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Abstract—Automatic video surveillance systems are a recurrent
topic in recent video analysis research. Anomaly detection is
an interesting way for tackling this problem, because video
analysis is tedious and exhaustive for humans. Depending on the
application field, anomalies can present different characteristics
and challenges for pattern representation, requiring the design
of hand-crafted features (such as spatial and temporal informa-
tion). Deep learning methods have achieved the state-of-the-art
performance for many recognition problems in recent years and
may be an interesting choice for learning features automatically,
since it captures the 2D structure in image sequences during the
learning process. The deep Convolutional Autoencoder (CAE)
may be an interesting approach for anomaly detection since they
can learn signatures automatically in an unsupervised way. This
work purposes the use of a deep CAE in the anomaly detection
context for learning spatio-temporal signatures from raw video
frames. Similar our previous work, we use as anomaly score a
successful strategy based on the reconstruction error of a package
of frames. The proposed methods were evaluated by means of
several experiments with public-domain datasets. The promising
results support further research in this area.

Keywords—Anomaly detection; One-class classification prob-
lems; Convolutional autoencoders; Deep learning methods

I. INTRODUCTION

The task of video analysis is tedious and exhaustive for
humans, and this process can be worsened by the inherent
human limitations, such as distraction and tiredness. Despite
human abilities to analyze and classify images and videos,
those limitations may lead human observers to fail at de-
tecting important unexpected events (i.e. anomalies). Hence,
this problem has pushed the development of automatic video
surveillance systems, since the necessary human endeavor for
effectively performing the observation task is too hard.

Nowadays, automatic video surveillance is a topic of great
importance that has been intensely studied in the recent
literature [1], and automatically detecting anomalies in videos
has been a subject of great interest for both academic and
industry areas [2]. Indeed, detecting objects from previously
unknown classes is an issue treated in different pattern recog-
nition problems, especially because new classes, anomalous
behaviors and concept drifts can frequently occur in real-
world applications [3]. Notice that, in this work, we consider

anomaly detection, novelty detection and One-Class Classifi-
cation (OCC) as synonyms, since there is still no universally
accepted definition for each these terms [4] and they are often
treated as similar. In this text, we will use preferably the term
“anomaly detection”.

The anomaly detection problem has been tackled through
different strategies throughout the years. Recently, several
approaches have focused on pattern representation. The most
common pattern representation methods are based on hand-
crafted features, such as those based on optical flow, his-
togram methods, or their combination. On the other hand,
Deep Learning (DL) methods, such as Convolutional Neural
Networks (CNN) and Convolutional Autoencoder (CAE), have
been also studied for feature learning. CNN is a supervised
approach considered as the state-of-the-art for image and video
classification problems [5], [6]. A CAE is an unsupervised
approach based on Autoencoders (AEs) capable of capturing
the 2D structure of image and video sequences [7]. Since
training CAE does not require label information of input data,
it can be useful to model anomaly detection problems.

DL approaches are useful for learning relevant signatures
(features) capable of representing patterns to aid at retrieving
information within large-volume of video data [8]. For this
reason, it can be an alternative approach to tackle video
anomaly detection problems [4].

In fact, the use of CAEs for feature learning in video is
still under-explored in the recent literature (see, for instance,
[9] and [10]). In these works, AEs are, in general, used
for mixing hand-crafted features (extracted from frames or
patches), and a classifier is used to discriminate anomalies.
In our previous work [10] we proposed the use of a CAE
for combining appearance and motion features extracted from
video frames using the Canny edge detector and optical flow,
respectively. The reconstruction error of the CAE was used as
the classification score.

This method was successful and, in the current work, we
propose a step further: an approach based on using packages
of raw frames organized in time-slices instead of only appear-
ance and motion features extracted from video frames. Hence,
we aim at using a CAE to learn spatio-temporal signatures



(features) from raw frames instead of using hand-crafted
features that may not provide enough information for detecting
anomalies. Notice that, compared to our previous work, we
maintain our strategy based on using reconstruction errors to
classify anomalies in videos. The working hypothesis is that a
CAE is capable of learning relevant spatio-temporal signatures
from normal events in videos, and that the reconstruction error
of a package with video frames can be used for providing an
anomaly score that can be used to discriminate normal from
abnormal events in videos.

Accordingly, the problem addressed in this work consists in
modelling a normal concept that can be used for discriminating
spatio-temporal anomalies based on a set of videos containing
events considered normal.

The remaining of this work is organized as follows. Sec-
tion II presents the theoretical background and some related
work. Section III describes the proposed method. Section IV
presents the computational experiments, their results and a
brief discussion. Finally, Section V presents the conclusions
drawn from the development of this work, and future research
directions are pointed out.

II. THEORETICAL BACKGROUND AND RELATED WORK

A. Anomaly Detection

In the literature, anomaly detection has been proposed for
a variety of reasons, including, for instance, detection of
malicious activities (frauds [11], for instance), in bioinfor-
matics [12] and weather forecast (catastrophe detection) [13].
Regarding the area of visual surveillance in videos, anomaly
detection has attracted research due to the growing concern
with safety in both public and private places [10], [9].

OCC is an important concept to approach problems of
automatic video surveillance in crowded scenes, that is, envi-
ronments with a large amount of objects and people moving.
In general, an OCC (or novelty detector) can be defined as
a classifier based on previously known patterns, which are
arranged as one (or a set of) normal concept, allowing the
identification of patterns that were not present in the original
training dataset, normally defined as novelties [14]. Usually,
to tacke the anomaly detection problem as an OCC problem,
the normal class should be human-defined and it contains a
large number of examples. On the other hand, the “abnormal”
class comprises samples that are quite different of the normal
samples or that are rarely present in the normal class.

Figure 1 presents an example of abnormal events in a
hypothetical two-dimensional dataset. In this example, the data
has two normal regions, N1 and N2, in which most the samples
are present. Other samples that are distant from these regions,
such as the objects o1,o2, and o3, are considered anomalies.

There are three main approaches to use OCC for anomaly
detection [14]:

1) Density methods: comprise models that estimate the
probability density function of the input patterns;

2) Reconstruction methods: they use clustering to find out
if a given input pattern is an anomaly or not, based on the

Fig. 1. Example of anomalies in a bi-dimensional didactic dataset.

distance from the unknown input to clusters previously
defined in the training process;

3) Boundary methods: comprise methods that impose
boundaries upon the training dataset, assuming an un-
known distribution.

B. Pattern Representation

A key issue for anomaly detection methods is how a pattern
is represented. Its choice is crucial and it may significantly af-
fect the classification performance. The acquisition of relevant
features from the raw data (i.e. images or videos) is important
to enable a good classification performance for different types
of anomalies. In an attempt to classify pattern representation
approaches, Hu et al. [15] suggested that the methods for
representing patterns can be grouped into four main cate-
gories: trajectory-based, spatio-temporal-interest-point-based,
foreground-blob-based and volume-based. However, methods
that can be grouped into one or more categories are frequently
observed in the literature and, usually, they have in common
the use of hand-crafted features.

Therefore, in the work [16], the author have organised
the pattern representation methods for anomaly detection
into three groups: statistical-based, spatial-temporal-based and
those based on DL. For statistical-based approaches (i.e.
methods based on statistical models postulated over the nor-
mal context, where the abnormal events are classified based
on probabilities), there are, for instance: Gaussian mixture
model [17] and hidden Markov model [18]. For pattern repre-
sentation based on spatio-temporal, there are techniques such
as histogram of oriented gradients [19], histogram of optical
flow [20], textures of optical flow [21], tracking-based [22],
and spatio-temporal texture [23]. In general, such features are
based on standard computer vision methods and other variants,
and spatial-temporal-based methods are the most common
approach for pattern representation.

This work focus on pattern representation based on DL
methods. DL are specially suited for learning data represen-



tations. They comprise both linear and non-linear transfor-
mations aiming at producing abstract, but useful representa-
tions [24]. DL algorithms are based on distributed representa-
tions and the idea is that the final information is generated from
exhaustive iterations considering many units. By combining
different layer compositions, it is possible to obtain different
levels of abstraction [24].

DL methods have been intensively used for computer vi-
sion problems and, in special, for visual recognition tasks.
Several related work can be found in recent years, and they
are categorized according to the basic method used, that is:
CNN [6], AE [25], and restricted Boltzmann machines [26].
As mentioned before, in the context of anomaly detection, DL
methods are still in early stages of development.

C. Feature Learning with DL Methods

Focusing on the feature learning, recently, DL methods have
achieved the state-of-the-art performance for computer vision
problems [6]. A possible reason for such a high performance
is that they can learn the feature extractor and the classifier
simultaneously. Such characteristic can improve the inter-class
separation, since both, classifier and feature extractor, are
optimized to increase the overall accuracy. Thus, if there is
a large amount of samples available for training, DL methods
are capable of achieving superior discriminatory power for
image representation when compared to hand-crafted image
descriptor-based methods [27].

However, CNNs are suited for supervised classification
problems and they are not directly applicable to deal with
anomaly detection tasks, where only the normal class is pre-
viously known. To overcome this issue, AEs are an alternative
for feature learning in OCC problems, since it can be trained
using only the known class. Moreover, both the Reconstruction
Error (RE) and the bottleneck (latent representation), can be
used to provide classification scores. The AE model was
proposed by Bourlard and Kamp [28] and, later, popularised
by Vicent et al. [29] and by Krizhevsky et al. [30]. AEs
were initially used in the image retrieval context but, very
recently, their application for video anomaly detection has
gained strength [16], [9].

The AE, that has been studied for decades (see [25], [9]), is
a fully connected one-hidden-layer neural network devised to
learn from unlabeled data. The idea is that the AE is trained to
reconstruct the input pattern at the output of the network. In-
ternally, an AE has a hidden layer h that compresses the input
data to represent it in a latent representation space. The latent
representation aims at exploiting closeness of input patterns,
where a large number of inputs can be aggregated in a model
to represent an underlying concept. Latent representation is
useful to reduce the dimensionality and making it easier to
understand the data [31].

However, AEs are not capable of capturing the 2D structure
in image and video sequences, because the input data is a
1D vector. Such characteristic results in redundancy in the
parameters of the network and removes the local information
that can be extracted from the images, which is particularly

relevant in the anomaly detection context, as anomalies are
locally positioned in the scene. To cope with this issue, the
CAE architecture was proposed by Masci et al. [7]. CAEs are
similar to the ordinary AE, but the difference between them
is the fact that in the CAE the weights are shared among all
locations in the input, preserving the spatial locality, similar
to a CNN [30]. The CAE is optimized using the cost function
presented in Equation 1:

e(x,y,Θ,W) =
1

2N

∑
i

‖f (xi,Θ)− yi‖22 + λ ‖W‖22 , (1)

where λ is the regularization parameter for the term ‖W‖22,
normally used during the training procedure of the CAE. CAE
architecture contains convolutional and pooling layers, and it
adds deconvolutional and unpooling layers for the decoding
part of the architecture.

The convolutional layer abstracts the information of a filter
into a scalar value parameterising the number of maps, the
size of the maps and kernels’ size. It connects multiple input
activations within the fixed receptive field of a filter to a single
activation output in the feature map. For the input x, the hidden
layer mapping (latent representation) of the k−th feature map
is given by Equation 2:

hk = σ (x ∗Wk + bk) , (2)

where a single bias b is used for the whole map, σ is an
activation function (for instance, the hyperbolic tangent), and
the ∗ symbol corresponds to the 2D-convolution. Since one
bias per pixel would take too many degrees of freedom and
it is desired that each filter becomes specialized on features
of the entire input, a single bias per latent map is used. The
reconstruction is obtained using Equation 3:

y = σ

(∑
k∈H

hk ∗ W̃k + c

)
, (3)

where c is a single bias per input channel, and H identifies
the group of latent feature maps. W̃ corresponds to the flip
operation over both dimensions of the weights W. In practice,
the flip operation organizes the weights W in reverse order.
The 2D convolution can be a full convolution or a valid con-
volution. In the first case, the convolutional of a m×n matrix
with a x×n matrix will result in a (m+n−1)× (m+n−1)
matrix, whilst in valid convolution, the resulting matrix will
be (m− n+ 1)× (m− n+ 1).

The deconvolutional layer performs an inverse operation of
the convolution layer with deconvolutions. The filters learned
in the deconvolutional layers serve as the base to reconstruct
the shape of the input, taking into account the required reshape
of the output [9]. Convolutional and deconvolutional layers can
be stacked to build deep architectures for CAEs. Figure 2 (top)
shows an example of a CAE composed of convolutional and
pooling layers in the left side (encoder), and deconvolutional
and unpooling layers in the right side (decoder).

Pooling layers were originally intended for fully-supervised
feed-forward architectures and it down-samples the latent



representation by a constant factor. The idea of the pooling
layer is to obtain translation-invariant representations, allowing
more complex representations, when combined with convolu-
tional layers. On the other hand, unpooling layers perform the
reverse operation of pooling and it reconstructs the original
size of each rectangular sub-region. Figure 2 (bottom) shows
examples of pooling and unpooling layers.

Fig. 2. Example of convolutional, pooling, deconvolutional and unpooling
layers. (top) shows an example of a CAE composed of convolutional and
pooling layers (encoder side), whilst in the decoder side there are deconvo-
lutional and unpooling layers. (bottom) shows examples of both pooling and
unpooling layers.

Finally, the backpropagation algorithm, introduced in [32],
is used for training a CAE. Backpropagation is based on a
chain rule for computing the derivatives. The idea behind the
chain rule is to allow the information of the cost function to
flow backwards through the network in order to compute the
gradient and ultimately update its weights.

III. PROPOSED METHOD

In this work, the use of deep CAE for feature learning is
used to allow the identification of different types of anomalies.
Differently from traditional methods, the feature learning is
integrated to the classification process using a CAE. In order
to circumvent the limitation of hand-crafted descriptors used
in previous works [10], [33], which normally requires that
some a priori knowledge is incorporated, an approach for
automatically learning spatio-temporal signatures (features) is
proposed.

For this purpose, raw frames are used as input to the CAE
(in time-slices) in order to investigate whether the CAE is ca-
pable of automatically learning signatures in videos using only
raw input frames. Next, the CAE’s Reconstruction Error (RE)
is proposed as the “anomaly” score in order to discriminate
between normal and abnormal events in a video.

The objective is to obtain a model capable of learning, by
itself, spatio-temporal signatures, instead of using hand-crafted
feature extractors. The working hypothesis is that the CAE
can learn changes among video frames, allowing to capture
relevant spatio-temporal signatures. Therefore, low REs is
expected for known patterns, whilst high REs are expected

for anomalies. Then, the spatio-temporal features learned by
a trained CAE may be used to classify anomalies.

The proposed method for learning spatio-temporal features
has four main steps. First, a data preparation step is performed.
Input data is organised in cuboids for the training step. Cuboids
are 3D-dimensional structures where frames representing the
spatial dimension are packaged sequentially, thus joining the
temporal with the spatial dimensions. A CAE is then trained
with examples of the normal class. The model is optimized
using the RE between the input cuboid and its reconstructed
output. Once the training phase is complete, both normal
events and anomalies are classified using the Normalized Re-
construction Error (NRE) (see Subsection III-C). Finally, the
the classification performance is measured. Figure 3 presents
an overview of the proposed approach.

Fig. 3. Overview of the approach for learning spatio-temporal signatures.

Regarding data preparation process, the frames are extracted
and sub-sampled from video clips using a fixed size window
that slides along the video clip, thus reducing the observed
region. After, the frames are grouped into cuboids X with
three frames, where the observed frame f is in the center of
cuboid composed of the frames within the sliding window.

Since the variability between two subsequent frames is quite
small, frames are separated by a gap, so as to increase the
variability. Thus, the cuboid for a certain window does not
contain all of its frames. Some frames between the initial
and the central frame are discarded. The same occurs for the
frames between the central and the final frame. For instance,
for sliding window of size n = 5, one frame between the initial
and the central frame is skipped, and another one between the
central and the final frame, i.e. the cuboid is composed only of
the first, third and fifth frames, ignoring the second and fourth
frames. Consequently, the number of frames ignored from a
video clip depends upon the window size. An example of the
sliding window approach is shown in Figure 4.

Finally, five case studies are created by grouping data into
packages with discretised frames according to the window
sizes n = 3, 5, 7, 9, whose values were selected empirically.
For all case studies, the stride is 1, which represents the
amount of frames skipped by the window after every slide
along the video clip. For the test dataset, cuboids are labeled
considering the label of the central frame f .

A. Model Architecture

The proposed architecture is similar to the model proposed
in [10]. It is composed of three convolutional layers and two
pooling layers in the encoder side, with the same reversed
structure in the decoder side. The CAE is trained to learn
the signature of normal events, considering the optimization
metric presented in Equation 1.



Fig. 4. Example of sliding windows approach for selecting frames to compose
the cuboid X . In this example, the frames f−2, f and f+2 will be selected to
compose the 3D cuboid, whilst both frames f−1 and f+1 will be discarded.

The first convolutional layer of the architecture is composed
of 256 filters with stride 4. It produces 256 feature maps with
resolution of 57×37 pixels that are fed to the first pooling
layer, which produces 256 feature maps with resolution of
28×18 pixels. All pooling layers of the CAE are composed
of 2×2 kernels, performing sub-sampling through the max-
pooling operation. The second and third convolutional layers
have 128 and 64 filters, respectively. The last encoder layer
produces 64 features maps of 14×9 pixels. The decoder
reconstructs the input by deconvolving and unpooling the input
in reverse order. The output of the final layer of the CAE is the
reconstructed version of the original input. Table I summarizes
the details of each layer of the CAE.

TABLE I
DIMENSIONS OF EACH LAYER OF THE CAE.

Layer Dimensions Filter size

Input and Conv. 1 256×57×37 11×11
Pool. 1 256×28×18 2×2
Conv. 2 128×28×18 5×5
Pool. 2 128×14×9 2×2

Conv. 3 and Deconv. 1 64×14×9 3×3
Unpool. 1 128×14×9 2×2
Deconv. 2 128×28×18 5×5
Unpool. 2 256×28×18 2×2

Deconv. 3 and Output 256×57×37 11×11

The inputs of the CAE are cuboids X extracted from video
clips. Each cuboid is a 3D-structure with three channels (see
previous Section), where each input channel is a 2-D array
with resolution of 235×155 pixels in gray scale.

B. Model Training

A CAE is an unsupervised learning method, which does not
require class labeling of the input data. However, an indirect
labelling is used in this work, since all training instances
belong to videos without anomalies (that is, the normal class).

We use the backpropagation algorithm to minimize the cost
function e, which is optimized using Stochastic Gradient De-
scent (SGD) with the adaptive sub-gradient method AdaGrad.
The weights of the network are initialized using the Xavier
algorithm [34]. Since the input data is a cuboid X, the RE is
evaluated over all dimensions.

C. Normalization of Reconstruction Errors

Similar to the work [10], the RE of pixels intensity value I
at location (x, y) in frame t of the video sequence is computed,
as shown in Equation 4:

RE(x, y, t) = ‖ I(X, t)− f(I(X, t)) ‖22, (4)

where f is the model learned by the CAE and X is the input
cuboid. Given the RE of all pixels of a frame t, the Frame
Reconstruction Error (FRE) is computed by summing all the
pixel-wise errors, see Equation 5:

FRE(t) =
∑
(x,y)

RE(x, y, t). (5)

After, the FRE of the frames is smoothed using a moving
average filter, according to the Equation 6, where N is the
number of samples (window size) of the moving average.

SFRE(t) =
1

N

N−1∑
j=0

FRE(t+ j). (6)

Finally, the Normalized Reconstruction Error (NRE) of a
frame is computed by Equation 7:

NRE(t) =
SFRE(t)−min(SFRE)

max(SFRE)−min(SFRE)
, (7)

where the min(SFRE) and max(SFRE) are, respectively, the
minimum and maximum values in the smoothed SFRE found
along all frames of the dataset.

D. Classification and Evaluation

In this work, the are under the ROC curve (AUC) is used
to measure the classification performance. The AUC demon-
strates a comparison that is independent from the threshold
and provides a direct analysis of the mapping performed by
the classifier. This method enables the comparison with other
studies in the literature that also use the AUC, such as [9],
[10]. The computation of the ROC curve is done by using
the NRE, considering the True Positive Rate (TPR) and the
False Positive Rate (False Positive Rate). From the AUC, it
is possible to assess the EER, which indicates the point of
the ROC curve where the false acceptance rate is equal to
the false rejection rate, i.e., the best average performance. The
lower the EER value, the higher the accuracy of the classifier.

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS

This Section presents the experiments conducted to verify
the hypotheses that a CAE is capable of learning relevant
spatio-temporal signatures for discriminating anomalies.

Regarding feature learning, the aim is to evaluate the CAE
capability to perform such task. For this purpose, a CAE



was used for automatically learning spatio-temporal features
from raw frames without requiring previously knowledge,
and its results were compared to with those provided by the
approach based on hand-crafted feature extraction proposed in
our previous work [10]. Also, the RE was used for detecting
anomalies.

The experiments were carried using four benchmark video
datasets frequently used for anomaly detection problems:
UCSD pedestrian dataset (including the two subsets — Ped1
and Ped2) [35], Avenue [36], and UMN [37]. The datasets
are composed of a collection of videos with frames manually
labeled by a human expert as “normal” or “abnormal”.

Notice that color video datasets were converted to gray
scale for this work. Moreover, frames larger than 235×155
were resized to that size using the linear interpolation method,
whilst images smaller than 235×155 were kept in their original
size. For both gray scale converting and image resizing, the
OpenCV library1 was used.

The CAE model proposed for this experiment was trained
using a version of the Caffe 2 framework modified by Hasan
et al. [9]. All experiments were run in a dedicated GPU server
with an Intel i7-5820K CPU running at 3.3 GHz, with 32 GB
of RAM and equipped with a Nvidia Titan-Xp GPU, running
on Ubuntu.

A. Automatic Learning of Spatio-Temporal Features

The working hypothesis of this experiment is that the
CAE is able to automatically learn spatio-temporal signatures
and also to discriminate anomalies that were unseen during
the training step. A CAE was trained using the architecture
proposed in Subsection III-A. Four different combinations of
the data were used, which were prepared according to the size
of a sliding window (temporality) n. The case studies are 3F,
5F, 7F and 9F, defined with respect to sliding window sizes
n = 3, n = 5, n = 7 and n = 9.

The experiment (FR+ED) use the original frames (FR)
combined with appearance features (ED) extracted using
Canny edge detector (presented in our previous work [10]).
It was used as baseline in order to compare with different
combinations of temporal frames (case studies). Results are
summarized in Table II, showing AUC and EER. Numbers
highlighted in bold are the overall best result obtained for
each dataset.

Table II shows that CAE seems to be capable of learning
spatio-temporal signatures (appearance and motion features),
as expected. Results from this experiment are comparable to
the best baseline results using FR+ED (obtained in our previ-
ous work [10]) and state-of-the-art (shown in State-of-the-art
column of Table II ), overcoming the result for the Ped2 dataset
and achieving very close results for both Avenue and Ped1
datasets. This study suggests that, for the above-mentioned
datasets, the CAE can learn relevant spatio-temporal signatures
from raw input data to discriminate anomalies. We consider

1https://opencv.org/
2http://caffe.berkeleyvision.org/

that it is an important contribution, since the CAE avoids
the need of selecting hand-crafted feature extractors, since
CAE can be trained from raw input data. Although for the
UMN dataset the AUC improved as the sliding window
(temporality) increased, the best overall result was worse than
the baseline. This issue could be related to the CAE limitation
of learning temporal information, since it was not designed to
perform such a task. Since anomalies in the UMN dataset
are mostly characterized by motion patterns, results suggest
that a larger sliding window would be necessary to capture
more relevant spatio-temporal signatures. Overall, it seems
to be more difficult for the CAE to learn relevant motion
patterns signatures characterizing anomalies, whilst it seems
to be easier for it to learn signatures of appearance features.

Figure 5 shows the NREs obtained using Equation 7, plotted
along the frames for a specific video of the Avenue dataset.
The blue line shows the plot of the NRE (FR+ED) for the
best overall result of the CAE using a combination of raw data
with appearance features obtained in our previous work [10].
The green line shows the plot of the NRE for the best result
when using spatio-temporal signatures learned by the CAE.
The ground-truth, annotated by the creator of the dataset and
the threshold for anomaly detection are also plotted (red and
black line, respectively).

Figure 5 shows that the NRE spatio-temporal (ST) follows
the NRE (FR+ED), but with less fluctuations and following
a more smooth tendency along the frames. This smoothed
tendency resembles a moving average effect because in this
approach the frames are arranged into groups (cuboids). More-
over, a strongly correlation between ST NRE and FR+ED NRE
is verified, in which the Spearman correlation was computed
near to 0.910. These results suggest that, for the previously
mentioned datasets, the initial hypothesis for this experiments
is confirmed.

V. CONCLUSIONS

Due to the growing concern with public security world-
wide, automatic video surveillance has become a topic of
great interest. In turn, anomaly detection in videos can be
considered a hard task, since anomalies are highly dependent
on human concepts, and the volume of data has never been
so big. Aiming at tackling this issue, this work presented
an approach to learn relevant spatio-temporal signatures for
detecting anomalies in videos using a deep CAE.

In our experiments, raw frames were used as input to
the CAE using a spatio-temporal approach, to investigate
whether the CAE was able to learn spatio-temporal signatures
automatically. Results suggested that the proposed method can
learn those features with overall results similar to the baseline
of our previous work. Particularly to the UMN dataset, our
results were worse than the baseline, possibly because this
dataset is characterized mostly by motion features. It seems
that the CAE do not work well when the dataset is composed
mostly of movement. For this case, a much larger sliding
window may lead to better results. It is worth to mention that



TABLE II
AUC/EER RESULTS FOR THE FOUR CASE STUDIES OF AUTOMATIC LEARNING OF SPATIO-TEMPORAL FEATURES.

Datasets FR+ED 3F 5F 7F 9F State-of-the-art
AUC EER AUC EER AUC EER AUC EER AUC EER AUC EER

Avenue 0.772 0.270 0.767 0.303 0.769 0.309 0.770 0.306 0.771 0.306 0.702 0.251 [9]
UCSD Ped1 0.585 0.431 0.584 0.462 0.585 0.463 0.576 0.465 0.582 0.467 0.927 0.160 [38]
UCSD Ped2 0.847 0.245 0.843 0.252 0.856 0.244 0.863 0.243 0.875 0.233 0.908 0.170 [39]
UMN 0.944 0.106 0.715 0.458 0.746 0.446 0.778 0.369 0.778 0.346 0.960 − [37]

Fig. 5. Spatio-temporal NRE plotted along the frames of a Avenue dataset video clip.

the NRE had less fluctuations and followed a more smooth
tendency along the frames using the spatio-temporal approach.

Results indicated that automatically learning features with
a CAE can be an interesting alternative that can be extended
to other datasets. However, in order to learn useful motion
features, a large temporal window may be necessary. Hence,
it was not yet possible to state whether a CAE is capable of
learning useful motion features automatically.

Finally, results obtained so far encourage future work to-
wards more experiments with other real-world datasets so as
to test and improve the methods here proposed. Indeed, results
unveiled interesting open issues to be explored in the future.
In a broader sense, results achieved in this work showed that
the computational approaches proposed are very promising
for the research area related to anomaly detection in videos.
Therefore, future work could focus on further analysing the
temporal information, by using of recurrent networks, for
instance, to improve the classification performance.
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[7] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convo-
lutional auto-encoders for hierarchical feature extraction,” in Interna-
tional Conference on Artificial Neural Networks and Machine Learning,
T. Honkela, W. Duch, M. Girolami, and S. Kaski, Eds., vol. I. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 52–59.



[8] X. Zhu, J. Liu, J. Wang, C. Li, and H. Lu, “Sparse representation for
robust abnormality detection in crowded scenes,” Pattern Recognition,
vol. 47, no. 5, pp. 1791–1799, 2014.

[9] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis,
“Learning temporal regularity in video sequences,” in Conference on
Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016,
pp. 733–742.

[10] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes, “A study of deep
convolutional auto-encoders for anomaly detection in videos,” Pattern
Recognition Letters, vol. 105, pp. 13 – 22, 2018.

[11] J. Akhilomen, “Data mining application for cyber credit-card fraud
detection system,” in Conference on Advances in Data Mining. Applica-
tions and Theoretical Aspects, ser. Lecture Notes in Computer Science,
P. Perner, Ed. Heidelberg, Germany: Springer, 2013, vol. 7987, pp.
218–228.

[12] N. I. George, J. F. Bowyer, N. M. Crabtree, and C.-W. Chang, “An
iterative leave-one-out approach to outlier detection in RNA-seq data,”
PLoS ONE, vol. 10, no. 6, 06 2015.

[13] M. Ohba, S. Kadokura, Y. Yoshida, D. Nohara, and Y. Toyoda, “Anoma-
lous weather patterns in relation to heavy precipitation events in Japan
during the baiu season,” Journal of Hydrometeorology, vol. 16, no. 2,
pp. 688–701, 2015.

[14] D. M. J. Tax, “One-class classification,” Ph.D. dissertation, Technische
Universiteit Delft, 2001.

[15] X. Hu, S. Hu, J. Xie, and S. Zheng, “Robust and efficient anomaly
detection using heterogeneous representations,” Journal of Electronic
Imaging, vol. 24, no. 3, p. 033021, 2015.

[16] M. Ribeiro, “Deep learning methods for detecting anomalies in videos:
theoretical and methodological contributions,” Ph.D. dissertation, Gradu-
ate Program in Electrical and Computer Engineering, Federal University
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