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Abstract— The Pixel-Level Classification of crops and weeds
is an open problem in computer vision. The use of agrochemi-
cals is necessary for effective weed control, but one of the great
challenges of precision agriculture is to reduce their use while
maintaining high crop yields. Recently, automated weed control
techniques based on computer vision were developed despite
experiencing difficulties in creating agricultural datasets. One
possible solution to the small volume of data available is
Data Augmentation. This paper investigates the impact of
individual data augmentation transformations on the pixel-
level classification of crops and weeds when using a Deep
Learning model. It also investigates the influence of input image
resolution on the classification performance and proposes a
patch augmentation strategy. Results have shown that applying
individual transformations can be valuable to the model, but
gets outperformed by the combination of all transformations.
This work also finds that higher resolution inputs can increase
the classification performance when combined with augmenta-
tion techniques, and that patch augmentation can be a valuable
asset when dealing with a small number of high-resolution
images. The method reaches the mark of 83.44% in Average
Dice Similarity Coefficient, an increase of 19.96% percentage
points compared to the non-augmented model.

I. INTRODUCTION

The use of agrochemicals is necessary for effective weed
control. However, they can cause negative impacts on the
environment and affect human health [1]. Therefore, one
of the great challenges of precision agriculture is to reduce
the use of agrochemicals such as pesticides, herbicides, and
fertilizers, while maintaining high crop yields. However,
manually monitoring weeds and crops is a time-consuming
activity, making it unfeasible for large-scale agriculture.

The development of Automated Weed Control (AWC)
techniques is critical to reduce the time and cost of this
task. These techniques should be able to locate and recognize
weed species in a crop, allowing the selective application of
agrochemicals or the mechanical extraction of weeds. They
can be incorporated into robots, unmanned aerial vehicles
(UAVs), tractors, and other agricultural equipment.

Pixel-Level Classification (PLC) is a technique based on
Computer Vision that allows to locate and segment certain
parts of an image. In the context of AWC, it has been used
to identify weeds and other plants [1], [2], [3].

In recent years, Deep Learning (DL) methods have been
successfully used to solve a wide array of problems related
to computer vision [4]. However, one of the main drawbacks
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of DL methods is the need of large datasets to achieve good
performance and generalization [5], [6].

Notwithstanding, the process of acquiring images in the
agricultural domain is not trivial. It requires access to cul-
tivation sites, synchronization of the image acquisition with
the growth of the plants, and expert assistance to annotate the
data acquired [7]. Due to these difficulties, annotated datasets
of this area usually have an insufficient amount of samples
to be used with DL methods [7], [8], [9]. Under these cir-
cumstances, the use of Data Augmentation (DA) techniques
is essential for the development of weed control methods
based on DL. Recent works of pixel classification applied to
weed and crop images have shown that DA can improve the
performance of their models [3], [10]. However, these studies
do not explore the impact of each transformation applied to
images, using DA only as a replication technique to improve
the results.

This work investigates the application of different spatial
data augmentation transformations in a small set of images.
The transformed data is fed to a Convolutional Neural
Network (CNN) that performs pixel-level classification. The
main contributions of our work are:

• Investigation of the impact on the performance of pixel-
level classification of crops and weeds using a CNN
with DA;

• Investigation of the influence of image resolution on
PLC using different DA techniques;

• Proposition of the patch augmentation for the PLC
problem.

II. RELATED WORK

Several recent works have used CNNs in the context of
crop and weed pixel classification, as follows.

In [11], authors use the SegNet architecture [12] for
pixel-level classification of sugar beet plants and weed. The
network was trained with 3-channel images that include
the NIR channel, the Red channel of the RGB image, and
the NDVI map. A similar approach was presented in [2],
in which a modification of the SegNet architecture was
proposed. The network takes as input 14-channel images that
include data from various vegetation indexes.

On the other hand, a solution using a Fully Convolutional
Network (FCN) combined with an encoder-decoder structure
is proposed in [13], where a sequence of images fed the
model with spatial information. The use of FCNs for crop
and weed segmentation was also explored in [1].



In [3], authors accurately classified crops and weeds using
a sequence of two convolutional neural networks (CNNs)
applied to RGB images. The first step uses a UNet-based
network [14] and aims at separating pixels between two
classes: soil and plant. After that, each plant is classified
as crop or weed using a fine-tuned VGG-16 model [15].

Due to the lack of sufficiently large datasets, the authors
in [16] generated synthetic data to train the SegNet model.
The augmentation algorithm randomly creates the main
features of the target environment, such as crop and weed
species, soil type and light conditions.

The use of data augmentation has been studied in different
contexts to explore its ability to increase the performance of
DL models. For instance, a new method of data augmentation
to prevent overfitting in an Acoustic Event Recognition
(AER) task is presented in [17]. Experimental results have
shown improvements over the state-of-the-art.

Data augmentation in different CNN architectures was
studied in [18] for classifying soft biometric attributes. New
samples were generated using small random transformations,
such as rotation, cut, swirl, vertical rotation, horizontal
rotation, salt and pepper, and Gaussian noise.

Similar approaches to classify images were used by [5],
[19]. The authors have also shown the use of Generative
Adversarial Networks (GAN) [20] for the data augmentation
task.

Several works explored the use of data augmentation to
improve the generalization ability of classifiers, although
they seldom evaluate the individual effect of each transfor-
mation.

This work differs from previous works because it in-
vestigates the effect of data augmentation for pixel-level
classification of crops and weeds in a more detailed way. Our
experiments are designed to evaluate each transformation
individually, as well as combined. Moreover, we propose a
patch augmentation strategy that consists of breaking high-
resolution images into smaller pieces, which is unpreceden-
ted in crop and weed pixel-level classification research.

III. METHODS

A. Overview

Figure 1 presents a block diagram of the proposed method,
and the following Sections provide detailed explanations.
The process goes as follows: first, the raw dataset goes
through a preprocessing step, as described in Section III-B.
Then, the data is split in a 5-fold cross-validation procedure,
as described in Section III-C. The next step is to augment the
folds reserved for training using the augmentation strategies
presented in Section III-D. The modified U-Net architecture,
presented in Section III-E, receives the augmented data.
We implement the data augmentation in an on-line manner,
except for the patch augmentation strategy, implying that
each epoch of training receives previously unseen samples.
Once the model is trained, test samples are classified, and
evaluation metrics are computed, as shown in Section III-
F. The patch augmentation strategy requires one extra step,

which is generating patches of the test images. All patches
are treated as individual images.

B. Preprocessing
The first pre-processing step applied to the data is a [-

1,1] normalization in the pixel values. The second step is
to reduce the image resolutions since the original dataset
contains high-resolution images which are not practical to
work with due to hardware constraints. We consider the input
sizes of 96×96, 224×224 and 448×448 pixels.

C. Training and Data Splits
Training and test splits were generated using a 5-fold

cross-validation procedure. Data augmentation was applied
only to the training folds, while the test folds remained
unchanged. This strategy allows the analyzes of the generali-
zation capability of the model over a better sampling policy
than a simple hold-out procedure.

The patch augmentation strategy crops both training and
test folds. In this case, the evaluation considers all patches
generated by the algorithm. The number of images generated
for each fold after using data augmentation is shown in Table
I.

The training process proceeds until the accuracy stagnates
for ten consecutive epochs. The Adadelta optimizer was used
with an initial learning rate of 1 with a decay factor of 0.95.
Dropout layers have a drop rate of 10%.

TABLE I: Number of images on each subset of data after
the application of data augmentation techniques.

Subset CFWID Augmented Patch Augmented
Raw All 96×96 224×224 448×448

Training 48 1152 7392 1440 432
Test 12 12 1848 360 108
Total 60 1164 9420 1800 540

D. Dataset and Data Augmentation
This work uses the Crop/Weed Field Image dataset (CW-

FID) [7] that contains pixel-level annotations of carrot and
weed images. A total of 60 images with resolution of
1296× 966 pixels were captured under controlled lighting
conditions by an autonomous agricultural robot. Table II
presents examples of images with the spatial transformations
proposed in this work and their respective ground truth.

There are different DA strategies to improve the per-
formance of classifiers. This work was limited to spatial
transformations (horizontal flip, vertical flip, rotation, width
shift, height shift, shear, and zoom). In addition to these
transformations, we apply a patch augmentation strategy,
which leaded to interesting results in recent works in other
contexts [21], [22].

The patch augmentation strategy consists in applying a n×
n grid over the original image and its corresponding ground-
truth. The image is then divided into small pieces, which are
treated individually. A padding procedure was used to fill in
the borders of the original image with zeros to ensure equally
sized patches. Figure 2 illustrates the patch augmentation
strategy.



Fig. 1: Overview of the proposed method.

Fig. 2: Illustration of the patch augmentation strategy.

E. Modified U-Net Architecture

Pixel-Level Classification (PLC) is the problem of assig-
ning a label (class) to each pixel of a given image. PLC
requires a supervised learning approach, and, therefore, it
is needed a set of previously labeled data. PLC is also
known as semantic segmentation or pixel-wise segmentation.
Amongst the many methods for PLC, this work uses a CNN
architecture.

U-Net is a DL model proposed by [14] for an image seg-
mentation problem. Its architecture consists of an encoding
network and a decoding network. The encoding network
follows the typical architecture of a CNN, composed of
a series of convolutions, Rectified Linear Units (ReLU)
and max-pooling operations. Layers are stacked so that
each layer learns features of increasing levels of comple-
xity while simultaneously performing downsampling. On the
other hand, the decoding network progressively increases the
resolution of the learned features. The model concatenates
the high-level representations of the encoding network and
the upsampled outputs of the decoding network to combine
global information with localization accuracy.

In our implementation, the model was incremented with
a convolutional layer with a kernel size of 1× 1 to obtain
the desired number of outputs. The remaining convolutional
layers have a kernel size of 3 × 3. Each convolution is

followed by a ReLU activation function, except for the last
layer, which performs classification using a softmax function.
The rest of the model employs max-pooling and transposed
convolution operations with 2×2 kernels. The final network
output is a pixel-level mask that shows the class of each
pixel. For our PLC problem, there are three possible classes
for each pixel: soil, weed, or crop.

Besides the above-mentioned changes, other adjustments
to the architecture were done (see Figure 3). The first
adjustment was the input size of the network, since it needs
to match the input sizes used in this work. The second
adjustment was replacing all ReLU activation functions with
the Exponential Linear Unit (ELU). The ELU activation
functions tends to converge faster and provides more accurate
results [23]. Also, we optimize the model using the Adadelta
algorithm instead of the traditional Stochastic Gradient Des-
cent (SGD). Finally, as proposed by [24], dropout layers were
placed in between convolutional layers to reduce overfitting.

Fig. 3: Our version of the U-Net architecture. Figure adapted
from [14].



TABLE II: Examples of dataset images and transformations applied in data augmentation. The pixels in black, red and green
represent the soil, weeds and crops, respectively.

Transformation Description Policy
Examples

Raw Transformed image
Image Ground truth Image Ground truth

Horizontal flip Randomly invert images horizontally -

Vertical flip Randomly invert images vertically -

Rotation Random rotations in a given range of
degrees

0 to 90 degress

Width shift Shifts the image horizontally ran-
domly within a fraction boundary

1/10 maximum
fraction

Height shift Shifts the image vertically randomly
within a fraction boundary

1/10 maximum
fraction

Shear Shear in the image counter-clockwise
within a maximum degree limit

0 to 2 degrees

Zoom Randomly generated zooms within a
scale

-0.2 to 0.2 scale

All All randomly applied transformations Policies are pre-
served

Patch augmentation Divide the image into smaller parts Determined reso-
lution

F. Evaluation Metrics

The Dice Similarity Coefficient (DSC) [25] was used to
analyze the outcome of the experiments. It is a measure
of spatial overlap that ranges from 0 (no spatial matching
between two sets of pixels) to 1 (complete overlap). In the
literature, DSC has been used for several purposes, including
the comparison between segmentation methods. The average
DSC (Avg. DSC) is also computed between all classes to
provide a general analysis, ensuring that all classes have the
same weight. This is necessary because the dataset is heavily
unbalanced. Equation 1 presents the DSC for binary labels:

DSCi =
2T Pi

2T Pi +FPi +FNi
, (1)

where T Pi, FPi and FNi are number of true positives,
false positives, and false negatives for class i. Finally, we
multiplied all the metrics by 100 to convert them into
percentages.

The average DSC is the arithmetic mean of the DSC of
each class, as defined by:

Avg. DSC =
1
C

C

∑
i=1

DSCi, (2)

where C is the number of classes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments were run on a workstation with Intel
Core-i7 8700 processor, 32GBytes RAM, Nvidia Titan Xp
GPU, and the Ubuntu 18.04 LTS operating system. The
Keras1 framework with the TensorFlow backend were used
for the development of the DA transformations and the U-
net.

A. Experiments

The first set of experiments were designed to verify what
kind of DA could provide the best classification performance
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in the task of crop and weed pixel classification. Hence, the
complete workflow (shown in Section III) was conducted
using one kind of DA strategy at a time, including patch
augmentation.

Besides the evaluation of individual DA transformations
in the images, we also performed experiments combining
all types of DA (excluding patch augmentation). A baseline
result was generated using the raw dataset (without DA)
for comparison. We conduct this experiment with 96× 96
images.

The second set of experiments aim at analyzing how the
input image size affects the final classification performance.
We conduct the same experiments described above with two
additional input sizes: 224×224, and 448×448 pixels.

B. Results and Discussion

The experimental results of this work are summarized
in Table III. In this Table, rows compare the several DA
transformations against the baseline (no DA), whilst main
columns compare the image resolutions for all classes.

Regarding the individual impact of each type of DA,
we observed that the patch augmentation strategy provided
the best results in terms of Avg. DSC for images with
96×96 pixels, with an increase of 11.3% percentage points
when compared to the baseline (raw dataset). However, the
performance of patch augmentation falls off as the input
resolution increases, as seen for the 224×224 and 448×448
sets. Possibly the performance loss is due to decrease of
the number of patches, as the resolution increases (shown in
Table I). This suggests that patch augmentation works better
with small patch sizes. Another important point about patch
augmentation is that it preserves the original information,
since it is not affected by resizing algorithms.

Table III also shows that all DA transformations led to
increased performance over the baseline. Particularly, the
shear transformation was overall slightly worse than other
augmentation strategies, which presented similar results. The
combination of all spatial transformations achieved the best
result for 448× 448 pixels images, and a close second for
224×224 images. These results suggest that a combination
of many types of transformations may be valuable for image
segmentation tasks. This strategy reached 83.44% in the
Avg. DSC, the overall best result of all experiments. This
corresponds to an increase of 19.96% percentage points
relative to the model trained using only raw images.

Regarding the second experiment, Table III shows that as
the resolution increases, DA strategies become more effec-
tive, except for patch augmentation for the reason discussed
above. However, using raw dataset (no DA transformation),
in its turn, led to inverse results, i.e., performance decreases
as resolution increases. Generally, high dimensional data
require larger datasets to achieve good performance, which
may explain the reason for the performance loss.

Overall, it can be observed that the model easily discrimi-
nates between soil and other classes. In one hand, this is good
considering the semantic level of the image segmentation
problem in hand. On the other hand, this is expected, since

the soil color and texture are quite different than weeds
and crops. The real challenge, as seen in the Table, is to
discriminate between weeds and crops, which have very
similar visual attributes. Despite the difficulties, in the best
cases our model achieved 87.02% DSC in the weed class
and 66.31% in the crop class.

V. CONCLUSIONS

This paper investigated the impact of different data aug-
mentation techniques on the performance of pixel-level clas-
sification of crops and weeds. Three main points were inves-
tigated: (1) how individual data augmentation techniques and
their combination affect the classification performance; (2)
what is the impact of increasing the input image resolution;
and (3) what is the performance of the proposed patch
augmentation technique concerning other spatial transforma-
tions.

Regarding the first point, our experiments have shown
that all types of spatial transformations used in this work
boost the performance of the classifier, showing significant
gains over the baseline. Actually, the combination of all
transformations ultimately achieved the highest performance
in terms of Avg. DSC. This result suggests that introducing
variability, as opposed to solely increasing the volume of
data using single transformations, is an important factor for
the difficult task of crop and weed classification.

The second point was to investigate the impact of the
image resolution. Results suggest that, on one hand, a higher
resolution input is beneficial in cases where the number of
images increases. For instance, experiments that considerably
increased the number of images on the dataset using spatial
transformations have shown a performance gain in higher
resolution settings. On the other hand, increasing the input
resolution was not beneficial in cases where the number of
images decreased or remained constant. The patch augmenta-
tion and the raw dataset baseline suffered performance losses
as the input resolution increased. The curse of dimensionality
may be the explanation for this result since experience
indicates that datasets of high-resolution images generally
require a large volume of training data.

The third point concerns the patch augmentation technique
proposed in this work. The results showed that this technique
works particularly well with small patch sizes since it con-
siderably increases the volume of data. This increase is not
only due to the total number of images generated but, also,
because the number of pixels in the dataset remains the same,
i.e. the information is preserved. Other data augmentation
transformations lose information since they suffer resizing
operations. Finally, we conclude that the patch augmentation
strategy can be a valuable approach when images are scarce
and have high resolution.

Future works will investigate new data augmentation tech-
niques and ways to combine patch augmentation with other
types of transformations, as well as the use of smaller patch
sizes and strides. It is ultimately expected to create a large
volume of high diversity images from small-sized samples,



TABLE III: PLC performance using the U-NET network with different DA transformations and images with different
resolutions: 96×96, 224×224 and 448×448.

Data Augmentation
Image Resolution 96×96 Image Resolution 224×224 Image Resolution 448×448

Avg.[%] DSC[%] Avg.[%] DSC[%] Avg.[%] DSC[%]
Soil Weeds Crops Soil Weeds Crops Soil Weeds Crops

Raw dataset (no DA) 71.08 99.14 76.56 37.54 65.89 99.04 76.04 22.59 63.48 98.84 74.95 16.65
Flip vertical and horizontal 80.09 99.30 83.21 57.77 83.23 99.25 84.58 65.86 81.33 99.29 83.23 61.47
Rotation max 90 degrees 81.40 99.36 83.92 60.91 82.70 99.31 84.75 64.03 83.40 99.32 85.15 65.74

Shift height and width 78.17 99.28 81.73 53.51 79.37 99.24 82.57 56.30 81.57 99.27 83.06 62.38
Shear 76.29 99.23 79.56 50.09 80.53 99.23 82.75 59.60 80.70 99.26 82.88 59.94
Zoom 78.01 99.27 81.85 52.90 80.17 99.27 82.34 58.90 81.15 99.32 83.45 60.70

All spatial transformations 79.82 99.33 83.89 56.23 83.17 99.37 85.36 64.80 83.44 99.33 84.69 66.31
Patch augmentation 82.38 99.60 87.02 60.53 82.25 99.59 86.42 60.75 74.39 99.61 81.22 42.34

and so improve the quality of results and generality of the
method for difficult segmentation tasks.
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