EER thresh-
old. The truck completely leaves the scene around
frame 127.

6) A black pickup truck enters the scene around frame
200 of the clip. Both the CAE and the CAE-CE clas-
sify this vehicle as a false-positive anomaly. This is
explained due to the visual similarity between this
pickup and small trucks, thus leading to false-positives.
Even so, the CAE-CE has better performance when
compared to the CAE for keeping the SNAS scores
closer to the threshold. Moreover, the CAE-CE suc-
cessfully corrected the classification error for a few
frames just after starting the event.

Furthermore, Figure 7 (top) shows the SNAS scores from
another fragment of the UTFPR-HSD1 dataset. It is observed
that, in most cases, the CAE-CE reinforced the SNAS scores to
better approximate the ground truth, thus classifying events
with higher confidence than the CAE. In the frame shown
in Figure 7 (a), the CAE-CE was able to correct the mis-
classification caused by the CAE. In the frame shown in Fig-
ure 7 (b), the CAE-CE was able to detect the abnormal event
(the white truck) from the very beginning, when it is entering
the scene, whilst the CAE can do this only some frames
later. In Figure 7 (c), both methods successfully had their

highest SNAS scores when the anomaly was in the middle
of the scene. For this particular moment, CAE displayed
a higher value than CAE-CE. In Figure 7 (d), the CAE-
CE showed the lowest SNAS score when the scene became
completely empty, meaning that it detected normality with
high confidence. In general, the analysis of results suggests
that, for this kind of dataset, the compactness introduced by
the CAE-CE reduces SNAS fluctuations, improving the overall
classification performance.

On the other hand, in some cases, the classification perfor-
mance does not increase significantly after introducing more
compactness by CAE-CE. This is the case with the Avenue
dataset, shown in Figure 8. In this video fragment, a boy
(the abnormal event) slowly enters the scene from the left.
He stands for a moment and then leaves. The first part of
the video does not cause any significant fluctuations of SNAS
scores for bothmethods, as shown in the frame of Figure 8 (a).
Just before Figure 8 (b), the boy starts to leave the scene,
causing some fluctuations in the SNAS scores. At this time,
the CAE-CE presents a better performance, keeping the SNAS
closer to the classification threshold. From this point on, only
normal events occur in the video, as illustrated by the frame
shown in Figure 8 (c). No significant difference is noticeable
regarding the performance of the methods.

VI. CONCLUSIONS
In this work, we proposed the CAE-CE, a novel
approach for anomaly detection problems in images
and videos. CAE-CE is based on the Kullback-Leibler
divergence for learning compact (dense) representations.
We showed experimentally that such compactness is able
to increase the separability between normal examples and
anomalies.

The qualitative analysis of frames at the visual level
indicated that the fluctuations of SNAS follow the events
occurring in the frames. Despite the need for seman-
tic interpretation of the frames’ contents, the CAE-CE
was shown to be more related to the anomalous events
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than the CAE. Therefore, our experimental results sup-
port the initial hypothesis that compacting the represen-
tation of the normal concept in anomaly detection prob-
lems can be valuable for increasing the classification
performance.

Throughout the experiments, the need to establish an
effective stop criterion for the training phase of the CAE-
CE has emerged. We showed that the proposed sensitivity-
based criterion is a plausible alternative, considering the
nature of OCC problems, where the anomalous events are
unknown. Results suggest that, even though the sensitivity
method is not perfect, it can be seen as an approximation
to the optimal stop point. On the other hand, experiments
showed that training the CAE-CEmodel beyond the best TPR
epoch compromises the classification performance. Exper-
imental results suggest that the TPR-based approach may
be useful for other similar OCC problems. Future exper-
iments will assess its generalization capability for other
datasets.

Besides, all experiments to validate the proposed approach
were performed using publicly available datasets, including
the new datasets introduced, UTFPR-HSD1 and UTFPR-
HSD2, fully-annotated and designed for several tasks,
including anomaly detection in highways. It is impor-
tant to emphasize that there are no similar datasets
available in the related literature, and an annotated
dataset may be welcome to foster other research in this
area.

One of the hardest tasks in automatic video analysis is
to identify anomalies, since most of the time only normal
events take place. Anomalies are ill-defined events that hap-
pen unexpectedly in a given context. Consequently, the devel-
opment of computer vision methods has been the subject of
growing research in recent years, on both, theoretical and
practical grounds. In this sense, this work raised important
issues for anomaly detection in videos from the point of
view of an OCC problem.We believe that the methodological
contributions of this work can be promptly applied to real-
world problems and, so, further research is encouraged. Addi-
tionally, future research directions shall focus on extending
the proposed CAE-CE to automatically estimate the ideal
number of clusters, as well as to investigate the useful-
ness of temporal information to improve the classification
performance.
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