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A B S T R A C T

Solving the protein folding problem (PFP) is one of the grand challenges still open in computational biophysics.
Globular proteins are believed to evolve from initial configurations through folding pathways connecting several
thermodynamically accessible states in a free energy landscape until reaching its minimum, inhabited by the
stable native structures. Despite its huge computational burden, molecular dynamics (MD) is the leading ap-
proach in the PFP studies by preserving the Newtonian temporal evolution in the canonical ensemble. Non-
trivial improvements are provided by highly parallel implementations of MD in cost-effective GPUs, concomitant
to multiscale descriptions of proteins by coarse-grained minimalist models. In this vein, we present the
PathMolD-AB framework, a comprehensive software package for massively parallel MD simulations using the
canonical ensemble, structural analysis, and visualization of the folding pathways using the minimalist AB-
model. It has, also, a tool to compare the results with proteins re-scaled from the PDB. We simulate and analyze,
as case studies, the folding of four proteins: 13FIBO, 2GB1, 1PLC and 5ANZ, with 13, 55, 99 and 223 amino
acids, respectively. The datasets generated from simulations correspond to the MD evolution of 3500 folding
pathways, encompassing ×35 106 states, which contains the spatial amino acid positions, the protein free en-
ergies and radii of gyration at each time step. Results indicate that the speedup of our approach grows loga-
rithmically with the protein length and, therefore, it is suited for most of the proteins in the PDB. The predicted
structures simulated by PathMolD-AB were similar to the re-scaled biological structures, indicating that it is
promising for the study of the PFP study.

1. Introduction

The protein folding problem (PFP) is an active area of research in
Biophysics and aims at unveiling how proteins fold into their native
form (Dill and MacCallum, 2012). Along time, many methods and al-
gorithms have been proposed to find the native structure of a protein
based only on the sequence and properties of their amino acids chain
(Moult et al., 2018; Hattori et al., 2020). However, the dynamics of the
protein folding is sparsely addressed in the literature, and very few
datasets of protein pathways are available (Manavalan et al., 2019).

Molecular dynamics (MD) was developed in the 1950s (Alder and
Wainwright, 1959) and, since then, MD has been the most important
method for simulating the folding process of proteins (Levitt and
Warshel, 1975). This approach is frequently used in proteomics re-
search, not only for the study of the PFP but, also, for drug design (Hays

et al., 2018) and the study of mechanisms leading to amyloid diseases
(Lesgidou et al., 2018), cancer, diabetes, and Alzheimer's (Hsu and
Schiøtt, 2019).

GROMACS and AMBER (Salomon-Ferrer et al., 2013; Abraham
et al., 2015) are software packages widely used in the literature for MD
simulations. They gained popularity among researchers by their ro-
bustness and flexibility. Both packages preserve the sample features by
using generalized ensemble approaches during the simulation, such as
replica exchange (RE) (Sugita and Okamoto, 1999), and umbrella
sampling (US) (Torrie and Valleau, 1977) methods. However, in such
ensembles, the spatiotemporal evolution of the folding trajectory is lost
in favor of a faster sampling of the energy landscape. Among the MD
variants, the canonical ensemble approach preserves the Newtonian
dynamics of the protein trajectory (Stillinger and Head-Gordon, 1995;
Rapaport, 2004) and, therefore, it is useful for the temporal analysis of
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such systems. Moreover, this approach has been barely used together
with coarse-grained (CG) models in the PFP literature (Benítez and
Lopes, 2012; Benítez, 2015), which could enable much larger molecular
models to be studied.

From the numerical perspective, at each iteration, the MD algorithm
computes all the forces acting on each atom of a protein and, then, their
updated positions in the 3D space resulting from the application of
those forces. Since MD implies a huge computational burden for solving
iterative equations, it seems to be appropriate to apply parallel
methods, therefore minimizing the overall simulation time. In recent
years, several computational approaches have been proposed to opti-
mize the MD method (Salomon-Ferrer et al., 2013; Abraham et al.,
2015), including parallelism support with GPUs (graphics processing
units) (Phillips et al., 2011; Spellings et al., 2017; Yang et al., 2018).
Although the parallelization of the DM method decreases the compu-
tational time of simulations, the larger the number of the beads re-
presentation of the model, the higher the computational power required
to run simulations (Kmiecik et al., 2016; Kobayashi et al., 2017).

A successful strategy in the heart of multiscale modeling of proteins
(Tozzini, 2009), frequently used for decreasing the computational
complexity of the MD algorithm, employs CG models for representing
proteins (Pierri et al., 2008; Poursina and Anderson, 2014; Hattori
et al., 2020). Such modeling treats a set of atoms as less or just one
element at a higher level of abstraction, which is suitable for under-
standing the essential aspects at the mesoscale level. The use of less
complex representations leads to a significant reduction of the inter-
action between the elements of a protein chain, thus requiring less
computational power (Llanes et al., 2016). Despite this gain, for long
protein chains, multi-protein interactions, or when large amounts of
computational experiments are required, the simulation is still chal-
lenging (Schneider and Müller, 2019).

There are many variants among CG models, for instance, according
to the structure constraints, or the number of beads and force fields.
Discrete models restrict the protein conformation in a lattice (Yanev
et al., 2011; Hattori et al., 2020). On the other hand, off-lattice models
allows continuous bond and torsion angles (Stillinger and Head-
Gordon, 1995; He et al., 2013). The number of beads to represent each
amino acid is another parameter, which can range from a more gen-
eralistic approach, such as the one-bead model (Stillinger and Head-
Gordon, 1995; Cieplak and Hoang, 2000), to a more realistic re-
presentation using five or six beads that describe with more details
mainly the side chain feature (Pierri et al., 2008; Tian et al., 2011). The
force field can be derived either from physical or statistical analysis.
The former includes electrostatics (Sheinerman et al., 2000), Lennard-
Jones, torsion, and bond energies (Stillinger and Head-Gordon, 1995),
whilst the latter includes frequency of atom contacts (Tanaka and
Scheraga, 1976), short-range interactions (Amir et al., 2008), and hy-
drogen bonding (Levy-Moonshine et al., 2009; Kmiecik et al., 2016).

The C represents the center of mass of each natural alpha amino
acid, and the distance between two C C is near to 3.8 Å (Onofrio
et al., 2014). Based on the definition of the above reported Calpha-
Calpha distance, CG models are simplified models in which the amino
acids are replaced by single beads. Each bead is positioned approxi-
mately in the center of mass of the corresponding amino acid, at the
level of the Calpha of the native protein residue (Pierri et al., 2008;
Onofrio et al., 2014).

Thanks to the growing computational power available nowadays,
very large amounts of raw data can be produced. However, this requires
software approaches to analyze data and create knowledge from it
(Hourdel et al., 2016; Razban et al., 2018). In this context, the devel-
opment of tools that enable the understanding of the information em-
bedded in the folding pathways of proteins may be of great importance
for research, allowing the analysis of the energy funnel (Dill and
MacCallum, 2012), as well as identifying anomalies during the folding
process (Brezovsky et al., 2016; Jurcik et al., 2018). Following this
trend, we are introducing the PathMolD-AB software package. This tool

simulates the spatiotemporal pathways of protein foldings and enables
the visualization of the protein structure, energy, and radius of gyration
along the folding process in a video format.

In this work, the folding process of four distinct proteins were si-
mulated and analyzed as case studies. The MD simulation generated
large datasets of protein folding pathways, thus encouraging research
on computational methods for the PFP (Benítez, 2015; Hattori et al.,
2018; Reinders et al., 2018). The availability of such datasets and
software enables studies in correlated physico-chemical areas, such as
predicting the structure based on energy and compactness, as well as
predictions of amino acid contacts (Geng et al., 2019; Hanson et al.,
2018) and so inferring realistic experimental B-factors of proteins by
elastic network models (Mendonça et al., 2014).

The main contributions of the PathMolD-AB software package in-
clude:

• A parallel canonical ensemble MD using a CG model running in a
master-slave CPU-GPU architecture.
• Analysis of the impact of different protein sizes in the performance
of the proposed approach.
• A dataset of spatiotemporal pathways of protein folding, suitable for
the study of the PFP.
• A method for comparing the predicted structures and the protein
structure from the Protein Data Bank (PDB).

This paper is organized as follows: Section 3 describes in detail the
PathMolD-AB software, including the CG model for representing pro-
teins, the parallel molecular dynamics algorithm, the pathways datasets
generated for four protein chains, and the method for comparing
structures. Next, Section 4 shows the computational experiments and
the analysis of the dataset created. Finally, in Section 5 conclusions and
future directions are pointed out.

2. The 3D-AB off-lattice model

Depending on the biological information intended to be inferred
from computational simulations, the amino acids in proteins, also
known as residues, and their surrounding solvent shall be explicitly
described at the atomic level (Tozzini, 2009). As mentioned before, this
approach leads to a computationally expensive approach (Ngo et al.,
1994) which may not always be required, for instance, when studying
normal modes of proteins (Mendonça et al., 2014) or the general as-
pects of their structural phase transitions (Bachmann, 2014). For this
reason, along time, several simplified CG models for representing pro-
teins have emerged (Brown et al., 2003; Colombo and Micheletti, 2006;
Lopes, 2008; Hills and Brooks, 2009; Kmiecik et al., 2016; Finkelstein,
2018), including the 3D-AB model, proposed by Stillinger and Head-
Gordon (1995). This toy model turned out to be a flexible representa-
tion, compared to other popular lattice models, since it allows more
arrangements of the structure (Pierri et al., 2008). Therefore, simula-
tions with the 3D-AB model demand a lower computational cost,
compared to atomic models. For instance, in aggregation studies, where
it is required a higher computational effort, this model enabled realistic
simulations of fibrillar aggregates (Frigori et al., 2013; Frigori, 2014,
2017). Nowadays, the model has been used in many benchmark works
for the PSP problem (Lin et al., 2018; Zhou et al., 2018).

In the 3D-AB model, the residues are simplified and represented by
spheres which, in turn, are implicitly categorized according to their
affinity with water: either hydrophobic (represented by the letter “A”)
or polar (represented with “B”). These features are fundamental for the
formation of the native structure of proteins (Pierri et al., 2008). The
distance between a given residue and the next one in the chain is always
constant, equal to one. Such a constraint helps to decrease the com-
putational load for extensive simulations. The gradient of the potential
energy function (Ep) associated with the 3D-AB model, which ulti-
mately drives the folding of the protein, is computed by Eq. (1)
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(Rapaport, 2004; Benítez, 2015):

= = = + +ˆf u r E b E E E( ) ( ; ) ( ).p i Angles Torsion LJ (1)

The equations of motion are given according to Newton's second
law, as shown in Eq. (2), where, N represents the number of residues:
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According to Newton's third law, which implies =f fij ij, the forces
need to be calculated only once for each pair of particles. In particular,
in this work the AB model uses =m 1, following Benítez (2015).

The bond-angle generate forces between three points residues
( =j i i i2, 1, ), and the corresponding energy (EAngles) is given by
Eq. (3):
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presented by Eq. (4):
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where c is the scalar product between the bond vectors of the ith and
the jth pair. This pair is expressed by =c b b·i j i j, , where bi indicates the
ith bond of the joins between the ith and i( 1)th residues.

The potential associated with the bond-angle force for the AB model
(Eangles) is described as:

=
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where =k 11 (Irbäck et al., 1997). Given that the AB model restricts
the unit distance between consecutive residues of the protein structure,
the derivative used for the forces in Eq. (3) might be calculated using
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The bond-torsion potential is associated with four consecutive re-
sidues. For instance, the torsion in the ith residue causes force in the

= … +j i i i2, 1, , 1. When =f 0j j , the torsion force can be ex-
pressed by the following equations (Rapaport, 2004):
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According to Irbäck et al. (1997), the potential associated by the
torsion-angle (ETorsion) force for the AB model is described by Eq. (9),
where =k 0.52 .
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The Lennard-Jones potential represents the interactions between
residues based on their distance and hydrophobicity. Its gradient is
defined by Eq. (10).
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where the distance between amino acids i and j is represented by rij, and
( , )i j weighs the interaction between amino acids based on hydro-
phobicity interaction. For example, hydrophobic interactions is
weighted equal to 1.0, and all other interactions are weighted equal to
0.5 (Irbäck et al., 1997), as shown in Eq. (11).

=( , ) 1 if AA interaction,
0.5 if BB orAB interactions.i j (11)

Due to the constraints imposed on the model used in this work by
the unit distance between subsequent residues of the chain, we used the
Shake algorithm (see Algorithm 1) for updating the estimated co-
ordinates (r) using a correction factor ( ). The velocities are also ad-
justed using the same approach, where the mass of each residue is equal
to one ( =m 1).

Algorithm 1. Shake algorithm (Benítez, 2015).
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3. Description of PathMolD-AB

Fig. 1 presents an overview of the proposed end-to-end framework,
called PathMold-AB. The core of the framework comprises three steps/
modules, plus other add-ons for specific analyses. In step 1, the input
file for the computational simulations is generated from raw data ac-
quired from the Protein Data Bank (PDB).1 In this step the Cartesian
coordinates of the C of all amino acids are extracted and the distance
between C C is rescaled to one, aiming at comparing to the CG
model. In step 2, the folding simulations are accomplished and path-
ways data are generated, based on parallel and sequential models of the
canonical MD method using a CG model. For further details about the
input and output files, see Appendix B. In step 3, results of the simu-
lation are compared with the rescaled biological structure of the protein

1 http://pdb.org/
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(performed in step 1), aiming to compare the predicted structures with
the corresponding “biological” structure. In the following sections, each
of these steps will be detailed.

3.1. PDB data processing

To properly extract useful information from the PDB files, two
procedures are necessary: first, the AB sequence is obtained (for simu-
lating the folding pathways of the protein); second, the rescaled bio-
logical structure is constructed (for comparing with the predicted
structures).

The conversion of an amino acid sequence to the corresponding
hydrophobic-polar (AB) sequence is shown in Algorithm 2. We used the
Python programming language together with the Biopython2 frame-
work. Starting from a PDB ID, the program downloads the PDB file and
extracts the sequence of amino acids. Next, this sequence is converted
to the AB model using a hydrophobicity conversion table. Following a
previous work (Benítez, 2015), here we used the hydrophobicity scale
proposed by Alberts et al. (2002) (see Table 1) for converting the 20
different amino acid types to either A or B. Next, the AB sequence is
saved in a file together with other features to run the MD simulation
(see Appendix B).

Algorithm 2. Protein sequence conversion procedure. Based on Hattori
et al. (2020).

Input PDB ID
Download PDB File
Read PDB File
for =i N0: do
Extract Amino Acid AAi SEQRES
Add AAi to iSequence[ ]

end for
Read AB Classification Table
for =i N0: do
if iSequence[ ] == ‘A’ then

AB i_Sequence[ ] ‘A’
else

AB i_Sequence[ ] ‘B’
end if

end for
Save AB_Sequence

In the rescaling process, the Cartesian coordinates of the protein

structure are extracted from PDB file and, from them, the coordinates of
the C of each amino acid (Pierri et al., 2008). The distances between
each consecutive C is rescaled, dividing by 3.8Å, to obtain the nor-
malized distance (equal to 1) according to the 3D-AB off-lattice model
(Chan and Dill, 1990; Pierri et al., 2008; Kolinski, 2011; Onofrio et al.,
2014). Then, it is obtained the target structure represented on the CG
model to be compared with structures predicted (Pierri et al., 2008).

3.2. Parallel molecular dynamics

Based on previous works (Benítez, 2015; Benítez and Lopes, 2012),
the MD implementation of PathMolD-AB uses the canonical NVT en-
semble, where the number of residues (N ) and volume (V ) are con-
stants, and the temperature (T) is controlled at a specific value. The
parallelization proposed in this work is based on a CPU-GPU master-
slave computation model. A master process running on CPU manages
the sequential part of the algorithm, whilst slave processes running on
GPU cores execute the main computations in parallel.

The initial procedures are naturally serial or require low computa-
tional effort, therefore they are run on a CPU. The first step is the
generation of a structure randomly positioned in the space. Next, the
main part of the MD algorithm is the computation of the torsion, bond,
and Lennard-Jones energies, as described in Section 2. The computation
of each energy function is parallelized in GPU, such that, for each en-
ergy term, the computation is assigned to a thread. The results are then
stored in an array position. After computing these energies, the partial
energies are summed by parallel reduction to sequential addressing, as
shown in Fig. 2. The reduction algorithm is accomplished by a paired
sum of the array positions, and these computations are done in parallel.

Fig. 1. An overview of the proposed framework (PathMolD-AB).

Table 1
Hydrophobicity scale by Alberts et al. (2002).

Amino acid Hydrophobicity
classification

Amino acid Hydrophobicity
classification

ALA A MET A
CYS A ASN B
ASP B BRO A
GLU B GLN B
PHE A ARG B
GLY A SER B
HIS B THR B
ILE A VAL A
LYS B TRP A
LEU A TYR B

2 http://biopython.org/
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The results of the sums are saved in the first indices of the array. This
process takes place iteratively until all values are summed up to a single
position of the array.

In the sequence, velocities and accelerations of all the residues are
computed. These computations are independent each other and they
can be performed in parallel. Then, as a consequence of the physical
forces acting on the residues, they are pushed to another position in the
3D space, and, again, such computation can be accomplished in parallel
in GPU. Next, the temperature of the system is adjusted by using the
weak coupling to a thermal bath method, as proposed by Berendsen
et al. (1984). Finally, the geometric constraints are applied to the
structure in order to adjust coordinates and velocities (see Algorithm 1).

Additionally, for evaluating the compactness of protein conforma-
tions, the radius of gyration (Khokhlov, 1994) is computed at each
step_size. The smaller the radius of gyration, the more compact is the
set of residues. Three radii of gyration are provided RgAll (all the
structure), RgH (only hydrophobic residues), and RgP (only polar re-
sidues). Notice that the observation of the temporal changes of RgH and
RgP may indicate the formation of the hydrophobic core, typical of
globular aqueous and cytosolic proteins (not membrane proteins) (Chan
and Dill, 1990; Dill and MacCallum, 2012). Eq. (12) shows how the
radius of gyration is computed:

=
+ += x X y Y z Z

N
RgAll

[( ) ( ) ( ) ]
,i

N
i i i0

1 2 2 2

(12)

where x y, and z represent the Cartesian coordinates of each residue i,
X Y, and Z the average of each Cartesian coordinate, and N is the
number of residues of the sequence.

At each pre-defined number of iterations (step_size) the program
saves the state of the protein as a report file, saving the structure, en-
ergy, and the radii of gyration of the protein. The whole procedure is
repeated until a stop condition is satisfied, such as a time-out criterion
(a given number of iterations (tmax ) is reached) or a quality criterion
(e.g. when the Ep stabilizes according to a predefined threshold)
(Benítez, 2015). Algorithm 3 shows the main execution steps of Path-
MolD-AB.

Algorithm 3. Main execution steps of PathMolD-AB. The shaded lines
are executed in parallel in GPU, whilst the other are executed in CPU.

3.3. Generation of datasets for studying the protein folding dynamics

Using the PathMolD-AB software, four datasets of protein folding
trajectories were produced as case studies. Four proteins were simu-
lated, one artificially created and three real-world proteins with a
growing number of amino acids, as shown in Table 2, and detailed as
follows:

• 13FIBO: it has 13 amino acids, and was artificially created by
Stillinger and Head-Gordon (1995), by distributing the hydrophobic
amino acids according to the Fibonacci sequence.
• 2GB13 : this protein is in the group of the G proteins, which exerts
signal transduction functions. The dysfunction of this protein is
linked to diseases such as schizophrenia in humans (Mirnics et al.,
2001).
• 1PLC4 : this protein performs the function of electron transportation,
which is related to the process of energy production in the cell. Its
functional impairment results in cell death (Watabe and Nakaki,
2007).
• 5NAZ5 : this is a globular structural protein of collagen, and it is
related to the Goodpasture's and Alport's syndromes (Casino et al.,
2018).

For each protein, a dataset was generated with 1000 (for 13FIBO,
2GB1 and 1PLC) or 500 (for 5NAZ) different pathways. Due to the
length of the last protein, less simulations were done. As mentioned

Fig. 2. Parallel reduction to sequential addressing.

Table 2
Information about the protein sequences used to generate the datasets.

ID # amino acids AB sequence

3FIBO 3 AB AB AB( )2 2 2

GB1 6 AB A BAB ABAB A B AB A( )3 3 2 5 2 2 2 2

B A AB B A BAB( ) ( ) ( )3 2 3 3 2 2

PLC 9 ABA BB AB A B A B A B( ) ( )5 2 2 2 2 3 3 4 2

A B A BA AB BA B A AB( ) ( ) ( ) 23 4 2 2 2 4 3

BA A B BA BA B A BA B( ) ( ) ( ) ( )A 2 2 2 2 6 2

NAZ 29 BA A B A B AB BA( ) ( ) ( ) ( )2 2 2 8 2 2 3 2

BA B AB BA B A A BA( ) ( ) ( ) ( )2 3 2 2 3 2 2 5

B BA B A B BA A BA( ) ( ) ( )2 2 7 2 2 3 2

AB BA A B A BA B A BA( ) ( ) ( )2 2 2 2 4 8 4 2 3

B A B A B A BA A B( ) ( )2 4 2 3 3 3 3 2 3

BAB A BA B AB A AB BA( ) ( )2 4 4 3 4 3 3 2

B AB BA AB B A BA B( ) ( ) ( )2 3 2 2 2 2 2 3

3 http://10.2210/pdb2GB1/pdb
4 http://10.2210/pdb1PLC/pdb
5 https://www.rcsb.org/structure/5NAZ
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before, all simulations start with structures randomly initialized in the
3D space, so as to enforce a high diversity of pathways, each one
leading to the native conformation of the protein.

To guarantee a reliable stabilization of the native structure, the
maximum number of time-steps (tmax ) for the simulations of the
13FIBO, 2GB1 and 1PLC proteins were set to ×3 106 iterations, and

×1 108 for the 5NAZ protein. Consequently, for standardizing the
number of spatiotemporal states per pathway in each dataset, the
step_size for 13FIBO, 2GB1 and 1PLC was 3000, and 8000 for 5NAZ.
For each pathway, 1000 folding states were recorded. Fig. 3 illustrates
snapshots of protein folding states.

3.4. Comparison with the biological structure from the PDB

In this section, we aim at comparing the structure of the crystallized
proteins found in the PDB with the corresponding structure predicted
by the our approach (see Fig. 1). This is accomplished indirectly, by
computing the radii of gyration of both structures and, also, in a direct
way, by using the Kasbch-RMSD measure described below.

Following the prepossessing, in step two some simulations are ac-
complished to produce the protein pathway dataset using MD (see
Sections 2 and 3.2). After the simulations, the data were organized in
such a way to enable the comparison with biological structures. As
presented in Section 3.3, the three real-world proteins included in this
case study were: 2GB1, 1PLC, and 5NAZ. However, due to the lack of
information about the coordinates of the 5NAZ protein residues in the
PDB file, the scaling process was unfeasible for this protein. Thus, the
analyses were performed only for the first 2GB1 and 1PLC.

The comparison of the rescaled PDB structure and the MD predicted
structure is a problem that can be modeled as an orthogonal Procrustes
problem (Gower and Dijksterhuis, 2004). Kabsch (1976) proposed an
algorithm to solve this problem by approximating two matrices P and
Q, which represent the spatial coordinates of the two structures. In this
work, the movement allowed is only the rotation of P and Q. First,
residues of P and Q are superposed and, then, a rotation is applied to
minimize the difference between these two matrices, based on the root
mean square deviation (RMSD) (Kravraki, 2007), as shown in Eq. (13).

=
+ += P Q P Q P Q

N
RMSD

( ) ( ) ( ) )
,i

N
1 ix ix

2
iy iy

2
iz iz

2

(13)

where N represents the number of amino acids of the protein, i is the ith
amino acid, and x , y, z are the Cartesian coordinates of each amino
acid.

4. Results and analysis

Experiments were run in a workstation running Ubuntu 18.04 LTS
operating system, composed by an Intel i7-8700 processor at 3.2 GHz,
32 GBytes RAM, and a Nvidia Titan-Xp GPU (12 GBytes RAM DDR5 and
3840 CUDA cores at 1.6 GHz). The code was developed using the
standard C programming language, and for the parallelization of the
code, the CUDA library was used.

4.1. Performance of the parallel PathMolD-AB

This section aims at verifying the computational efficiency of the
proposed parallel MD method of the PathMolD-AB software package.
The reference for comparison is a purely sequential approach, pre-
viously introduced by Benítez and Lopes (2012).

The sequences used to evaluate the performance of the proposed
parallel MD were the four proteins shown in Section 3.3. Other syn-
thetic sequences, ranging from 286 to 28,657 amino acids, were also
used specifically for assessing the scalability of the parallel approach.

The experiments performed were based on 3000 iterations of the
MD method for both serial and parallel approaches. The comparison
metric used was the speedup, that is, the processing time of the se-
quential approach divided by the corresponding processing time of the
parallel approach. Fig. 4(a) and (b) shows the processing time of the
MD functions (summarization, initialization, thermostat, evaluate,
shake algorithm, update velocity, update position, Lennard-Jones en-
ergy, torsion energy, and bond energy) for both approaches. Con-
sidering the sequential approach, the most time-consuming part is
computation of the LJ function. Only for the smallest protein (with 13
amino acids), the processing time of the initialization function exceeded

Fig. 3. Sample of a pathway for the protein 13FIBO.
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the other functions. On the other hand, for the parallel approach, the
processing time of the LJ function decreased significantly when com-
pared to the sequential approach.

We observed that the computation of the geometric constraints (see
Algorithm 1) tends to increase when compared to the sequential ap-
proach. Unfortunately, this algorithm is not parallelizable. That is, the
adjustment of the +i( 1)th residue depends on the adjustment of the
previous one. Also, the velocities update depends on the adjustment of

the coordinates.
The speedup of the parallel model relative to the sequential model

was evaluated using synthetic sequences of different growing sizes (see
Fig. 5). Surprisingly, a speedup lower than one (the sequential approach
was faster than the parallel version) was observed for sequences smaller
than 99 amino acids, such as 13FIBO and 2GB1. Actually, this happened
due to the time required for the communication between GPU-CPU and,
more specifically, by the initialization function (see Fig. 4(b)). On the
other hand, for sequences larger than 99 amino acids, such as 1PLC, a
speedup higher than one was obtained, indicating that the parallel
approach is faster than the serial one. The largest sequence used in this
experiment had 28,657 amino acids, and the corresponding speedup
was 23.27. This result clearly suggests that the parallel approach has
high scalability for large sequences, when compared with the sequential
approach. Regardless of the approach used, sequential or parallel, the
processing time tends to follow a logarithmic curve, as shown in
Fig. 4(b). This figure allows inferring that the function that most in-
fluences the speedup decay is that in charge of processing the geometric
constraints (the Shake algorithm), which increases for the larger se-
quences, exceeding the time required by the LJ function.

Despite the speedup decay of the parallel approach for the large
protein sequences, most of the real biological proteins are quite below
that upper bound (Brocchieri and Karlin, 2005; Tiessen et al., 2012). In
fact, the statistical information extracted from PDB, shown in Fig. 7,
corroborates that this improvement covers more than 92% of proteins
currently deposited in PDB.

Fig. 6 shows the speedup values for the three energy functions of the
PathMolD-AB (torsion, bond, and Lennard-Jones). The highest speedup
value was achieved for the Lennard-Jones energy (see speedup LJ). This
result indicates that the parallelization of the LJ function contributed
the most to the overall speedup. In fact, this result is quite important
considering that the computation of this energy is the most time-con-
suming in the sequential approach. Although the bond and torsion
energies (see speedup torsion and speedup bond) achieved lower
speedup than LJ, some improvement in the speedup can be observed for
large sequences too. Overall, the parallelization of these two functions
also helped to increase the speedup value of the approach.

4.2. Data analysis of the case study

As proposed in Section 3.3, we generated a dataset of protein
folding pathways for four case studies: 13FIBO, 2GB1, 1PLC and 5NAZ.

A high diversity of initial conformations is required to show that,
starting from any initial spatial position, the structures will evolve to-
ward their native structure. Therefore, the initial structures were

Fig. 4. Processing time of the PathMolD-AB functions, for both, sequential and
parallel approaches.

Fig. 5. Overall speedup for the simulation of a single pathway, considering the sequential and parallel approaches.
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randomly initialized before running the PathMolD-AB simulation. In
such situation, it is essential to evaluate how different the initial
structures generated are and, conversely, how similar are the final ones
after the simulation. For each case study, all the 1000 protein structures
were compared one each other, in the first and the last step of the
pathways. The comparison of two structures is not trivial, since they
must be previously aligned using the Kabsch-RMSD method (see Section
3.4). Results were normalized in the range …[0 1] and plotted in the
heatmaps shown in Fig. 8, for the initial and final structures.

Each point of the horizontal and vertical axes of the heatmaps re-
present a protein structure at a given point of the pathway (in this case,
either the initial or the final point). The darker the color in the
heatmap, the closer to 1 it is according to the Kabsch scale, meaning
that the structures tend to be more different. The opposite holds,
meaning similar spatial structures.

As mentioned before, the values of the potential energy and the
radii of gyration were also recorded along the pathway. They give ad-
ditional insights about the compactness of the protein and convergence
of the folding process toward the native structure of the protein. Fig. 9
illustrates the potential energy (Ep), normalized in the range …[1 0], at
each pathway time step. It is shown that the energy starts near one and
decreases along the iterations until the number simulation.

Fig. 10 shows the radii of gyration (RgP, RgH, and RgAll) of the
proteins, normalized in the range …[0 1]. It is shown that, in the begin-
ning, all the radii of gyration are high but, soon, decay exponentially,

and later stabilize at low values.
Additional information is provided in Table 3. It presents the

average and standard deviation values of the energy and the radii of
gyration, computed at the final step of the pathways. Final values of
RgH are lower than RgP, suggesting the formation of a hydrophobic
core (Dill and MacCallum, 2012). Notice that the standard deviations
are low for all cases, confirming that proteins converged to quite similar
compact structures at the final step of the pathways, as previously
shown by the heatmaps.

4.3. Comparison with biological structures

As mentioned in Section 3.4, we proposed a procedure for com-
paring the structures predicted by the MD method with structures re-
scaled from the PDB.

Fig. 11 shows the results for the 2GB1 and 1PLC proteins in terms of
RgAll, RgH, and RgP (see Eq. (12)). The results showed that the protein
folding simulation yielded compactness values closer to the native
structure. This behavior suggests that the method tends to bring the
unfolded structure closer to the native biological structure. We also
observed that the predicted structures tended to be more compact than
those of the PDB, and the radii of gyration of hydrophobic and polar
were not as distinct as those of the prediction. Possibly, the lower va-
lues of the compactness of the predicted structures may have been
caused by the weight of the hydrophobicity interactions in Eq. (11).
Overall, results suggest a further refinement of those parameters to
improve the model representation. In addition, it depends on the de-
grees of freedom of their simplified systems and the convergence cri-
terion of PathMolD-AB.

The predicted and the re-scaled biological structures were directly
compared using the Kabsch-RMSD method (see Section 3.4), as shown
in Fig. 12. Kabsch-RMSD values were observed to be more distinct in
the initial iterations than in the final ones. Similarly, the standard de-
viation is higher in the initial iterations than in the final ones. These
results reinforce the analysis of compactness presented before, and the
conclusion that the simulation produces results structurally similar to
the biological structure (see, also, the diagram of Fig. 13).

5. Conclusions

The protein folding problem (PFP) is still an open challenge in the
area of computational biophysics, and it is related to unveiling how
proteins fold toward their native (functional) structure. The mechan-
istic understanding of the PFP may shed light on the genesis of many
human diseases related to misfolded proteins as well as to amyloido-
genic aggregates.

MD is a widely used approach for simulating the mechanistic be-
havior that takes place during the protein folding. However, MD is
computationally intensive and the processing time increases ex-
ponentially as the number of amino acids increases. This justifies the
development of more efficient methods, such as the PathMolD-AB
package proposed in this work. This software package uses MD with the
canonical ensemble that deals with the Newtonian evolution of protein
models. In addition, this software uses a CG model for representing
proteins and a parallel master-slave computing architecture that en-
ables experiments for tracking the spatiotemporal pathways of protein
folding. Such pathways can be useful for analyzing the changes of the
structure along with the folding and visualizing important events, such
as misfolding and structural instability, typical of intrinsically dis-
ordered structures.

The parallel MD is faster than the sequential version for protein
sequences larger than 99 amino acids. Above such a number of amino

Fig. 6. Energy functions speedup for the simulation of a single pathway, con-
sidering the sequential and parallel approaches.

Fig. 7. Number of entries per protein size range. From https://www.rcsb.org/
(accessed in October 2019).
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Fig. 8. (a–d) Normalized Kabsch RMSD between the 1000 initial structures of the four datasets, and the final structures similarity (e–h).
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acids, the speedup increases significantly for the parallel version. We
showed that, among the several functions of PathMolD-AB, the LJ
function is the most computationally expensive. Notwithstanding, we
achieved the highest speedup in this function, decreasing the bottleneck
of MD.

The speedup curve suggests a logarithmic trend, that is, the larger
the protein sequence, the more the PathMolD-AB slows down and sta-
bilizes speedup. The decay of speedup is the result of the concurrency
between processing threads in the CUDA cores of the GPU and the
Shake algorithm. However, this is not a drawback, since the distribution
of the lengths of proteins deposited in the PDB shows that the proposed
software can be useful for simulating the folding of most of the biolo-
gical proteins in the PDB.

PathMolD-AB was applied to case studies and generated a large
amount of simulation data which analyzes indicated that at the final
state of the spatiotemporal trajectories led to similar conformations,
starting from distinct initial structures, as suggested by the energy
funnel theory. The high similarity between structures in the final state,
compared to the initial state, also indicate that the simulated folding
pathways led to structurally similar final structures. In addition, the
thermodynamic characteristics are coherent with the energy curve that

decays at the initial iterations and stabilizes later.
Furthermore, we showed that the predicted structures simulated by

PathMolD-AB were similar to the re-scaled biological structures. Even
considering that we used a CG model, such a “biological-like” valida-
tion is an important step toward more realistic simulations.

Fig. 9. Average potential energy (Ep) per iteration.

Fig. 10. Average radii of gyration (RgAll, RgP and RgH ) per iteration.

Table 3
Average and standard deviation energy and radii of gyration of the final state
for the four proteins (13FIBO, 2GB1, 1PLC and 5NAZ).

Protein structure predicted (avg.± )

13FIBO 2GB1

Ep ±24.921 0.831 ±156.117 3.884
RgAll ±1.080 0.027 ±1.840 0.035
RgH ±0.896 0.090 ±1.600 0.093
RgP ±1.164 0.069 ±1.970 0.058

1PLC 5NAZ

Ep ±331.246 7.136 ±808.516 12.08
RgAll ±2.306 0.080 ±3.192 0.175
RgH ±2.147 0.120 ±2.929 0.155
RgP ±2.452 0.081 ±3.443 0.211

Fig. 11. Radii of Gyration of the crystallized structure (from the PDB) and
predicted structure by PathMolD-AB, at the initial and final step of the simu-
lation.
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The main drawback of our simulations is that the compactness of
the predicted structures was smaller than those of the re-scaled biolo-
gical structures. This fact suggests the need for optimization of the
hydrophobicity interaction weights between the residues, as first pro-
posed by Irbäck et al. (1997). A natural further step in this direction
would consist of implementing, still, in the scope of CG models,
knowledge-based structural information incorporated in the so-called
“LBN-model” (Brown et al., 2003). The LBN-model is a straightforward
generalization of the potential energy of the AB-model for hydrophilic,
hydrophobic, and neutral residues that especially includes additional
local (torsional) terms. This might enable more accurate structural
analysis at a small extra computer burden, without requiring significant
changes in the implementation of the MD-evolution equations.

Future works will explore other parallel MD approaches, such as the
neighbor-list MD, so as to enable the generation of folding pathways
more efficiently. The protein sequences presented at the critical as-
sessment of methods of protein structure prediction (CASP) event will

be included in future experiments. Also, other studies to fine-tune the
methods will be carried out, such as the impact of the weights of the
short-range interactions in the PathMolD-AB simulation in order to
achieve results closer to the rescaled biological structure, as reported by
(Onofrio et al., 2014).

Finally, we believe that the software developed, as well as the da-
tasets created in this work, will be useful for fostering further research
in the areas related to the PFP and MD. Therefore, both, software and
datasets will be made available for research purposes.
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Appendix A. Running parameters

In principle, PathMolD-AB just needs to read an input text file before starting any run. However, the software can be reconfigured before the
compilation by editing the following files:

• define.h: the main configuration file that sets the MD parameters and constants. This includes, but it is not limited to, the energy variables
(ETorsion, EAngle and ELJ), radii of gyration variables (RgAll, RgH and RgP), the number of the MD iterations, as well as the maximal size and
number of proteins.
• functions.h: contains the routines declaration (utilities, initialization, power functions, assembly control, as well as those related to the I/O
process).
• main.c: this is the main routine of the simulation module. It receives the program arguments such as the input file, GPU type and the seed for the
initialization.
• function.cu: contains the implementations of the routines defined in the functions.h file is contained in this file. For instance, the routines
used for the simulation of MD, contains all GPU communication, I/O functions, and ensemble control.

To improve the usability of the program, a script file (Makefile) was developed for the program execution. This script can be run in the command
line using make all. All procedures available in this package will be run with that command, including: download of the protein file from PDB file,
extraction of the AB sequence, creation the MD input file, compilation the parallel and sequential models of the MD program, execution of the
simulation in both models, and generation a visualization movie of the protein trajectory.

Appendix B. Input and output files

To simulate the protein folding trajectories using PathMolD-AB it is necessary to configure only an input text file containing information about
the simulation and the protein to be folded, as shown in Table 4. Other control parameters of the program were centralized in the function loadFile
(in file function.cu) for future modifications, such as the Shake algorithm (to deal with algorithm’ constraints), the mass and distance between
each residue of the model (mass and bond_len).

To obtain the AB sequence information, the Python script ab_sequence.py is provided to extract and convert the amino acids sequence directly
from a FASTA file (downloaded from the PDB) to an AB sequence based on the hydrophobicity scale proposed by Alberts et al. (2002).

The output text file generated by PathMolD-AB contains spatiotemporal information about the residues of the protein along the folding process.
At each time step t of the simulation (i.e. step_size), the Cartesian coordinates of all residues are recorded along with the overall Ep energy. The
format of the records in the dataset is shown in Fig. 14(a).

To make the pathway data generated in the simulations humanly interpretable, the PathMolD-AB software package provides a visualization tool
(pathway_print_multisubplot.py). This program produces a video using the information contained in the folding data (see Section 3.3)
showing the protein structure evolving along many iterations. Other information are also presented, including the plots of potential energy (Ep) and
the radii of gyration (RgAll, RgP, RgH). A sample of a video frame generated by this program is shown in Fig. 14(b). This software was developed for
the Linux operating system using the Python programming language.

Table 4
Input file parameters for the protein folding simulation.

Parameter Description Example

sequence Hydrophobic-polar sequence of the protein ABBABBA
BABBAB

ProtLen Number of amino acids 13
LV Box size of the simulation 26
stepLimit Maximum number of MD iterations 3,000,000
savepathways If yes (y), save the pathway data y
pathwaysstep Number of iterations between saving partial results 3000
temperature Temperature of the simulation 0.1
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Fig. 14. (a) A sample of the pathway data format. (b) Sample of a video frame generated by the visualization program. The image represents a protein structure at a
given folding step, along with the plots of energy and radius of gyration.
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Appendix C. Software-hardware compatibility

Table 5 presents the PathMolD-AB software compatibilities in terms of CUDA toolkit version, programming language version, and compute
capability,6 in which comprehends a set of features related to NVIDIA devices, including hardware and software features support. All experiments
were run under the Ubuntu 18 LTS operating system.
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