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Abstract—The Protein Folding Problem (PFP) is considered
one of the most important open challenges in Biology and
Bioinformatics. Long Short-Term Memory (LSTM) methods have
risen recently, achieving the state-of-art performance for several
Bioinformatics problems such as, protein secondary and tertiary
protein structure prediction. This paper describes the application
of a novel approach based on the LSTM networks to the PFP
using a coarse-grained model of proteins. An specific encoding
scheme for representing protein folding states is also presented.
The proposed approach was evaluated by means of several
experiments with a dataset of protein folding, which was obtained
by Molecular Dynamics simulations. We also propose a novel
method for evaluating the performance of the approach based
on measures used in Bioinformatics. Furthermore, a new analysis
method for protein folding pathways is presented. Results suggest
that the proposed approach is able to learn the protein fold
transitions. Also, it is promising for the research areas related to
Bioinformatics and Computational Intelligence.

I. INTRODUCTION

The Protein Folding Problem (PFP) is considered to be one
of the most challenging open problems in science. Basically,
a PFP consists in determining the sequence of folding events
that leads from the primary structure of a protein to its native
structure which, in turn, defines its specific biological function.

Notwithstanding, researchers have been focusing on the
study of this process and, consequently, a large amount of
information is currently available regarding this issue. This is
mainly due to its importance for medicine, the several genome
sequencing projects being conducted in the world and the
development of computational models and approaches for the
PFP. For instance, several diseases, known as proteinopathies,
are believed to be the result of misfolded proteins (i.e. proteins
structurally abnormal), such as Alzheimer’s disease, cystic
fibrosis and some types of cancer [1]. Here, it is important
to know that therapeutic drugs for proteinopathies can be
discovered from previous knowledge of polypeptide structures.
Also, this problem rises three broad questions: (i) What is
the physical code by which an amino acid sequence dictates
a protein’s native structure? (ii) How can proteins fold so

fast? (iii) Can we devise a computer algorithm to predict
polypeptide structures from their sequences? [2].

To the best of our knowledge, the Molecular Dynamics
(MD) approach (including its variations) is the only computa-
tional method that really provides a time-dependent analysis
of the folding mechanism [3]. Generally, it involves the three-
dimensional coordinates of the particles that form the protein
and numerical integration of the classical equations of motion.
Despite the great advances in recent years, MD simulations
have been limited mainly by their computationally expensive
brute force calculation. Due to the lack of methods for solving
such class of problems in a reasonable computing time, the
need for alternative non-traditional mathematical approaches
for reproducing the complex behavior of the folding process
has risen.

For decades, Computational Intelligence (CI) has provided
a large range of robust optimization methods, capable of suc-
cessfully dealing with complex optimization problems, such as
the Protein Structure Prediction (PSP) [4]. Furthermore, within
the scope of CI, Deep Learning (DL) methods have yielded
significant results on Bioinformatics [5], [6] during the recent
years, including the torsion angles prediction methods pro-
posed by [7], for instance. Among DL approaches, the Long
Short-Term Memory (LSTM) networks have excelled results
in sequential/temporal problems. Therefore, an alternative non-
deterministic way to reduce the inherent complexity of the
simulations with three-dimensional structures is proposed in
this preliminary work, using a minimalist representation of
proteins and a LSTM architecture.

The main highlights of this work are:

• a novel approach based on LSTM networks applied to
the protein folding prediction;

• a novel method for evaluating the predictor performance
based on measures commonly used in Bioinformatics;

• a novel encoding scheme for representing protein folding
states and low-level input/output representation for Deep
Learning approaches;
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• a new benchmark in silico dataset for the PFP, using the
3DAB off-lattice model of proteins;

• a new analysis method for protein folding pathways based
on Heatmap visualization;

• a novel validation method based on the Hold-out strategy,
specifically designed to protein folding pathways.

This paper is organized as follows: Section II presents the
background about the Protein Folding Problem, the coarse-
grained model utilized in this work and the related works.
Also, Section III describes in details the LSTM approach.
Furthermore, Sections IV and V shows the computational ex-
periments and results, including the protein structures dataset.
Finally, in Section VI some conclusions and future directions
are pointed out.

A. Related works

Several works in Deep Learning (DL) have been presented
in the last decades and gained the attention of the scientific
community in several domains, including Bioinformatics [8].
Specifically in proteomics, emergent applications with DL
have arisen, such as secondary protein structure classification
[5], protein homology prediction [6] and inference of the
protein torsion angles [7].A short review of DL applied to
protein prediction problems was provided by [9], where some
possible applications in this area were pointed, as well as the
application of Neural Turing Machines and Memory Networks.

Regarding the DL methods, Recurrent Neural Networks
have been extensively used in proteomics problems. For ins-
tance, a Bidirectional Long Short-Term Memory (BLSTM)
network was employed to learn effective features from pseudo
macromolecules in [6]. In addition, an application of Deep
Recurrent Neural Network with Bidirectional Long Short-
Term Memory (DBLSTM) for 8-class secondary structure
classification from sequence is presented by [5].

Many DL methods in protein structure problems utilized
Contact Map (CM) representation, in which positions of a
matrix M indicate if the amino acid pairs are in contact.
For example, [10] reported a paper for CM prediction using
steps of increasing resolution, where a DL architecture is used
to progressively refine the inference of the contacts. More
recently, a DL method for predicting amino acids contact by
integrating both Evolutionary Coupling and sequence conser-
vation information through two deep residual neural networks
were presented by [11]. Moreover, [12] presented a Deep
Transfer Learning scheme that predicts amino acids contact
and then predicts their structure models. As outlined above,
CM is a commonly used protein model representation in DL.
However, this model raises a problem: the reconstruction of
the protein, which is still an open problem [13].

Other protein representations can be used to avoid the
problem cited above. A similar macromolecule representation
is based on the dihedral angles, which is applied to Ramachan-
dran plot analysis. With this representation, four different
DL architectures to predict polypeptide torsion angles were
evaluated in [7]. This study also uses Mean Absolute Error
(MAE) for evaluating the prediction of phi and psi angles.

Another manner to represent the biomolecule structure is by
using spherical coordinates. However, this method is sparsely
explored in the literature [14].

Concerning the protein model, the 3DAB off-lattice is
currently the main coarse-grained model used in the Com-
putational Intelligence area for dealing the PFP. For ins-
tance, the application of a parallel ecology-inspired algorithm
(pECO) for the polypeptide structure reconstruction from CMs
is described in [13]. More recently, an improved Artificial
Bee Colony (ABC) was employed by [15] to infer protein
structures. Also, a Biogeography Based Optimization with
Chaotic Mutation (BBO-CM) algorithm that prevents prema-
ture convergence was proposed by [16] for forecasting protein
structures.

From the above-mentioned works, we hypothesize that Deep
Learning can play an important role in the Bioinformatics
and Proteomics problems. To the best of our knowledge, this
work presents the first approach based on LSTM networks for
the PFP. Also, differently from the commonly applied protein
structure representations, we use relative spherical coordinates
for dealing with geometrical constraints due to the bonds
between amino acids. Moreover, it is possible to observe from
the literature that the 3DAB off-lattice model is commonly
used for the PSP. Therefore, a new benchmark dataset is
provided for the PFP in this present study.

II. THE PROTEIN FOLDING PROBLEM

Protein folding is the process by which polypeptide chains
are transformed into compact structures that perform biologi-
cal functions. Under physiological conditions, the most stable
three-dimensional structure is called the native conformation
and actually allows a protein to perform its function. Despite
the considerable theoretical and experimental effort expended
to study the protein folding process, a detailed description of
the mechanisms that govern the folding process have not been
discovered yet.

The Protein Folding Problem (PFP) is the prediction of
the protein folding pathways, which consists in determining
the sequence of folding events that leads from the primary
structure of a polypeptide to its native structure. Moreover,
the Protein Structure Prediction (PSP) consists in predicting
the protein structure from sequence (i.e. primary structure).

Several computational models have been proposed for rep-
resenting protein structures with different levels of complexity
and, consequently, computational feasibility. Despite their sim-
plicity, they have provided several valuable insights regarding
the folding process. Also, it is important to recall that the
computational approach for searching a solution for the PFP
using the simplest models, the so-called Hydrophobic-Polar
(HP) models, was proved to be NP -complete [17].

The prediction of the structure of a protein is modeled as
the minimization of the corresponding free-energy, following
the Anfinsen’s Thermodynamic Hypothesis [18] 1. It is also
known that the native conformation of a protein represents the

1Nobel Prize Laureate in 1972
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folding state with minimal free-energy. A schematic energy
landscape for protein folding, using the 3D off-lattice model
of proteins (see Section II-A), is shown in Figure 1. In this
figure, it is possible to observe that a unique folding state
(i.e. native structure) is reached through many independent
pathways (represented by blue arrows) starting from different
initial folding states.

Moreover, the differences between the many-pathway pro-
tein folding model derived from theoretical energy landscape
and the pathway model derived from experiments are de-
scribed by [19].

Fig. 1. The Energy Landscape for Protein Folding. Adapted from [20] by
using the 3D-AB model of proteins. Red and blue balls are hydrophobic and
polar amino acids, respectively

A. The 3D-AB off-lattice model of proteins

The AB off-lattice model was introduced by [21] to repre-
sent protein structures. In this model, residues are represented
by single interaction sites located at the Cα position and are
linked by rigid unit-length bonds (b̂i) to form the protein
structure.

In this model, the 20 proteinogenic amino acids are clas-
sified into two classes, according to their affinity to water
(hydrophobicity): ’A’ (hydrophobic) and ’B’ (hydrophilic or
polar). Also, the energy function of a folding is given by
Equation 1 [22].

E = EAngles + ETorsion + ELJ = −k1
N−2∑
i=1

b̂i · b̂i+1

− k2
N−3∑
i=1

b̂i · b̂i+2 +
N−2∑
i=1

N∑
j=i+2

4ε(σi, σj)(r
−12
ij − r−ij6)

(1)

where,
EAngles, Etorsion and ELJ are the energies from bond angles,
torsional forces and Lennard-Jones potential, respectively. rij
represents the distance between ith and jth residues; σ =
σ0, ..., σN from a binary string that represents the protein
sequence. ε(σi, σj) is chosen to favor the formation of the
hydrophobic core (’A’ residues). Thus, ε(σi, σj) is 1 for AA
interactions and 1/2 for BB/AB interactions. Finally, it is
important to mention that the model can be explored for
different values of k1 and k2 as stated by [22].

Figure 1 shows examples of structures using the 3D-AB
off-lattice model.

III. THE LONG SHORT-TERM MEMORY APPROACH

The Long Short-Term Memory (LSTM) network was intro-
duced by Sepp Hochreiter and Jürgen Schmidhuber in 1997
[23] in order to overcome the inherent error signals flowing
backward in time of conventional methods such as standard
Recurrent Neural Networks (sRNN), which tend to either
explode or vanish. LSTM networks include memory cells,
that are hidden units that lead to the natural behavior of
remembering inputs for a long time. Thus, the gradient can
flow for a long time, avoiding the vanishing gradient problem.

Figure 2 2 shows a memory cell, which is an accumulator
that has a connection to itself at the next time step.

Basically, the LSTM process is composed by three gates
(i.e. the forgot gate ft, update gate it and output gate ot ).
The variables xt and ht represent the input and output of the
network at time t. The layers with sigmoid and hyperbolic
tangent activation functions are represented by σ and tanh.

Fig. 2. The internal structure of a Long Short-Term Memory cell (LSTM).

Equations 2–8 present the mechanism of a LSTM.

ft = σ(Wf [ht−1, xt] + bf ) (2) it = σ(Wi[ht−1, xt] + bi) (3)

∼
Ct = tanh(WC [ht−1, xt] + bC) (4) Ct = ft ◦Ct−1+ it ◦

∼
Ct (5)

ot = σ(Wo[ht−1, xt] + bo) (6) C̈t = tanh(Ct) (7)

ht = ot ◦ C̈t (8)

2Based on colah.github.io/posts/2015-08-Understanding-LSTMs/
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where, ft, it, Ct, ot and ht (∈ <k) are activations of the forgot
gate, update gate (or input gate vector), internal long term
memory cell state, output gate vector (candidate) and output
vector considering k hidden units, respectively. In addition,
Wf , Wi, WC and Wo (∈ <3q×k) are the weight matrices; and
bf , bi, bC and bo (∈ <k) are bias terms. Also, the symbol ◦
denotes the Hadamard product operator.

As mentioned before, an alternative non-deterministic ap-
proach applied to the PFP based on the LSTM networks is
proposed in this work. Figure 3 presents a simplified overview
of the proposed approach. The protein folding is simulated by
using a trained/tested LSTM. Basically, a one-step prediction
(part 4) is done to ensure that the ith folding state (output,
t+ 1) from the previous (input, t).

For training and testing the LSTM network (part 3), the
3D-AB off-lattice model is used to represent protein structures
and protein folding pathways data are generated by using
a Molecular Dynamics (DM) approach (part 1, see Section
IV-A). Then, the data are processed and split (part 2 into
feature vectors, according to the encoding scheme (see Section
III-A).

A. Feature Encoding

It is known that Deep Learning methods are highly based
on the features and how they are encoded. This work pro-
poses a feature encoding scheme for dealing with geometrical
constraints due to the fixed unit-length bonds between amino
acids, when using the 3DAB off-lattice model.

Considering the folding of a protein with S amino acids, a
one-dimensional feature vector will represent the set of relative
spherical coordinates of the amino acids, as shown in Figure
4. The first amino acid of the sequence is located at the
origin. Thus, a feature vector has (2S−2) variables, such that
positions kth and k + 1th represent the spherical coordinates
θk and ϕk of the second to S amino acid of the sequence.
The input and output vectors are normalized in the range of
[0 : 1].

B. Cost Function

The cost function applied in this study is the Mean Absolute
Error (MAE), shown in Equation 9, which is used to evaluate
the prediction of relative spherical coordinates. This measure is
the absolute difference between the predicted (output) and the
target spherical coordinates. Here, both target and output
are in the range [0 : 1] and S is the sequence length.

MAE =

∑S−1
i=1 |target− output|

S − 1
(9)

C. Network Setup and Architecture

In this study, the Gradient Optimizer RMSProp [24] is used
for optimizing the gradient descent of the LSTM network and
controlling the value of the learning rate (η), which determines
the size of the steps taken towards to the opposite direction of
the gradient.The RMSProp was selected among others based
on a previous analysis of optimizers [5].

The parameters for the LSTM network are: number of
epoch equals to 1000, with η = 0.0005. The architecture of
the network, which was inspired by the works presented in
[15], [25], is composed of: One Fully Connected (FC) layer,
followed by one LSTM layer and two FC layers. The activation
function of the last FC layer is a sigmoid function, in order
to obtain an output in the range [0, 1], whereas in the other
FC layers, Rectified Linear Units (ReLUs) were used. With
the purpose of avoiding overfitting in the training phase, we
apply L2 regularization with weight equals to 0.001 and two
dropout layers with probability 0.2 in the two final FC layers.

D. Evaluation Measures

In this work, the Radius of Gyration (Rg) [26] is used
to measure the compactness of the residues of the protein.
The smaller Rg means that the set of amino acids are more
compact. The equation of Rg is present in the Equation 10.

Rg =

√√√√√N−1∑
i=0

[(xi − X̄)2 + (yi − Ȳ )2 + (zi − Z̄)2]

N
, (10)

where i and N are the i-th protein residue and the number
of residues, respectively. xi, yi and zi are the Cartesian
coordinates, and X̄ , Ȳ and Z̄ are the average of their respective
axis.

This work also proposes a novel method for comparing
protein structures (Output and Target), using the 3D-AB
model, by calculating the RMSD (Root-mean-square devia-
tion). Algorithm 1 presents this method.

Algorithm 1 Predictor performance evaluation algorithm
1: Start
2: P1 ← decoding(Output)
3: P2 ← decoding(Target)
4: RMSD ← kabsch(P1, P2)
5: End

Basically, Algorithm 1 has three steps, where the first two
steps are decoding procedures and the last one represents a
quality assessment.

Algorithm 2 presents the decoding procedure, which con-
sists of a Spherical to Cartesian coordinates conversion. Basi-
cally, this procedure returns the Cartesian coordinates of each
amino acid of the protein structure.

In line 4, it is measured the similarity between the structures
obtained in the previous two steps, using the Root-Mean-
Square-Deviation (RMSD), as shown in Equation 11.

RMSD =

√∑S−1
i=1 |P1,i − P2,i|

S
, (11)

where S, P1i, P2i represents the number of amino acids,
Cartesian coordinates of the protein structures (P1i) and (P2i),
respectively.
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Fig. 3. Overview of the proposed approach.

Fig. 4. Input/output Encoding of the LSTM.

Since the RMSD is a rotation-dependent measure, an opti-
mized RMSD is done using the Kabsch method [27] to obtain
the lowest RMSD.

IV. COMPUTATIONAL EXPERIMENTS

All experiments done in this paper were run on a computer
with an Intel Core i7 processor at 3.30GHz, a GPU Nvidia
Titan X and a minimal installation of Ubuntu 14.04 LTS 3.
The software was developed using the Python programming
language, the Lasagne 0.9 and Theano 1.0 frameworks 4.

A. Dataset

The protein folding dataset5 was created in order to train and
evaluate our protein folding predictor. This was accomplished
by using the Molecular Dynamics (MD) method, which was
proposed in a previous work [28].

For simulating the folding pathways, we used a synthetic
protein sequence based on the Fibonacci numbers that was

3Available in: www.ubuntu.com
4Available in: http://lasagne.readthedocs.io/en/latest/user/tutorial.html
5https://github.com/bioinfolabic/protein folding DL 3DAB off-lattice.git

Algorithm 2 Decoding procedure – decoding(p)
1: Start

Let S be the protein size (number of amino acids)
Let θi and ϕi be the input spherical coordinates
Let a be the output Cartesian coordinates
Let dx, dy and dz Let r be the unit length bond between
i and (i+ 1) amino acids

2: a.x[0] = 0; a.y[0]; a.z[0] = 0;
3: for i = 1→ S − 1 do
4: a.x[i] = 0; a.y[i] = 0; a.z[i] = 0
5: a.x[i] = r · sinϕi · cosθi
6: a.y[i] = r · sinϕi · sinθi
7: a.z[i] = r · cosϕi

8: a.x[i] = a.x[i] + a.x[i− 1]
9: a.y[i] = a.y[i] + a.y[i− 1]

10: a.z[i] = a.z[i] + a.z[i− 1]
11: end for
12: return a
13: End

proposed by [21]. The AB sequence is AB2AB2(AB)2BAB,
where A and B represent the hydrophobic and hydrophilic
amino acids, respectively.

The dataset is composed of 20 different folding pathways,
which start from different initial folding states (i.e. protein
structures along the folding process, as shown in Figure 1),
where each pathway is composed of 101 equally spaced in
time folding states.

As commented in Section I, a new method for analyzing
the folding pathways is proposed in this study. This method
is based on bi-dimensional Heatmap visualization, where the
average RMSD measure of the ith folding state of all pathways
is represented as colors. Larger values and lower values are
represented by warm and cold colors, where warm colors
represent highly different initial folding states (i.e. unfolded
states). On the other hand, blue indicates equal structures (i.e.
native state).

Figures 5 and 6 present the similarity between initial and
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final folding states of all pathways, respectively. It is possible
to observe that the protein structures are more diverse at the
beginning as well as the structures tend to be more similar
during the final stages of the folding mechanism, according
to the behavior of the in vivo protein folding process and
the Anfinsen’s thermodynamic hypothesis (see Section II).
Here, it is important to recall that the energy landscape
is characterized by several intermediate folding states and
energy barriers between the two significantly folded states,
the denatured and the native states. Thus, it is possible to
conclude that the pathways generated by the MD approach do
not reach the native state, where the entire heatmap of the final
pathways (Figure 6) must be blue. Finally, considering that the
MD is deterministic, we can conclude that the 20 pathways
are different and suitable for training and testing the Deep
Learning approaches.

Based on such protein folding data, we created a tuple of
folds to generate our dataset, where, the first ith fold and
another jth fold are the t (input) and t + 1 (target) time
steps, end up with 100 pairs of folds per pathway. Next, the
tuples of folds are split in train and test subsets using a Hold-
out validation (70% to train and 30% to test). Seven and three
folds at each 10 subsequent tuples were randomly selected
for training and testing the LSTM network, respectively. It
is important to recall that in order to ensure that the test
subset has a representative data of the whole protein folding
mechanism, a homogeneous amount of tuples of folds was
selected from the pathways.

Fig. 5. Heatmap visualization of Similarity (RMSD) between the 20 initial
folding states

A preprocessing procedure was also applied to this dataset
to generate feature vectors, according to Section III-A. Algo-
rithm 3 presents this procedure. First, the Cartesian coordinates
(x, y, z) of the amino acids are converted to relative spherical
coordinates (θ, ϕ). It is important to recall that the atan2
function returns a positive value for counter-clockwise angles,
and a negative value for clockwise angles.

Fig. 6. Heatmap visualization of Similarity (RMSD) between the 20 final
folding states

Finally, the normalization of the relative spherical coordi-
nates is done, which are in the range [0 : π] and [−π : π].
Thus, the features are normalized between [0 : 1].

Algorithm 3 Encoding procedure – encoding(p)
1: Start

Let S be the protein size (number of amino acids)
Let p be the input Cartesian coordinates ( −→x i, −→y i, −→z i)
Let −→a be the output relative Spherical coordinates
Let dx, dy and dz
Let r be the unit length bond between i and (i+1) amino
acids

2: for i = 1→ S − 1 do
3: for j = 0→ S do
4: x[j] = x[j]− x[i− 1]
5: y[j] = y[j]− y[i− 1]
6: z[j] = z[j]− z[i− 1]
7: end for
8: a.r[i− 1] = sqrt(x[j]2 + y[j]2 + z[j]2)
9: a.θ[i− 1] = acos(z[j]/a.r[i− 1])

10: a.ϕ[i− 1] = atan2(y[j]/x[j])
11: normalize(a)
12: end for
13: return a
14: End

V. RESULTS AND ANALYSIS

This section presents the results obtained by our approach
for the protein folding prediction.

The sequence length used for the LSTM is 12, with 2
features in each sequence input, which represent the relative
spherical coordinates of the amino acids (see Section III-A).

The performance of the LSTM approach with increasing
number of neurons was also evaluated. Table I presents the
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results obtained. The MAE obtained are equal to 0.339, 0.331
and 0.320 for 200, 400 and 800 neurons, respectively It is
possible to observe that the MAE measure decreases when
the number of neurons increases, indicating that the quality
of the structures obtained is proportional to the number of
neurons. Also, we present the prediction error of the relative
spherical coordinates (θ and ϕ). The LSTM with 800 neurons
improved the quality of the prediction, achieving the smallest
error compared to the LSTM with 200 and 400 neurons.

TABLE I
MEAN ABSOLUTE ERROR (MAE) OF THE TEST AND THE PREDICTION

ERROR PER RELATIVE SPHERICAL COORDINATES

Prediction Error (Avg ± σ)

Sph. Coord. Neurons
200 400 800

θ 0.146± 0.118 0.141± 0.115 0.138± 0.112
ϕ 0.192± 0.191 0.187± 0.194 0.180± 0.194

MAE Loss (test) 0.339 0.331 0.320

Table II shows the results considering the prediction error
per amino acid. The LSTM that achieved the lowest error
results, in most cases, is the network with 800 neurons,
and also presented the lowest standard deviation (σ). An
interesting analysis presented here, is that the major error is
during the early stages of the network prediction. Therefore,
it indicates that the use of bidirectional information could be
an interesting in order to improve the prediction performance
of our approach.

TABLE II
MEAN ABSOLUTE ERROR (MAE) PER AMINO ACID

Prediction Error (Avg ± σ)
Sph. Coord. per

Amino acid
Neurons

200 400 800
2 0.200 ± 0.166 0.201 ± 0.165 0.199 ± 0.166
3 0.183 ± 0.149 0.180 ± 0.151 0.178 ±0.148
4 0.184 ± 0.174 0.182 ± 0.173 0.179 ± 0.172
5 0.175 ± 0.147 0.170 ± 0.148 0.165 ± 0.149
6 0.172 ± 0.166 0.169 ± 0.162 0.164 ± 0.167
7 0.154 ± 0.151 0.151 ± 0.154 0.139 ± 0.151
8 0.177 ± 0.177 0.169 ± 0.176 0.164 ± 0.178
9 0.149 ± 0.148 0.145 ± 0.155 0.141 ± 0.150
10 0.165 ± 0.164 0.159 ± 0.172 0.148 ± 0.162
11 0.150 ± 0.148 0.139 ± 0.143 0.135 ± 0.142
12 0.165 ± 0.168 0.159 ± 0.167 0.152 ± 0.161
13 0.150 ± 0.150 0.149 ± 0.152 0.143 ± 0.152

Figure 7 presents the best protein folding prediction for
each LSTM configuration. For each configuration, the result
obtained by the LSTM (output) is compared with the target,
which was previously generated by MD simulations. It is pos-
sible to observe that our approach obtained slightly different
structures compared to the target, as indicated by the MAE
measure. Also, the LSTM with 800 neurons obtained protein
structure with lower RMSD (0.272) and MAE (0.110) values.
In this figure, it is possible to observe the formation of the
hydrophobic core, according to the measure of compactness
of the entire protein (RGall) and of the hydrophobic residues
(RGh). Due to the nature of the problem, such core was

already expected, suggesting that the proposed approach can
capture some properties of the protein folding process.

Fig. 7. The best predictions for each LSTM configuration (neurons amount
[200; 400; 800]

VI. CONCLUSION

The PFP is still an open problem in Bioinformatics for
which there is no closed computational solution. Even using
the simplest model, the computational approach for searching
a solution for the PFP was proved to be NP-complete.

This paper reports the first results of an ongoing project.
Basically, a preliminary investigation of a novel approach
based on LSTM networks applied to the Protein Folding
Problem is presented. The LSTM network is used to one-step
prediction of folding states, using the protein 3DAB off-lattice
model of proteins.

The 3DAB off-lattice model has been sparsely explored in
current literature, due to the high level of complexity of its
energy landscape. In fact, to the best of our knowledge, this
paper presents the first application of a Deep Learning method
to the PFP using 3DAB off-lattice model.

This work also offered new reference values for benchmark
protein folding pathways that can be used in the future by
other researchers for testing computational approaches applied
to the same problem.

Regarding the LSTM network, three number of neurons
were employed in order to quantify the significance of increas-
ing the number of them without causing either overfitting or
underfitting. Here, it is important to recall that the computa-
tional cost was also considered in order to avoid making the
network impractical. It is possible to observe that better results
can be achieved increasing the number of neurons, according
to the MAE and RMSD measures.
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The results obtained suggest that the proposed approach is
able to learn the protein fold transitions. Lower MAE measures
indicate that the obtained structures are similar to the target
structures. In addition, the measure of compactness of the
protein structure prediction showed the tendency to form a
hydrophobic core inside the protein, according to the in vivo
protein folding process. Also, it is possible to observe that
some issues need to be improved, such as the precision of
the prediction. Furthermore, the results of prediction error
per amino acid showed that the higher errors are in first
predictions. This suggests that a bidirectional information
of the protein structure could be an important feature for
improving the predictor performance.

In a broader sense, it is clear that the processing time of
the simulations is an important drawback. Thus, the use of
GPUs is essential to allow us to obtain results in a reasonable
processing time.

Future works will include the study of self-adjustment
of parameters and the use of bidirectional recurrent neural
network models. Also, a comparison with classical methods
and other machine learning approaches will be assessed.

Further works will also focus on more intensive experiments
with these and other benchmarks, and an analysis of the
influence of the dataset size on the performance.

Besides the RMSD and MAE measures, we intend to study
other metrics in order to contribute to better understanding the
approach and process.

Finally, we believe that the use of LSTM networks to the
PFP using coarse-grained models is very promising for the
research areas related to Bioinformatics and Computational
Intelligence. Although there are interesting research directions
that suggest the continuity of this work, the initial objectives
were achieved satisfactorily.
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