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Abstract—This work presents the analysis of machine learning
methods for fault (short-circuit) classification in electrical distri-
bution networks using data from PMUs (Phasor Measurement
Units) installed along the network. The Alternative Transient
Program (ATP) was used to simulate 26,928 different instances
distributed into 33 types of faults – single and multi-phase,
including or not the ground and different wire breakages –
and one normal condition of the system. The IEEE 123-bus
distribution system was used as the test system. We compared five
machine learning methods for classification: Linear Discriminant
Analysis (LDA), k-Nearest Neighbors (kNN), Support Vector
Machines (SVM), Artificial Neural Networks (ANN), and Decision
Trees (DTs). The best result was achieved by the SVM with
Gaussian kernel and ANN. The input data (feature extraction)
was also varied, testing data from one or several PMUs, ABC se-
quence phasors and symmetrical sequence phasors. We obtained
slightly better results for symmetrical components and multiple
PMUs in the network. Finally, classes of the same short-circuit
with different wire breakages were grouped, raising the overall
classification accuracy. Overall conclusion is that the proposed
approach is feasible for fault classification using PMU-data in a
distribution network.

Keywords—Distribution Systems, Fault Classification, Machine
Learning, Phasors, PMU.

I. INTRODUCTION

The synchronized phasor measurement technology has
opened a new paradigm in the observability of electrical
systems, allowing to trace in real-time the dynamics of the
system through synchronized data with high precision and
resolution [1]. The synchronization of the measurements is
obtained through Global Positioning System (GPS). Thus,
Phasor Measurement Units (PMUs) extract measurements of
synchronous phasors (synchrophasors) and frequency of si-
nusoidal signals at different points along an electric power
system. Then, the information is sent out to a Phasor Data
Center (PDC), as shown in Fig. 1.

Conventional synchronized phasor measurement systems are
based on PMUs that extract measurements of potential and
current transformers at power substations. Because they are
based on measurements at substations, they are unable to
record local dynamics along the distribution system [2]. On
the other hand, previous works suggest several applications
for synchrophasorial measurement at distribution level [3], [4],
[5]. Due to the observability that the PMU can provide and
the large amount of information generated, the synchrophasor
technology has been largely applied with machine learning-
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Figure 1. Representation of a Synchronized Phasor Measurement System.

based approaches to detect, classify, and locate events [6], [7],
[8].

Several common events of a distribution system can be
observed by PMUs, such as the load and equipment switching-
transients, as well as short-circuits (faults) [9]. These two
group of events are the major interest, since they usually result
in blackouts and high costs for power utilities. In this sense,
several works have been conducted, mainly motivated by the
expansion of the system and the growth of smart grids [10],
[11].

In [12], for instance, a PMU data-driven framework was pro-
posed to distinguish a malfunctioned capacitor bank switching
and a malfunctioned regulator on-load tap changer switching
from two normal operating events, using the IEEE 123-bus. For
different noise levels and number of PMUs, the authors showed
the feasibility of using PMU data to satisfactory classify those
events.

A similar data-driven approach was proposed in [13]. Au-
thors classified power quality events using real-data collected
during 15 days from two micro-PMUs installed on a real distri-
bution feeder. The power quality events include the detection of
internal phase imbalance in a 900 kVAR capacitor bank as well
as a potential malfunction in its Volt/VAR controller. On the
other hand, [14] presented the application of a micro-phasor
measurement unit for power distribution network monitoring.
Particularly, the authors discuss the detection of abnormal
events, that is, transients in voltage and current waveforms that
may be caused by faults, topology changes, load behavior, and
source dynamics, without however, discriminate among types
of faults.

However, in the particular case of faults along the dis-
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tribution system, a detailed analysis of different types of
faults, taking into account different types of wire breakage,
is still underexplored in the literature, especially using PMU-
data. Therefore, this work aims at applying machine learning
methods for fault classification in electric power distribution
networks, using data from different PMUs installed along
the system. To do that, the IEEE 123-bus modeled in the
ATP was used. We compared different classification methods
(kNN, LDA, SVM, ANN, and DT), different PMU locations,
and different feature extraction procedures. Additionally, 33
types of faults were considered and 3 types of wire breakage
(load, source and normal) are simulated, resulting in a detailed
analysis of fault situations in power distribution systems.

This paper is structured as follows. In Section II, the
proposed method is detailed, including the simulated system
and cases, feature extraction, and classification procedure. Sec-
tion III discusses the experimental setup and results obtained.
Finally, conclusions are drawn and future work is outlined in
Section IV.

II. PROPOSED METHOD

The study was performed in a simulation environment,
where the distribution network was simulated in the Alternative
Transient Program (ATP). The ATP output data corresponds
to voltage and current waveforms (oscillographs), which were
imported into the MATLAB software for processing and
application of classification methods. In MATLAB, a phasor
estimation algorithm based on the Discrete Fourier Transform
performs the PMU function, providing phasors according
to the IEEE C7.118.1-2011 standard [15]. In the following
subsections, each stage of the proposed method is presented
(summarized in Fig. 2).
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Figure 2. Overview of the proposed method.

A. Simulation of the Distribution System
The simulated system corresponds to a publicly available

IEEE 123-bus feeder created by the IEEE Power and Energy
Society for test purposes [16]. This system operates at a
nominal voltage of 4.16 kV and it is characterized by overhead
and underground lines; unbalanced loads with constant current,
impedance and power; voltage regulators; capacitor banks; and
multiple switches. A physical representation of this circuit
is shown in Fig. 3, along with the fault locations and the
selected PMU monitoring points. A total of 8 fault locations
were distributed along the main branches of the circuit. The
PMUs were located at the points where there are normally
closed switches, which are considered strategic points from
the operation point of view, as suggested in [12].
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Figure 3. IEEE 123-bus test system.

In this study, some simplifications were considered in the
original IEEE system, such as:
• Mutual inductances were excluded;
• Voltage regulators were removed;
• The connection of the loads was considered of Y-type;
• All loads were simplified to constant impedance.
Such simplifications do not have impact on the type of

analysis proposed in this work – particularly for PMU data,
as discussed in [17]. For simulation purposes, voltage and
current waveforms of normally closed switches are exported
and processed in MATLAB using the following procedure:
• Insertion of Additive White Gaussian Noise (AWGN)

with 40 dB;
• Decimation procedure, reducing from 20,000 points to

500 points per cycle (simulating sampling);
• Saturation of the signal, simulating the full-scale of the

analog-to-digital converter;
• Estimation of the phasors by applying the Discrete

Fourier Transform.
The phasor estimation complies with the IEEE C37.118.1

standard format. This means that one phasor is calculated for
each signal cycle in the fundamental frequency component,
that is, 60 phasors per second. Thus, two databases were
generated, one containing 98 GB of oscillographs and the other
containing 630 MB of phasors registers. More details of the
data are described in the next subsection, whilst the simulated
cases are described later.

B. Feature Extraction
Since electromagnetic transients present short duration in

time (less than one cycle), the characteristic transient signature
is not recorded by PMU data. Therefore, we decided to extend
the observation analysis including one cycle before and one
cycle after the transient event, as shown in Fig. 4.

Thus, two sets of attributes were created. The first set was
obtained by the difference between the pre and post-transient
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Figure 4. Waveform of the phasor data.

values, for each parameter (magnitude and angle) and each
phase (A, B and C). The second set was composed of the
difference of the parameters between each phase in the post-
transient moment. That is, an analysis of the system imbalance
during the fault. These sets result 12 attributes, 6 attributes per
signal (voltage and current).

Additionally, the symmetrical components for the phasor set
of sequence ABC were calculated, generating a new group
of phasor registers. Using the zero, positive, and negative
sequence components (sequence 012) for phase A (reference
phase), the same feature extraction procedure was applied,
that is, system state variation and unbalance between phasors
during the fault. With that, the number of features resulted in
24 attributes per PMU. Finally, the four groups of data were
organized as follows:

1) PMU-1 (subestation), data from sequence ABC (24
features);

2) All PMUs, data from sequence ABC (120 features);
3) PMU-1 (subestation), data from sequence 012 (24 fea-

tures);
4) All PMUs, data from sequence 012 (120 features);
Therefore, we decided to present a comparison between the

data from one PMU, located at the feeder output (substation),
and additional PMUs installed along the power grid. Addi-
tionally, we compare ABC sequence data and symmetrical
sequence (012).

C. Simulated Cases
This work considers conventional types of single-phase,

two-phase and three-phase faults, with short-circuits including
individual phases and ground. A distinction was also done for
phases (A, B or C) in each fault condition. Three-phase and
three-phase-to-ground faults are separated into two classes. In
addition, fault types can be combined with the cable break

condition, which may be determinant for power flow direction
when the line is in fault conditions. In this sense, there are
three possibilities, summarized in Fig. 5. Notice that, due to
three-phase transformer connections, the load condition can
also be observed in distribution systems.

N (normal)S (source) L (load)

i ii i

Figure 5. Representing diagram w.r.t. cable break condition.

Simulations were performed with various conditions of the
distribution system, according to the combination presented in
Table I. The first situation is the load profile, represented as
a percentage of typical values, where 100% corresponds to
3.5 MW and 1.9 MVAr. The second situation corresponds to
the fault impedance, expressed in Ohms. The third is the fault
location, referenced by the line (inter-node) of the circuit in
Fig. 3. The fourth situation refers to the direction of the power
flow at the fault instant. Finally, the last situation corresponds
to the fault type. The letters indicate the phases (A, B and C)
and the ground (G). Thus, a single-phase-ground fault in phase
A, for instance, is represented by ’AG’. A two-phase fault, in
phases B and C, is represented by ’BC’, and a three-phase-to-
ground fault is represented by ’ABCG’.

Table I. SIMULATED CASES AND CORRESPONDING PARAMETERS.

Simulation
Load

Condition (%)

Fault
Resistance

(Ohm)

Fault
Location

(line)

Power
Flow

direction

Fault
Type

10 1 1-7 N (normal) AG
20 5 21-23 S (source) BG
30 10 47-49 L (load) CG
40 20 52-53 – AB
50 30 160-67 – BC

Conditions 60 40 87-89 – – CA
70 50 100-450 – ABG
80 100 105-108 – BCG
90 200 – – CAG
100 – – – ABC
110 – – – ABCG

Quantity 11 9 8 3 11

The combination of test conditions resulted in 26,928 cases,
including an additional class defined as normal (without any
fault). The classes were categorized by the combination of fault
types with the power flow direction and the normal operating
class of the system, totaling 34 classes.

D. Machine Learning Classifiers
For the evaluation of the four test groups, different classifi-

cation methods were used, detailed as follows:
• K-Nearest-Neighbors: in this approach, the feature vec-

tor classification is performed according to the previous
classified feature vectors, associating it to the one which
presents the most similar characteristics (the closest in
terms of the Euclidean distance) [18]. Since the classifi-
cation is simply based on distances related to a training
set, this method may be considered one of the simplest
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machine learning algorithms, easily implemented. The
main disadvantage is that it requires the storage of all
the training data, which may cause problems to embed
such classifier.

• Decision Trees: possibly, DTs are the most common
method used for fault classification found in the liter-
ature [18]. In a (binary) DT, different binary classifica-
tions are performed, considering different input features.
These classifications are concatenated in a tree structure,
in which each node concerns the test of a variable
according to its possible range of values. In the end,
a combination of different evaluations is performed in
order to obtain the final class label.

• Support Vector Machines: they were originally devel-
oped to solve classification problems using the concept
of an optimum separation hyperplane, which maximizes
the separation margin ρ between classes. The motivation
for maximizing ρ is based on a complexity measure-
ment known as the Vapnik-Chervonenkis (VC) dimen-
sion [19], whose upper limit is inversely proportional to
ρ. Additionally, it is possible to include a nonlinear input
mapping, by replacing the dot product in the original
formulation by the kernel product in feature space. There
are several types of kernel, which must abide to the
conditions of Mercer’s theorem – in this work, we use
the Gaussian kernel.

• Artificial Neural Network: consists of a parallel dis-
tributed signal processor, made up of simple processing
units (neurons), capable of storing knowledge (in the
synaptic weights) using a learning algorithm, making
their knowledge available for future use. In this work,
we used the Multi-Layer Perceptron (MLP) network,
which is a feedforward architecture, with just a single
hidden layer, an input layer and the output layer that
corresponds to the assigned class (label). The learning
process is based on the backpropagation algorithm,
which basically consists of a method that estimates the
gradient of the training error cost function along the
layers of the network. Finally, a gradient descent-based
method is used to optimize and estimate the parameters –
synaptic weights.

• Linear Discriminant Analysis: this method reduces high-
dimensional data to a lower dimensional space, max-
imizing the separation between classes. This is done
in order to reduce its complexity and the required
computational effort, as well as to avoid the possibility
of overfitting.

The algorithms were implemented in MATLAB, using the
classifiers provided by the software through the Statistics and
Machine Learning Toolbox.

III. RESULTS AND DISCUSSION

The accuracy of the methods was calculated as the average
of the test sets using a 5-fold cross-validation procedure. The
results are presented in Table II. In the case of ANNs, the
second column represents the number of neurons of the hidden
layer, or more than one layer separated by hyphen.

Table II. ACCURACY CONSIDERING DIFFERENT METHODS AND TEST
GROUPS.

Measurement PMU-1 All PMUs
Num. of Feats 24 24 120 120

Classifier Type Seq. ABC Seq. 012 Seq. ABC Seq. 012
LDA - 0.28 0.26 0.35 0.36

k-NN Eucl.
Dist. 0.31 0.36 0.34 0.40

DT All
comb. 0.38 0.37 0.38 0.42

SVM Gauss.
Kernel 0.46 0.52 0.43 0.55

RNA 35 0.37 0.36 0.41 0.37
RNA 70 0.40 0.37 0.44 0.44
RNA 105 0.39 0.38 0.45 0.45
RNA 140 0.39 0.39 0.45 0.45
RNA 35-35 0.44 0.45 0.46 0.44
RNA 35-35-35 0.47 0.45 0.45 0.46
RNA 70-70 0.45 0.50 0.45 0.54
RNA 70-70-70 0.50 0.54 0.52 0.50

The best classifiers were: the ANNs with more than one
hidden layer and 70 neurons, and the SVM with Gaussian
kernel. It is worth noting that the apparently low accuracy
is justified by the presence of 34 classes. Neural networks
with only one hidden layer did not perform well even with an
increased number of neurons in the hidden layer. Additionally,
simpler methods such as DTs and kNN presented comparable
performance.

Concerning the test groups, it can be observed that the use of
more PMUs improves the overall classification performance.
However, the precision gain is still low when compared to
the increased complexity of the classifier, which has 4x more
attributes. In this case, there is, probably, a redundancy in the
information used that may even impair the performance when
used in excess. One solution to this problem would be the use
algorithms for optimal allocation of PMUs in the network in
order to maximize the performance of the classifier.

The group of attributes based on symmetrical components
was slightly better than the group of ABC components. In the
worst case, the accuracy was similar, while in the best results
the accuracy was significantly higher.

Analyzing the classes, it is possible to identify that the SVM
classifier, despite presenting an equivalent global accuracy of
the multilayer neural network, had accumulated errors in class
AG, confusing it with all classes. Therefore, a result was
selected with the RNA 70-70 classifier to present the confusion
matrix in Fig. 6. A color scale was used to facilitate the
analysis, where the highest values are in red, mean values in
yellow and lowest values (0) in green. The class X at the
end of the confusion matrix represents the normal operating
class of the system. On the right side there is a column with
the accuracy for each class, with the color scale of the worst
result in red and best result in green.

An analysis of the matrix leads to the following conclusions:
• A hit tendency for each class, observed by the quantities

of the main diagonal;
• Observing the diagonals of groups N, S and L, there is a

tendency to obtain the correct classification for the types
of fault (AG, AB, etc.) with some confusion between
these groups, especially between N and S;
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Figure 6. Confusion matrix with the accuracy for each fault class.

• The group with the smallest error among fault types is
N, with average performance for S, and the worst for L;

• In addition to the internal error (fault types) of the L
group, there is a great deal of confusion with class X,
the normal operating class of the system;

• Confusion between three-phase (ABC) and three-phase
earth fault (ABCG), as expected;

• Overall performance is negatively affected mainly by the
confusion between groups N and S, and between group
L and class X.

Taking into account that the simulated system is radial, with
no distributed generation and Y-grounded loads, the power
flow is unidirectional, from the substation to the load, even in
fault conditions. Therefore, the L group is best characterized
as line loss (or load loss), where there is no fault current.
Under this same analysis, the confusion between groups N
and S is justified, because the direction of the power flow is
the same for both cases. The difference between the two is that
in relation to the S group, there is a loss of line simultaneously
with the fault.

The confusion between group L and class X occurs mainly
by two aspects. First, remote faults turn off a small amount of
loads from the system, causing insensitive variations. Second,
with the network operating at low load (for example, 10%), the
loss of a portion of the system also generates less noticeable
variations.

With the analysis described so far and comparing the per-
formance and complexity of the classifiers, it is convenient to
make some groupings between the classes:

• New class ’Faults’, grouping the classes S and N;

• New class ’Line Loss’, grouping the types of faults of
the group L;

• New class ’ABC’ grouping both types of three-phase
faults.

Thus, the new confusion matrix is shown in Figure 7. In
this case, there is an accuracy improvement from 55% to 73%,
now with 19 classes. The performance of the individual groups
was 100% for the normal operating class, 92% for the fault
group, and 51% for line loss. Therefore, the latter is mainly
responsible for the error rate. It is important to highlight that
this grouping was performed based on the previous result, that
is, it was not necessary a new training and validation process.

It is important to point out that extreme cases were simu-
lated, especially those with high impedance, such as 50, 100
and 200 Ohms. These cases are difficult to detect due to the
small variation of the resulting current, being likely the factor
of greatest responsibility for the misclassification of the fault
group.

IV. CONCLUSIONS AND FUTURE WORK

This work presented a machine learning-based method to
classify faults in distribution systems. The IEEE 123-bus
distribution system was simulated in the ATP software in order
to generate approximately 27,000 cases considering different
load conditions, fault impedances, fault locations, and fault
types. The waveforms generated in the ATP software were
imported into the MATLAB software, where noise insertion,
decimation and saturation processes were applied, generating
an oscillographic and a phasor dataset. From the phasor data,
different classifiers were applied to discriminate among faults,
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Figure 7. New confusion matrix with the new groupings, resulting in 19 classes.

such as: DT, LDA, kNN, SVM, and ANN. The methods were
evaluated for four different data groups: with 1 and 5 PMUs,
with normal sequence, and symmetrical components.

In general, the symmetrical components were more effective
in classification, compared to ABC components. The use of
PMUs along the network has improved overall results, but a
high increase in complexity versus gain in terms of accuracy.
Among the classifiers, simple methods such as kNN and
DTs had competitive performance w.r.t. RNAss with a single
hidden layer. On the other hand, RNAs with more than one
layer and SVM with Gaussian kernel presented the highest
accuracy rates. In this case, performance was above 50% with
34 classes and 70% with groupings (19 classes), where the
main misclassification factor was related to high impedance
faults.

Future work includes expanding simulated events, expand-
ing the distribution network, including distributed generation,
and optimizing feature extraction and PMU location, in order
to maximize the classification performance.
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