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a b s t r a c t 

The detection of anomalous behaviors in automated video surveillance is a recurrent topic in recent com- 

puter vision research. Depending on the application field, anomalies can present different characteristics 

and challenges. Convolutional Neural Networks have achieved the state-of-the-art performance for ob- 

ject recognition in recent years, since they learn features automatically during the training process. From 

the anomaly detection perspective, the Convolutional Autoencoder (CAE) is an interesting choice, since it 

captures the 2D structure in image sequences during the learning process. This work uses a CAE in the 

anomaly detection context, by applying the reconstruction error of each frame as an anomaly score. By 

exploring the CAE architecture, we also propose a method for aggregating high-level spatial and tempo- 

ral features with the input frames and investigate how they affect the CAE performance. An easy-to-use 

measure of video spatial complexity was devised and correlated with the classification performance of 

the CAE. The proposed methods were evaluated by means of several experiments with public-domain 

datasets. The promising results support further research in this area. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

The classification of human behavior in videos has been a sub-

ect of great interest in computer vision [1] . Particularly, in recent

ears, many efforts have been focused to detect anomalous (or

bnormal) behaviors in automated video surveillance [2–10] . How-

ver, the definition of anomalous events in video surveillance is

ot only context-dependent but, also, dependent of human-defined

emantics. As a matter of fact, there is no general rule for such

 definition, except by the qualitative observation that anomalous

vents occur infrequently in comparison with normal events [11] . 

Commonly, novelty detection and anomaly detection are con-

idered synonyms because, to date, there is no universally ac-

epted definition for these terms [12] . In this sense, our anomaly

etection model can be approached as an one-class classification

roblem, such that the normal class is assumed to be human-

efined and with a large number of examples, while the other

lass corresponds to the anomaly class (i.e. samples that are not or

arely present in the normal class). For instance, in the analysis of

rowded pedestrian walkways, anomaly behaviors could be the cir-
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ulation of non pedestrians in the walkways (e.g. bikers), anoma-

ous pedestrian motion and behavior patterns (e.g. wrong direction

r walking on the grass), as well as abnormal objects in the scene

e.g. left baggage or thrown objects). 

Even if the detection of abnormal behavior was restricted to

edestrian walkways, the corresponding anomalies might have

uite different characteristics, requiring the extraction of particu-

ar features from the video frames to represent and automatically

lassify them. For instance, from the appearance point of view,

 pedestrian walking in a wrong direction behaves similarly to

 pedestrian walking in the right one. However, pedestrian mo-

ion patterns differ significantly regarding the direction, which may

haracterize an anomaly. On the other hand, unusual pedestrians,

uch as people in wheelchairs, present different appearance pat-

erns, when compared to regular pedestrians walking on walkways,

ven though the motion patterns are similar. This classification

s significantly more difficult in crowded scenes, as they present

hanges in the subject size, shape, boundaries, and occlusions. 

A key issue for anomaly detection methods is the extraction

f relevant features from the raw image, to enable a good classi-

cation of different types of anomalies. In the literature, the most

ommon approach is to use spatial and temporal features to model

ctivity patterns. Such features are based on standard computer

ision techniques and other variants, such as Histogram of Ori-

nted Gradients (HOG) [4] , Histogram of Optical Flow (HOF) [13] ,
al auto-encoders for anomaly detection in videos, Pattern Recog- 
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social force model [8] , dense trajectories [14] , and dynamic tex-

tures [7] . However, as pointed by Perlin and Lopes [15] , those fea-

tures, called hand-crafted descriptors, require that some a priori

knowledge have to be incorporated during the training step. Such

knowledge depends mostly on the surveillance target and it is dif-

ficult to define across different applications. As a result, some fea-

tures may perform well in particular domains and drive classifiers

to bad classification accuracy in others, even combining motion

and appearance features [10] . 

Recently, Convolutional Neural Networks (CNNs) have achieved

the state-of-the-art performance for object recognition [16,17] . A

possible reason for such a high performance is that they can learn

features automatically, and with superior discriminatory power

for image representation, when compared to hand-crafted im-

age descriptors [15,18] . However, CNNs are trained in a super-

vised way and they are not directly applicable to anomaly detec-

tion tasks, where only the normal class is known. To overcome

this issue, Auto-Encoders (AEs) can be an interesting option for

one-class classification problems, because it can be trained using

only the normal class. The AE model was proposed by Rumelhart

et al. [19] and, later, popularized by Vincent et al. [20] with the

Stacked Denoising AEs (SDAE), as well as by Krizhevsky and Hin-

ton [21] . AEs were initially used in the image retrieval context,

but very recently their application for video anomaly detection has

emerged [10,18] . However, AEs are not capable of capturing the 2D

structure in image and video sequences, because the input data is

a 1D vector. To cope with this issue, the Convolutional AE (CAE)

architecture seems to be more appropriated [22] . 

In fact, CAEs for anomaly detection in video are still underex-

plored in the recent literature (see, for instance, [18] ). In general,

works that employ AEs cope with extracted features, such HOF and

HOG, mentioned before, and a classifier. Our work proposes a dif-

ferent approach because we use not only the entire frames (and

packages of frames and features), but also, the reconstruction er-

rors to discriminate anomalies in videos of different levels of com-

plexity. 

Thus, the issue addressed in this work is the use of deep CAE

in the anomaly detection context. The working hypothesis is that

a CAE is able to learn normal events in videos, and, therefore,

we hypothesize that the reconstruction error of a frame can be

used for devising an anomaly score, thus allowing CAEs to be used

for one-class classification tasks. As a matter of fact, humans are

very competent to combine intuitively different features, such as

motion and appearance features, in order to interpret the mean-

ing of a video sequence. In this sense, this work also addresses

the question: does fusing high-level information (e.g. the above-

mentioned features) with the input data increase the classifica-

tion performance of a CAE? Finally, although video complexity is

a difficult issue to be objectively evaluated, humans can success-

fully interpret videos within a large range of complexity. However,

deep learning (DL) methods, such as a CAE, may have their perfor-

mance influenced by the underlying spatial complexity of a video.

Therefore, we also propose a measure of spatial video complexity

and investigate the possible relationship between it and the per-

formance of a CAE to detect anomalies in videos. 

In short, with the focus on using CAE in the context of anomaly

detection in videos, the main contributions of this work are: 

1. To propose an anomaly score, derived from the CAE’s recon-

struction error and find out its possible relationship with nor-

mal and abnormal events in a video. 

2. To propose a method for efficient aggregation of high-level fea-

tures with the input frames and investigate how they affect the

CAE’s performance in detecting anomalies. 
Please cite this article as: M. Ribeiro et al., A study of deep convolution
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3. To devise an easy-to-use measure of spatial complexity of a

video and correlate it with the classification performance of a

CAE. 

This paper is organized as follows. Section 2 presents some re-

ated works found in recent literature. Section 3 addresses the fun-

amental topics related to AEs and CAEs. Section 4 presents some

opics about video spatial complexity measure. Section 5 addresses

ppearance and motion filters. Section 6 describes in detail the

roposed methods. Section 7 presents how the experiments were

one, their results and a short discussion. Finally, Section 8 reports

he general conclusions drawn, and suggests future research direc-

ions. 

. Related work and contributions 

Video anomaly detection methods can be categorized according

o the surveillance target, type of sensors, feature extraction pro-

ess, and modeling (learning) methods [1] . Regarding surveillance

arget, the anomaly detection can be performed on traffic, indi-

iduals, crowds, and single or multiple objects. As for the types

f sensors, visible-spectrum cameras are the most frequently used.

he limitation of this type of sensor is the field of view and reso-

ution of the camera [23] . Methods for feature extraction are de-

endent on the surveillance target. There are two main groups:

hose which first perform target tracking by analyzing individual

oving objects in the scene (extracting complex motion features),

nd those that extract features directly from the image at the pixel

evel [24] . 

Jiang et al. [11] proposed three different levels of spatio-

emporal contexts to be extracted in order to perform the tracking

rocess of all moving objects in the video. Brun et al. [25] proposed

 different approach using a string kernel and tracking-based ap-

roach for evaluating the similarity between trajectories and define

 novelty score for different zones in a scene. Similarly, Yang et al.

26] used a trajectory segmentation to perform the tracking pro-

ess and a multi-instance learning to detect abnormal trajectories.

n general, the main limitation of tracking methods in complex and

rowded scenes is the presence of occluded objects, which degrade

he anomaly detection performance [10] . 

On the other hand, features based on appearance and mo-

ion are more robust to occlusion problems in videos [7,27] . The

ost common features are built using 3D spatio-temporal gradi-

nts, HOG and HOF. In [8] , a social force model was proposed in

uch a way that regions with anomalies are found in the abnor-

al frames by means of interaction forces and a bag of words ap-

roach. In [24] , a combination of visual feature extraction and im-

ge segmentation is presented and the method works without the

eed of a training phase. In [28] , histograms of oriented swarms is

pplied, together with HOG, to capture the dynamics of crowded

nvironments. Such appearance and motion model increases the

etection accuracy of local anomalies and have a lower compu-

ational cost, compared to other state-of-the-art methods. Other

patio-temporal statistical measures to characterize the overall be-

avior of the scene are presented in [4,6,27,29–31] . However, as

iscussed in Section 1 , hand-crafted descriptors normally require

hat some a priori knowledge should be incorporated in the train-

ng step. In order to circumvent such limitation, in this work we

ropose a method for efficient aggregation of high-level features

ith the input frames by using a CAE and investigate how they

ffect the CAE in the anomaly detection process. 

Regarding the learning methods, the most used approach is

ased on the one-class classifier, which has been extensively used

or anomaly detection problems. For instance, the one-class Sup-

ort Vector Machine (SVM) was used by Xu and Ricci [10] . Also,

 similar one-class approach, named space-time Markov Random
al auto-encoders for anomaly detection in videos, Pattern Recog- 
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ield model, was devised by Kim and Grauman [5] . There are some

pproaches that include both the feature extraction and the learn-

ng method in a single step. In [32] , a sparse combination is pro-

osed, and it turns the original problem into a few costless small-

cale least square optimization problem. Following a similar idea, a

parse reconstruction and a novel dictionary selection is presented

n [33] . In [27] , a probability model that takes the spatial and tem-

oral contextual information into account is learned. The frame-

ork is unsupervised, without the need to label the training data

o perform the anomaly detection task. It is also possible to in-

lude some a priori knowledge about the application. However, by

sing a different step for the classification process, it is needed to

elect the most appropriate classifier, in addition to specifying the

escriptors in the feature extraction stage. These issues, by them-

elves, are hard to address for given applications. In this work, we

romote the use of CAE in the context of anomaly detection. Differ-

ntly from traditional methods, using a CAE, the feature extraction

s integrated to the classification process. We propose the CAE’s

econstruction error as the “anomaly” score so that one can dis-

riminate between normal and abnormal events in a video. 

DL methods have been investigated for computer vision prob-

ems, and they turn out to be very effective for visual recogni-

ion tasks. Several related works have appeared recently, and they

re categorized according to the basic method that they are de-

ived from, that is: CNN [17] , AE [34] , Restricted Boltzmann Ma-

hines [35] , and Sparse Coding [36] . It is noticed that, in the context

f anomaly detection, DL methods are still in early stages of devel-

pment. In [37] , an unsupervised Deep Belief Network (DBN) was

rained to extract a set of features in a relatively low-dimensional

pace, and a one-class classifier (OCC) was trained with the fea-

ures learned by the DBN. In general, OCCs can be inefficient for

odeling decision surfaces in large and high-dimensional datasets.

owever, by combining the OCC with a DBN, it is possible to re-

uce redundant features and improve the performance for stan-

ard OCC datasets. 

In [10] , an appearance and motion SDAE was proposed to ex-

ract features of video surveillance datasets. Based on the fea-

ures learned, multiple one-class SVM models were used to pre-

ict the anomaly scores and classify each frame. Despite the fact

hat AEs are very efficient methods for given applications, they

annot capture the 2D structure in image and video sequences,

nd the Convolutional AE (CAE) architecture can be more appro-

riated [22] . A similar procedure is presented in [18] , where two AE

SDAE and CAE) were used to learn regular motion patterns from

ideo sequences. The main advantage of this approach is the possi-

ility of capturing regularities (degrees of normality) from multiple

atasets jointly. Nevertheless, the anomalies may be characterized

y motion and appearance features, thus requiring that the input

f the CAE includes such sort of features. In this work, we pro-

ose the aggregation of high-level features, such as optical flow

nd edge filter, with the input frames, in order to allow the iden-

ification of different types of anomalies. At this point, it is im-

ortant to emphasize that CAEs for anomaly detection in video are

till underexplored in the recent literature [18] . 

An important issue for anomaly detection performance to be

eviewed in this work is the spatial complexity of videos. Long

go, Cilibrasi and Vitányi [38] proposed the use of the Kolmogorov

omplexity to measure image complexity. Later, Yu and Winkler

39] showed that the Kolmogorov-based complexity of an image

sually increases with decreasing resolution and that the spatial

nformation is strongly correlated with compression-based com-

lexity measures. From the above-mentioned works, we hypoth-

size that the video complexity can play an important role in the

lassification process, affecting its performance. This can be espe-

ially true for anomaly detection methods, where only one class is

sed during the training step. In this sense, a complexity measure
Please cite this article as: M. Ribeiro et al., A study of deep convolution

nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.07.016 
ay correlate with a priori performance limitation for a particular

ataset. Therefore, we propose a measure of video complexity and

nvestigate a relationship between it and the performance of a CAE

o detect anomalies in videos. 

. Deep learning with auto-encoders 

.1. Auto-encoder 

The AE was introduced by Rumelhart et al. [19] and is regarded

s an unsupervised fully connected one-hidden-layer neural net-

ork to learn from unlabeled datasets. The idea is that the AE is

rained to reconstruct the input pattern at the output of the net-

ork. An AE takes an input x ∈ R 

d and first maps it to the latent

epresentation (hidden layer) h ∈ R 

d ′ using the mapping function

 = f � = σ ( Wx + b) with parameters � = { W , b} . For reconstruct-

ng the input, a reverse mapping of f : y = f �′ (h ) = σ ( b fW 

′ 
h + b ′ )

ith �′ = { W 

′ , b ′ } is used. The parameters W learnt from the in-

ut layer to the hidden layer compose the encoder and the param-

ters W 

′ learnt from the hidden layer to the output layer define

he decoder. The decoder parameters are normally related to the

arameters in the encoder by W 

′ = W 

T [22] . 

Training an AE does not require label information of the input

ata. It uses the back propagation algorithm to minimize the re-

onstruction error e between each input x i and the corresponding

utput y i , by adjusting the parameters of the encoder W and the

ecoder W 

′ , as shown in Eq. (1) : 

 (x , y ) = 

1 

2 N 

N ∑ 

i =1 

‖ 

x i − y i ‖ 

2 
2 . (1)

The drawback of the above formulation is that, without addi-

ional constraints, the final mapping is the identity. There are dif-

erent approaches proposed in the literature to circumvent such

imitation. Denoising AEs (DAE) [34] are one of the most used mod-

ls. A DAE reconstructs the input by using its partially corrupted

ersion, where the corrupted version is obtained by adding some

mount of noise, distributed according to the characteristics of the

nput vector. They can also be built using deep architectures to

earn a compressed representation of the input, by limiting the

umber of hidden units [21] . 

.2. Convolutional auto-encoder 

The main limitation of AE and DAE is that they do not capture

he 2D structure in image and video sequences [22] . Such charac-

eristic results in redundancy in the parameters of the network and

emoves the local information that can be extracted from the im-

ges, which is particularly relevant in the anomaly detection con-

ext, as anomalies are locally positioned in the scene. To cope with

his issue, the CAE architecture was proposed by Masci et al. [22] .

AEs are similar to the ordinary AE, but the difference between

hem is the fact that in the CAE the weights are shared among

ll locations in the input, preserving the spatial locality, similar to

NN [21] . The loss function is similar to the AE, as presented in Eq.

2) : 

 (x , y , W ) = 

1 

2 N 

N ∑ 

i =1 

‖ 

x i − y i ‖ 

2 
2 + λ‖ 

W ‖ 

2 
2 , (2)

here λ is the regularization parameter for the regularization term

 

W ‖ 2 2 , normally used during the training procedure of the CAE. As

n CNNs, CAE architecture contains convolutional, deconvolutional,

ooling, and unpooling layers, as presented along the subsequent

ections. 
al auto-encoders for anomaly detection in videos, Pattern Recog- 

http://dx.doi.org/10.1016/j.patrec.2017.07.016
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3.2.1. Convolutional and deconvolutional layer 

The convolutional layer abstracts the information of a filter into

a scalar value parameterizing the number of maps, the size of

the maps and kernels’ size. It connects multiple input activations

within the fixed receptive field of a filter to a single activation out-

put in the feature map. For the input x , the hidden layer mapping

(latent representation) of the k − th feature map is given by Eq. (3) :

h k = σ ( x ∗ W k + b k ) , (3)

where b is the bias, σ is an activation function (in this work,

the hyperbolic tangent), and symbol ∗ corresponds to the 2D-

convolution. The reconstruction is obtained using Eq. (4) : 

y = σ

( ∑ 

k ∈ H 
h k ∗ ˜ W k + c 

) 

, (4)

where there is one bias c per input channel and H identifies the

group of latent feature maps. ˜ W corresponds to the flip operation

over both dimensions of the weights W . 

The deconvolutional layer performs an inverse operation of the

convolution layer with deconvolutions. The learned filters in the

deconvolutional layers serve as the base to reconstruct the shape

of the input, taking into account the required reshape of the out-

put, as presented in [18] . Convolutional and deconvolutional layers

can be stacked to build deep architectures for CAEs. The filters in

the first layers of the convolution layer (and later layers in the de-

convolution layers) extract low-level features, whilst later layers

can extract high-level features of the input frames, which in this

work, are basically motion and appearance frames. 

3.2.2. Pooling and unpooling layer 

Pooling layer was originally intended for fully-supervised feed-

forward architectures and it down-samples the latent representa-

tion by a constant factor. The idea of the pooling layer is to obtain

translation-invariant representations, allowing more complex rep-

resentations, when combined with convolutional layers. It also re-

duces the spatial size of the representation, reducing the amount

of parameters and computation along the network, by using op-

erations such as the maximum value over non overlapping rect-

angular sub-regions (patches). On the other hand, unpooling layer

performs the reverse operation of pooling and it reconstructs the

original size of each rectangular sub-region. 

4. Spatial video complexity measure 

The spatial information is an useful estimator of spatial com-

plexity in images. The Kolmogorov complexity is an objective spa-

tial information measure with wide theoretical background that

justifies its use as an spatial complexity estimator of an image [39] .

Formally, the Kolmogorov complexity is the length of the shortest

computer program p that produces the string s using a given de-

scription language L on an universal Turing machine U [40] . The

Kolmogorov complexity K ( x ) is defined as: 

K(x ) = min 

p 
{| p| : U(p) = x } , (5)

where | p | is the length of program p . Thereby, the Conditional Kol-

mogorov complexity CK ( x 0 , x 1 ) can be used to determine length of

shortest program that produces output x 1 from input x 0 : 

K(x 0 , x 1 ) = min 

p 
{| p| : U(p| x 0 ) = x 1 } . (6)

A normalized compression rate (NCR) based on the Kolmogorov

complexity can be used to estimate the spatial complexity of an

image or video. However, Kolmogorov complexity is not directly

computable. Consequently, a NCR cannot be computed either, but

it can be approximated using a real-world compressor [38,39] . In
Please cite this article as: M. Ribeiro et al., A study of deep convolution

nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.07.016 
his work, we used the bzip2 algorithm [41] as the real-world com-

ressor. Therefore, NCR ( x ) is defined as: 

CR (x ) = 

s (C 0 (x )) − s (C max (x )) 

s (C 0 (x )) 
, (7)

here C is the real-world compressor, x is an uncompressed image,

 ( · ) is the “size of” operator, C 0 ( x ) and C max ( x ) represent, respec-

ively, no-compression and maximum compression of x , attainable

y C . Therefore, NCR ( x ) is defined in the range 0 ≤ NCR ( x ) < 1. 

. Appearance and motion filters 

.1. Canny edge detector 

Edge detection algorithms include a variety of mathematical

ethods to detect discontinuities. Discontinuities are typically a

et of points at which image brightness changes sharply and they

re normally organized as edges. Edge detectors can capture im-

ortant events and changes that represent objects. 

The Canny edge detector [42] is a popular algorithm for this

urpose. It is an optimal smoothing filter considering several crite-

ia: detection, localization, and minimizing multiple responses to a

ingle edge. It was shown that this filter can be approximated by

rst-order derivatives of Gaussians. This filter is accomplished in

 multi-stage process. First, all image is smoothed by a smoothing

lter, usually a Gaussian filter. After, a 2D first derivative opera-

or is applied to the smoothed image, in order to highlight regions

ith first spatial derivatives. This step finds the magnitude and ori-

ntation of the gradient. Then, a process of non-maximal suppres-

ion is applied along the direction of gradient, which means that

dge points are defined as points where the gradient magnitude

ssumes a local maximum in the gradient direction. Finally, an hys-

eresis thresholding procedure is applied to help noisy edges not to

e broken up into multiple edge fragments. 

.2. Optical flow 

The general idea of the optical flow is to represent some kind of

isplacement or velocity related to the distance that a pixel moves

etween two subsequent frames. Considering that a pixel located

t ( x, y ) in the frame t with the intensity I ( x, y, t ) moves by �x,

y and �t in the subsequent frame, by the brightness constancy

ssumption [43] , one can state that: 

(x, y, t) = I(x + �x, y + �y, t + �t) . (8)

According to [43] , by using the first-order Taylor approximation,

he right-side of Eq. (8) can be rewritten as: 

(x + �x, y + �y, t + �t) = I(x, y, t) + 

∂ I 

∂x 
�x + 

∂ I 

∂y 
�y + 

∂ I 

∂t 
�t. 

(9)

Eqs. (8) and (9) can be combined, resulting in the following

eneral equation: 

∂ I 

∂x 
�x + 

∂ I 

∂y 
�y + 

∂ I 

∂t 
�t = 0 . (10)

By dividing both sides by �t , one can obtain the optical flow

quation in terms of velocities u and v , which define the optical

ow: 

∂ I 

∂x 

�x 

�t 
+ 

∂ I 

∂y 

�y 

�t 
+ 

∂ I 

∂t 

�t 

�t 
= 

∂ I 

∂x 
u + 

∂ I 

∂y 
v + 

∂ I 

∂t 
= 0 . (11)

The main drawback of the optical flow equation is the presence

f two unknowns ( u and v ). There are different algorithms pro-

osed in the literature to solve the equation by introducing addi-

ional conditions for estimating u and v . In this work, we use the
al auto-encoders for anomaly detection in videos, Pattern Recog- 
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Fig. 1. Overview of the proposed approach. 
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Fig. 2. Architecture of the CAE proposed in this work, based on [18] . 

Table 1 

Dimensions of each layer of the CAE. 

Layer Dimensions 

Input and Conv. 1 256 × 57 × 37 

Pool. 1 256 × 28 × 18 

Conv. 2 128 × 28 × 18 

Pool. 2 128 × 14 × 9 

Conv. 3 and Deconv. 1 64 × 14 × 9 

Unpool. 1 128 × 14 × 9 

Deconv. 2 128 × 28 × 18 

Unpool. 2 256 × 28 × 18 

Deconv. 3 and Output 256 × 57 × 37 
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ethod presented by Brox et al. [44] which, besides the brightness

onstancy assumption, introduces two other constraints: gradient

onstancy constraint and discontinuity-preserving spatio-temporal 

moothness constraint. The method was implemented using a pro-

edure based on the iterative reweighted least square method pro-

osed by Liu [45] . 

. Proposed methods 

.1. Overview 

This work is intended to study the applicability of the recon-

truction error of a CAE as an anomaly detector for videos. Also, we

ant to study the effect of appearance and motion filters and the

nfluence of the video spatial complexity in the classification per-

ormance of video anomalies. Fig. 1 presents a high-level overview

f the proposed approach, which will be detailed in the next Sec-

ions. 

Firstly, appearance and motion features are extracted from

rames of video datasets. Features and frames are combined to pro-

uce different scenarios (case studies) that characterize the input

ata to the CAE. A CAE is trained using normal events, and both

ormal and abnormal events are classified using the regularized

econstruction error (RRE). Next, the receiver operating character-

stics (ROC) curve is plotted for several thresholds, and the area

nder the ROC curve (AUC) is used to measure the classification

erformance. The proposed complexity coefficient is calculated us-

ng the normalized compression rate (NCR) of the training and test

et. Finally, the complexity evaluation is inferred by a qualitative

nalysis of the correlation between the spatial complexity coeffi-

ient (SCC) and AUC. 

.2. Data preparation 

All the video datasets used in this work are publicly available.

ach dataset is composed of a number of video clips previously

abeled by their creator as normal, or with anomalies (at some

oint of the video). The frames are sub-sampled from video clips

sing a sliding window and then, both appearance and motion

eatures are extracted. To extract the appearance features we use

he Canny edge detector, described in Section 5.1 , applied to each

rame t . To extract motion features, we use a state-of-the-art op-

ical flow method, described in Section 5.2 , to pairs of subsequent

rames t and t − 1 . Consequently, the first frame of the videos are

gnored. Next, using the appearance and motion features extracted,

our case studies were created by grouping the data into packages

ombining frame, Canny and optical flow features. The four case

tudies are: (1) only frames (FR case), (2) frame and edge (FR+ED

ase), (3) frame and optical flow (FR+OF case), and (4) frame, edge

nd optical flow (FR+ED+OF case). 
Please cite this article as: M. Ribeiro et al., A study of deep convolution

nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.07.016 
.3. CAE architecture 

A fully convolutional auto-encoder (CAE) is used to learn dif-

erent ways of fusing appearance and motion features extracted

rom video sequences. The hypothesis is that the CAE can model

he complex combination of appearance and motion, thus learning

elevant signatures of normal videos with low reconstruction error.

onversely, high reconstruction errors are expected for abnormal

vents (not present in the training set). 

The CAE has a deep architecture organized in different encoder

nd decoder layers. The encoder consists of convolutional layers,

hilst the decoder is based on deconvolutional layers – that are

he reverse of the encoder with no tied weights. Our architecture

s similar to the model recently proposed by Hasan et al. [18] . It is

omposed of three convolutional layers and two pooling layers on

he encoder side, and the same reversed structure in the decoder

ide. The CAE is trained to learn the signature of normal events,

onsidering the optimization presented in Eq. (3) . The architecture

f our CAE-based approach is shown in Fig. 2 . 

In the first convolutional layer, the CAE architecture is com-

osed of 256 filters with stride 4. It produces 256 feature maps

ith resolution of 57 × 37 pixels. Next comes the first pooling layer

hat produces 256 feature maps with resolution of 28 × 18 pixels.

ll pooling layers have a 2 × 2 kernel, performing sub-sampling by

he max-pooling method. The second and third convolutional lay-

rs have 128 and 64 filters, respectively. The last encoder layer pro-

uces 64 features maps of 14 × 9 pixels. The decoder reconstructs

he input by deconvolving and unpooling the input in reverse or-

er. The output of final deconvolutional layer is the reconstructed

ersion of the input. Table 1 summarizes the details of each layer

f the CAE. 

The inputs to the CAE are cuboids X extracted from video clips.

he cuboid is a 3D-structure with different number of channels,

arying between one (single frame) and three (package of a frame

nd appearance and motion features). Each channel is a 2-D array

ith resolution of 235 × 155 pixels. The cuboids are built according

o the case studies described in Section 7 . 
al auto-encoders for anomaly detection in videos, Pattern Recog- 
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6.3.1. CAE training 

Training a CAE does not require the label information of the

input data. However, for the purpose of this work, we used an in-

direct labeling, since all training instances belong to the group of

videos without anomalies. 

The training method uses the back propagation algorithm to

minimize the reconstruction error e shown in Eq. (2) . However,

as mentioned before, in our approach the input data is a cuboid

X . Therefore, the reconstruction error is evaluated over all dimen-

sions. To optimize the loss function, we use stochastic gradient de-

scent with the adaptive sub-gradient method AdaGrad [46] . It com-

putes a dimension-wise learning rate that adapts the rate of gra-

dients by a function of all previous updates in each dimension.

AdaGrad is widely used due to its theoretical guarantee of con-

vergence and empirical success. The weights were initialized using

the Xavier algorithm [47] that automatically determines the scale

of initialization based on the number of input and output neurons.

It keeps the signal in a reasonable range of values through many

layers. 

6.4. Regularization of reconstruction errors 

Similar to [18] , we compute the Reconstruction Error (RE) of

pixels intensity value I at location ( x, y ) in frame t of the video

sequence, as shown in Eq. (12) : 

RE(x, y, t) = ‖ I( X , t) − f (I( X , t)) ‖ 2 , (12)

where f is the model learnt by the CAE and X is the input cuboid.

Given the RE of all pixels of a frame t , we compute the Frame Re-

construction Error (FRE) by summing all the pixel-wise errors, see

Eq. (13) : 

F RE(t) = 

∑ 

(x,y ) 

RE(x, y, t) . (13)

After, we smooth the FRE of the frames using a moving average

filter, according to Eq. (14) , where N is the number of samples of

the moving average. 

S F RE (t) = 

1 

N 

N−1 ∑ 

j=0 

F RE(t + j) . (14)

Finally, the Regularized Reconstruction Error ( RRE ) of a frame is

computed by Eq. (15) : 

RRE(t) = 

S F RE (t) − min (S F RE ) 

max ( S F RE ) − min (S F RE ) 
, (15)

where the min ( S FRE ) and max ( S FRE ) are, respectively, the minimum

and maximum values in the smoothed S FRE found along all frames

of the dataset. 

6.5. Spatial complexity analysis 

In our approach, we propose to use Kolmogorov complex-

ity to estimate the spatial complexity of the video datasets (see

Section 4 ). Considering that Kolmogorov complexity is not directly

computable, we used the bzip2 algorithm [41] as real-world com-

pressor, so as to provide an approximation to NCR ( x ), according to

Eq. (7) . Both train and test video subsets of all datasets were sub-

mitted to the compression algorithm. Then, the spatial complexity

coefficient ( SCC ) was computed according to Eq. (16) , as follows: 

SC C (t rain, test ) = 

1 

NCR (t rain ) × NCR (test) 
, (16)

where train and test are the corresponding datasets. Supposing that

the value computed for SCC ( train, test ) of a given dataset is larger

than that computed for another dataset, this indicates that the for-

mer has a higher spatial complexity than the latter. 
Please cite this article as: M. Ribeiro et al., A study of deep convolution

nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.07.016 
.6. Evaluation measures 

In this work, AUC is used as the measure of the classification

erformance. The AUC demonstrates a comparison that is indepen-

ent of the threshold and provides a direct analysis of the mapping

erformed by the classifier. This facilitates the comparison with

ther studies in the literature, that also use AUC [10,18,4 8,4 9] . The

omputation of the ROC curve is done by using the RRE defined by

q. (15) , considering the true positive rate (TPR) and false positive

ate (FPR). From AUC, one can assess the Equal Error Rate (EER)

hat indicates the point of the ROC curve where the false accep-

ance rate is equal to the false rejection rate, i.e., the best average

erformance. The lower the EER value, the higher the accuracy of

he classifier. 

It is noteworthy that, for one-class classification problems, the

utomatic and complete parameter selection is still an open prob-

em in the literature [50,51] . The main limitation is the presence

f only one class during the training procedure (normal class).

uch limitation implies that only true positive and false positive

ates can be estimated, which compromises cross-validation based

ethods. Accordingly, in order to provide an indication of the

ost appropriate threshold to discriminate between normal and

bnormal frames, different thresholds were compared, consider-

ng the distribution of the RRE from normal examples as the ref-

rence to select the threshold that results in the closest perfor-

ance compared to the EER. The experiments include thresholds

ased on the average RRE ( ̄A RRE ) and k standard deviations ( σ RRE )

rom normal examples. In our case, k = { 1 , 2 , 3 } , therefore, the

ollowing thresholds were considered: θ1 = Ā RRE , θ2 = Ā RRE + σRRE ,

3 = Ā RRE + 2 σRRE , and θ4 = Ā RRE + 3 σRRE . 

Finally, the complexity evaluation is accomplished by analyzing

he correlation between AUC and SCC and establishing its relation-

hip with the classification performance. 

. Experiments and results 

The CAE model proposed in this work was trained using a ver-

ion of Caffe modified by Hasan et al. [18] . Quantitative and quali-

ative evaluations were done using multiple video datasets. Caffe

s an open source DL framework developed by the Berkeley Vi-

ion and Learning Center (BVLC) created by Jia et al. [52] . All ex-

eriments were run in a dedicated GPU server with Intel i7-5820K

PU running at 3.3 GHz, with 32GB of RAM, and equipped with a

vidia K40 GPU accelerator, running Ubuntu 14.04.3 LTS. 

In this work, the three different datasets used are traditional

enchmarks for anomaly detection problems: UCSD pedestrian

ataset [49] (including the two subsets, Ped1 and Ped2), and Av-

nue Dataset [32] . Both are composed of a collection of videos with

rames labeled as “normal” or “anomaly”. According to this binary

lassification, the ground-truth, annotated by a human expert, cor-

esponds to the supposedly anomalous frames. The main features

rom each dataset are presented below: 

• UCSD pedestrian: This video dataset was acquired by moni-

toring a pedestrian walkway using a stationary camera. The

normal frames contain only pedestrians, whilst anomalies in-

clude bicycles, vehicles, skateboarders, and wheelchairs pass-

ing throughout the pedestrians. The subset Ped1 is composed

of about 5500 normal and 3400 anomalous frames, each with

238 × 158 pixels of resolution. The subset Ped2 is composed of

about 346 normal and 1652 anomalous frames of resolution

360 × 240 pixels. 
• Avenue: This dataset contains 16 video clips for training and

21 for testing, comprising 15,328 and 15,324 frames, respec-

tively. These videos were captured at the Chinese University

of Hong Kong campus avenue. In the normal frames there are
al auto-encoders for anomaly detection in videos, Pattern Recog- 
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Fig. 3. (top) RRE plotted along the frames of a video clip. (bottom) Screen shots of the remarkable moments explained in the text. (For interpretation of the references to 

color in the text, the reader is referred to the web version of this article.) 
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people walking by towards different directions, whilst abnormal

frames include people running, throwing objects, and loitering.

The resolution of these frames is 640 × 360 pixels. 

.1. Experiment #1: Reconstruction error for detecting anomalies 

The objective of this experiment is to verify in what extent

 CAE, trained with the minimization of the reconstruction error

given by the loss function of Eq. (2) ) over a set of “normal” frames,

s capable of devising anomalous frames, unseen in the training

tep. 

Fig. 3 (top) shows the plot of the RRE (black line), computed

ith Eq. (15) , for a specific video of the Avenue dataset. The

round-truth, annotated by the creator of the dataset, and the

hreshold for anomaly detection are also plotted (red and blue line,

espectively). Basically, this video shows people walking by in the

ackground and surveillant policemen. In a given moment a men

uddenly enters in the scene and throws a backpack a number of

imes (this is the anomaly), and then leaves. 

Fig. 3 (botton) shows six remarkable frames in which the behav-

or is commented below, so it is possible to correlate with the RRE

lot: 

1. In the beginning there is only people walking in the back-

ground. A policemen slowly enters in the scene around frame

200. It is followed by another policemen, who appears around

frame 325. There are some fluctuations in the RRE under the

threshold, thus indicating normal behavior, except by a short

moment when the second policemen turns around and stands

ahead the camera (frame 375). 
Please cite this article as: M. Ribeiro et al., A study of deep convolution

nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.07.016 
2. One of the policeman becomes occluded by the other and,

around frame 425 the first policeman goes to the background.

The RRE decreases, somewhat following the movement of the

scene. 

3. Around frame 425 a man suddenly enters in the scene from the

right side. There is a rapid increase in the RRE, detecting some

unusual movement. 

4. The man throws up a backpack around frame 470. Conse-

quently, RRE crosses the anomaly threshold, indicating that

such behavior was not present in training set. The man con-

tinues the threatening behavior repeating the action a number

of times, and RRE oscillates accordingly. 

5. Around frame 650 the man stops for a while before throwing

again the backpack. The lack of abrupt movement makes RRE

oscillate downwards, but still above the threshold. 

6. Around frame 775 the man vanishes from the scene. In the re-

maining of the video there is only people walking in the back-

ground. As a consequence, RRE falls down and remains below

the threshold. 

Finally, it is important to highlight that, in average, the best re-

ults were obtained by using the threshold θ2 , that is, Ā RRE + σRRE 

see Section 6.6 ). With this threshold, the classifier performance

orresponds to the EER performance in the ROC curve. This result

an be used as an initial threshold estimation for other datasets in

uture and related works. 

.2. Experiment #2: effect of appearance and motion filters 

The working hypothesis in this experiment is that if one enrich

he input data of the CAE with high-level information, the discrim-
al auto-encoders for anomaly detection in videos, Pattern Recog- 
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Table 2 

AUC/EER results for the four case studies and state-of-the-art over all three video datasets. 

Datasets FR FR + ED FR + ED+OF FR + OF State-of-the-art 

AUC EER AUC EER AUC EER AUC EER AUC EER Reference 

UCSD Ped2 0.814 0.260 0.847 0.245 0.821 0.269 0.584 0.420 0.908 0.170 Xu and Ricci [10] 

Avenue 0.738 0.328 0.772 0.270 0.724 0.310 0.620 0.418 0.702 0.251 Hasan et al. [18] 

UCSD Ped1 0.535 0.480 0.569 0.495 0.585 0.431 0.545 0.475 0.927 0.160 Saligrama and Chen [48] 

Weighted Mean 0.725 0.337 0.759 0.290 0.710 0.323 0.608 0.424 0.747 0.233 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Confusion matrix for the EER result of all datasets. “N” represents the normal class 

and “A” represents the abnormal class. 

UCSD Ped2 Avenue UCSD Ped1 

Predicted Predicted Predicted 

N A N A N A 

N 273 401 N 8468 10 0 0 N 431 531 

A 88 1236 A 3128 2707 A 327 701 

Fig. 4. Normalized compression ratio results for train an test datasets. (For inter- 

pretation of the references to color in the text, the reader is referred to the web 

version of this article.) 

T  

fi  

a

7

c

 

t  

m  

p  

A  

S

 

f  

h  

 

d  

s  

t  

t  

t  
ination between normal and abnormal frames can be increased. In

this case, the high-level information was extracted from the frames

themselves by means of filters (explained in Section 5 ) and, later,

packed together with the raw data. A CAE with the architecture

proposed in Section 6.3 was trained using four different combina-

tions of data to the input layer, such that the input data aggregates

video frames and both, appearance and motion features. 

In this experiment we use single frames (FR case) as the base-

line, and a combination of FR with motion and appearance filters

was compared. First, we combined the original FR with appearance

features (FR+ED case). Second, we combined the original frame FR

with motion features (FR+OF case). Finally, we combined FR with

both, appearance and motion features (FR+ED+OF case). Results for

the four cases are summarized in Table 2 , showing the AUC and

EER. Also, for the sake of comparison, we included the best val-

ues obtained by the state-of-the-art methods. Numbers highlighted

in bold are the overall best result obtained for each dataset. Since

the number of frames of the test sets are different from dataset

to dataset, we also show the mean values for each case, weighted

by the number of frames, thus reflecting the global performance of

classifiers. 

By inspection of Table 2 , one can verify that when appearance

features are added, the AUC tends to be better when compared

with the baseline. On the other hand, when the motion features

are added the AUC tends to decrease. This study suggests that, for

the above-mentioned datasets, adding appearance features to the

raw input data is more relevant than to add motion features. The

inclusion of motion features led to worse results possibly due to

the video dynamics. In general, all videos of the datasets have sim-

ilar motion patterns. People and other objects move most of the

time in similar speed and direction. Then, supposedly, it is more

difficult identify relevant motion patterns characterizing anomalies.

On the other hand, in this context, appearance features are more

relevant for identifying anomalies. 

Table 2 allows a broad comparison between the state-of-the-

art results to ours, for the four cases. For the UCSD Ped2 dataset,

our result (FR+ED case) is close to that obtained by Xu and Ricci

[10] . For the Avenue dataset, our result (FR+ED case) was bet-

ter than those achieved by Hasan et al. [18] . On other hand, for

the UCSD Ped1 dataset, our result is much worse than that pre-

sented by Saligrama and Chen [48] . Notice that all the above-

mentioned state-of-the-art approaches are very elaborate, includ-

ing many schemes such as data-augmentation, division of frames

into patches to reduce iterations between objects, large CAE archi-

tectures, etc. However, no method achieve the best results for all

datasets. 

Table 3 shows another interesting way to present the results of

experiments, at the event level, which is the best classification per-

formance, considering both normal and abnormal classes. The Ta-

ble presents the confusion matrix obtained with the EER threshold.

From the Table, one can easily compute the true positive rate (TPR)

and the true negative rate (TNR) for each dataset: 0.756 and 0.755,

respectively, for the UCSD Ped 2 dataset; 0.730 for both, TPR and

TNR of the Avenue dataset; and 0.569 and 0.568 for UCSD Ped1

dataset. For all cases, it is clear the balance between TPR and TNR.

t

Please cite this article as: M. Ribeiro et al., A study of deep convolution

nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.07.016 
hus, by this way is possible to verify the performance of classi-

ers regarding correct and incorrect hits, taking into account that

ll datasets have unbalanced classes. 

.3. Experiment #3: effect of video spatial complexity in the 

lassification performance 

In this experiment, we investigate the possible relationship be-

ween the video spatial complexity with the classification perfor-

ance of the CAE. It is supposed that, the more spatially com-

lex the video, the harder is for the CAE to detect abnormalities.

 method proposed to access such complexity was proposed in

ection 6.5 . 

According to the previous experiment, the use of appearance

eatures has improved results regarding the baseline. Therefore,

enceforth we used the FR+ED approach for the next experiments.

The first step is to compute the NCR ( Eq. (7) ) for all video

atasets, considering both train and test sets separately. Results are

hown in Fig. 4 . For the UCSD Ped2 dataset the NCR of the train and

est sets were 0.563 and 0.586, respectively. For the Avenue dataset

he NCR of the train and test sets were 0.559 and 0.553, respec-

ively. Finally, for the UCSD Ped1 dataset the NCR of the train and

est sets were 0.376 and 0.354, respectively. 
al auto-encoders for anomaly detection in videos, Pattern Recog- 
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Table 4 

AUC and SCC for all datasets. 

SCC AUC 

UCSD Ped1 3.028 0.895 

Avenue 3.233 0.754 

UCSD Ped2 7.513 0.547 
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Next, the SCC ( Eq. (16) ) is computed for all datasets. And, then,

he spatial complexity is qualitatively estimated by analysing the

ehavior of AUC and SCC. 

Fig. 4 shows that the UCSD Ped2 was the most compressible

ataset, followed by Avenue, and then, by UCSD Ped1. The more

ompressible, the less complex, as seen in Table 4 . In this Table,

ne can observe that, as the complexity of the datasets decrease,

he classification performance of the CAE increase, suggesting a

egative correlation between SCC and AUC. It is also remarkable

he differences in compressibility (given by NCR) between the train

nd test sets, for all datasets. When the test set is more compress-

ble (that is, less spatially complex) than the train set, the classi-

cation performance is higher than when the test set is less com-

ressible (more spatially complex) than the train set. 

. Conclusions 

In this work we proposed a CAE architecture to learn normal

ehavior signatures and, then, use the model for anomaly detec-

ion. Combinations of original frames and appearance and motion

eatures were used as input data to the CAE. The RRE was used

o measure the “anomaly level” of frames, and the classification

erformance was evaluated by using AUC at different thresholds.

he Kolmogorov complexity was proposed as a measure of video

patial complexity. Experiments to validate the methods were per-

ormed using publicly available video datasets. 

In the first experiment, a CAE was trained with a video dataset

o as to devise a normal behavior signature. We showed that the

se of the RRE as a “normality measure” allowed the discrimina-

ion of anomalies. The oscillations of RRE along with frames of a

ideo seem to follow some ongoing events and, by using an ade-

uate threshold, we showed that it is possible to distinguish be-

ween normal behavior and anomalies with reasonable accuracy

or some video datasets. Our experiments suggested the use of
¯
 RRE + σRRE as a “normality threshold”. However, this cannot be

eneralized to other datasets. 

The second experiment investigated how the aggregation of

igh-level information to raw data can improve classification per-

ormance of the CAE. The proposed method allowed the fusion

f multiple channels of information, in our case, appearance and

otion features. Results indicated that some features were useful,

hile others were not. Therefore, as a general conclusion, aggre-

ating high-level information can be valuable, provided the user

an devise which kind of filters can better capture the nature of

he anomalies intended to be detected. 

The third experiment tested a simple method to estimate the

patial complexity of videos by using a real-world compressor. Re-

ults suggested a negative correlation between the complexity and

he classification performance of the CAE. Notwithstanding, it was

ot yet possible to state if the presence of anomalies in a video

ncreases or not its spatial complexity, since it can be affected by

ther factors, such as poor correlation between pixels of an image.

his investigation is left for future work. 

The detection of abnormal behavior in videos, specially in

urveillance videos, is a subject of growing research. Results ob-

ained so far encourage future work towards more experiments

ith other real-world datasets so as to test and improve the meth-

ds here proposed. Indeed, results unveiled interesting open issues
Please cite this article as: M. Ribeiro et al., A study of deep convolution

nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.07.016 
o be explored in the future. Overall, the work suggest that there

s much yet to be done towards a more general and formal defini-

ion of normality/anomaly, so as to support researchers to devise

fficient computational methods to mimetize the semantic inter-

retation of visual scenes by humans. 
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