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Abstract—Anomaly detection in images is a topic of great
interest in Computer Vision. It can be defined as an One-
Class problem, where the goal is to detect deviations from
known patterns, which are defined as normal. Recently, Deep
Learning methods became popular due to their performance
on classification tasks. This works presents an image anomaly
detection classifier based on a previously known method, the
Deep Embedded Clustering, which is based on a Deep Autoen-
coder. We show the effectiveness of the method through three
different experiments. Results suggest that the method improves
classification performance when compared to a Stacked Denoising
Autoencoder in the image anomaly detection context.

I. INTRODUCTION

Anomaly detection, also known as novelty detection, is a
well known problem in the Pattern Recognition area [1]. It
can be defined as an One-class Classification (OCC) problem,
where the normal or expected patterns are previously known,
and the anomalous patterns to be recognized by the classifier
are all patterns that are scarce or not present in the training
data [2]. The classification of anomalous behavior in images
has been a subject of great interest [3]. Particularly, in recent
years, many efforts have been focused to detect anomalous
events in images and in automated video surveillance [4], [5],
[6].

In the OCC problem the known class (normal patterns) is
referred as positive or target class and has a large number
of instances instances (training set). The negative class is
characterized by instances that do not form a statistically-
representative sample [7] in the training set. In this sense,
a novelty detection model can be approached as an OCC
problem [8]. Consequently, we assume that the positive class
of the OCC is the normal class (with known instances) and
the negative class is the abnormal class.

Several OCC methods have been extensively used for nov-
elty detection problems. For instance, the one-class Support
Vector Machine was used by Xu and Ricci [5] to predict
anomalous frames in video. Also, a similar one-class approach,
named space-time Markov Random Field model, was devised
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by Kim and Grauman [9] to detect abnormal activities. In [10],
a probability model is learned for OCC, and the classifier is
unsupervised, without the need to label the training data. It is
also possible to include some a priori knowledge about the
application. In [11], an unsupervised Deep Belief Network
(DBN) was trained to extract a set of features in a relatively
low-dimensional space, and a one-class classifier was trained
with the features learned by the DBN. In general, one-class
classifiers can be inefficient for modeling decision surfaces in
large and high-dimensional datasets. However, by combining
the classifier with a DBN, it is possible to reduce redundant
features and improve the performance for standard OCC
datasets.

Deep Learning (DL) methods have been investigated for
several problems, and turn out to be very effective for recogni-
tion tasks. In fact, DL methods have already achieved the state-
of-the-art performance for object recognition in supervised
classification of images and videos [12], [13]. A possible
reason for such a high performance is that they can learn
features automatically, and with superior discriminatory power
for image representation, when compared to hand-crafted
image descriptors [14]. However, in the context of OCC, DL
methods are still in early stages of development, and this
is one of the motivations of this work. Therefore, Stacked
Denoising Auto-Encoders (SDAEs) [15] can be an interesting
option for OCC problems, since they can be trained using only
the positive class, as presented in [5], [16].

However, SDAEs may be inefficient when applied directly
to OCC problems, since the feature space mapping of the
bottleneck can be sparse, i.e. it does not guarantee a compact
representation of the data in the bottleneck, which is an essen-
tial characteristic in OCC problems [8]. During the training
process, the SDAE’s bottleneck is mapped to minimize the
reconstruction error of all instances, without attempting to
achieve a dense representation in the feature space (bottleneck
space). Thus, positive (normal) and negative (anomalous)
classes can be, eventually, overlapped in the bottleneck rep-
resentation. In fact, this issue hinders the delimitation of the
positive class and compromises the classification performance,
as illustrated in Fig. 1 (a).

Recently, some approaches were proposed to circumvent the
above-mentioned problem, so as to modify the optimization
procedure used in SDAEs, by simultaneously minimizing data
reconstruction and imposing compactness in the bottleneck
representation [17], [18]. Such methods were initially devel-
oped for clustering problems, where data representation and
cluster centers are updated jointly, from which a stable perfor-978-1-5386-3734-0/17/$31.00 c©2017 IEEE



Fig. 1. General Overview of the Proposed Method. (a) With the SDAE, the normal class is overlapped by the anomaly class, making the discrimination
between these classes more complex. (b) By including the DEC in the SDAE, it is possible to include compactness in the representation of normal class,
improving the discrimination between normal and abnormal classes. The presented classes and mapping are merely illustrative.

mance of clustering is achieved, making the new representation
more compact with respect to the cluster centers. Particularly,
the method proposed by [18] consists in performing the
clustering procedure using data mapped by the bottleneck
of a SDAE. The proposed algorithm – defined as Deep
Embedded Clustering (DEC) – clusters data by simultaneously
learning a set of cluster centers in the feature space and the
parameters (weights) of the SDAE that maps data points into
the bottleneck with compact representation, as illustrated in
Figure 1(b).

Inspired by the method presented in [18], in this work
we propose the use of the DEC as an OCC in the novelty
detection context, mainly due to its compactness characteristic,
as summarized in Fig. 1. The working hypothesis is that
DEC is able to learn normal patterns (positive class) and,
therefore, we hypothesize that the bottleneck can be used for
discriminating anomalous pattern (negative class). Differently
from OCC methods using SDAEs [5], the feature extraction in
the bottleneck provides compact representations with the DEC
procedure, improving the final classification performance –
which is the main contribution of this work. We present the
advantages of the compactness in the bottleneck by comparing
the classification performance of the standard SDAE and
the DEC using three image datasets (STL-10, MNIST and
NOTMNIST). Additionally, some relevant steps of the DEC
procedure are analyzed and discussed.

This paper is organized as follows. Section II addresses
the fundamental topics related to OCCs, SDAEs and DEC.
Section III describes in detail the proposed method. Section IV
presents how the experiments were done, their results and
a short discussion. Finally, Section V reports the general
conclusions drawn, and suggests future research directions.

II. THEORETICAL ASPECTS

A. One-Class Classification Methods

There are three different approaches to use one-class clas-
sifiers in novelty detection problems [8]. The first is based

on models that estimate the probability density function of
input patterns (density methods). From the probability density
function, it is possible to establish if a given input pattern is
a novelty or not, based on its probability value. In this first
group, parametric estimators based on Gaussian Mixture Mod-
els and nonparametric estimators based on Parzen Windows
can be highlighted [8].

The second group comprises models with imposed bound-
aries upon the training dataset, assuming an unknown distribu-
tion. Therefore, a boundary optimization problem is solved in
order to represent the data. In this group, techniques based on
Nearest Neighbor and Support Vector Data Description (One-
Class Support Vector Machine) can be highlighted.

Finally, the third group concerns reconstruction methods. In
this group, k-means clustering and autoencoder (AE) are the
most used techniques [8]. From a k-means representation, it
is possible to define if a given input pattern is a novelty or
not, based on the distance from the input pattern to previously
defined clusters. As for the autoencoder, the reconstruction
error can be used as a metric to define the novelty degree.
In the following subsections, the autoencoder for OCC is
detailed.

B. AE and Stacked Denoising Auto-Encoders

The autoencoder model was introduced by Rumelhart et
al. [19] and, later, popularized by Vincent et al. [15] with the
SDAEs. AE is regarded as an unsupervised fully connected
one-hidden-layer neural network to learn from unlabeled
datasets. The idea is that the AE is trained to reconstruct the
input pattern at the output of the network. An AE takes an
input x ∈ Rd and first maps it to the latent representation
(hidden layer) h ∈ Rd′

using the mapping function h = fΘ =
σ(Wx + b) with parameters Θ = {W, b}. For reconstructing
the input, a reverse mapping of f : y = fΘ′(h) = σ(W’h+b′)
with Θ′ = {W’, b′} is used. The parameters W learnt from
the input layer to the hidden layer compose the encoder and
the parameters W’ learnt from the hidden layer to the output



layer define the decoder. The decoder parameters are normally
related to the parameters in the encoder by W’ = WT [20].

Training an AE does not require label information of the
input data. It uses the back propagation algorithm to minimize
the reconstruction error e between each input xi and the
corresponding output yi, by adjusting the parameters of the
encoder W and the decoder W’, as shown in Equation 1:

e(x,y) =
1

2N

N∑
i=1

‖xi − yi‖22. (1)

The drawback of the above formulation is that, without ad-
ditional constraints, the final mapping is the identity. There are
different approaches proposed in the literature to circumvent
such limitation. Denoising AE (DAE) [21] are one of the
most used models. A DAE reconstructs the input by using
its partially corrupted version, where the corrupted version
is obtained by adding some amount of noise, distributed
according to the characteristics of the input vector. Deep
architectures can be built stacking several DAEs as a SDAE.
The SDAE training process is performed in two steps. First, a
pretraining is performed layer by layer, where they are learned
as a greedy-wise training. Later, a fine-tuning process is used
to adjust weights for a better quality reconstruction.

C. Deep Embedded Clustering

The deep embedded clustering used in this work applies the
method presented in [18]. Basically, it performs the clustering
using data mapped by the bottleneck (feature space) of a deep
autoencoder network. The proposed algorithm clusters data by
simultaneously learning a set of K cluster centers {µk}Kk=1

in the feature space and the parameters (weights) of the deep
autoencoder that maps data points into bottleneck.

Given the initial mapping provided by the autoencoder and
the initial K cluster centers {µk}Kk=1, the idea of the algorithm
proposed by [18] is to iteratively alternate between two main
steps: compute a soft assignment between the embedded points
and the cluster centroids; update the deep mapping (weights
of the autoencoder) and refine the cluster centroids ({µk}Kk=1)
by learning from current high confidence assignments using an
auxiliary target distribution.

To do so, the optimization is performed by minimizing the
Kullback-Leibler (KL) divergence loss between soft assign-
ments qij and auxiliary distribution pij , as proposed by [22],
[23]:

L = KL (P ‖Q ) =
∑
i

∑
j

pij log
pij
qij
. (2)

The soft assignment is defined as the probability of assign-
ing a mapped sample zi (in the bottleneck) to cluster µk, i.e.:

qij =

∑
k

(
1 + ‖zi − µk‖2

)
1 + ‖zi − µj‖2

. (3)

On the other hand, the auxiliary distribution is calculated
using soft assignments with the following relationship:

pij =

q2
ij/
∑
m
q2
mj∑

k

(
q2
ik/
∑
m
q2
mk

) . (4)

Using the proposed auxiliary distribution, it is possible to
improve cluster purity, put more emphasis on data points
assigned with high confidence, and normalize loss contribution
of each centroid to prevent large clusters from distorting the
hidden feature space [18].

The cluster centers are then optimized jointly to the au-
toencoder parameters using Stochastic Gradient Descent with
momentum and the standard backpropagation to compute
parameter’s gradient. The gradients are defined as:

∂L

∂zi
= 2

∑
k

(pij − pij) (zi − µk)(
1 + ‖zi − µk‖2

) , (5)

∂L

∂µk
= −2

∑
i

(pij − pij) (zi − µk)(
1 + ‖zi − µk‖2

) . (6)

III. PROPOSED METHOD

A. Overview

This work studies the effects of the Deep Embedded Clus-
tering [18] method applied to the one-class image classification
problem. Figure 2 shows an overview of the proposed method.
Each step of the method is explained in the following Sections.

Fig. 2. Overview of the proposed method. In the train phase, only the known
class, i.e., the normal class, is used to train the SDAE. The DEC network
is initialized using the weights learned by the SDAE encoder and is further
trained to simultaneously learn cluster centers and feature representations. The
test phase consists of forwarding the test image set through both networks
and use the bottleneck features to evaluate them separately. We measure the
similarity between feature vectors and cluster centers by using Equation 3.
Evaluation is done by using the area under the ROC curve.



First, data from different datasets are re-labeled as nor-
mal or abnormal according to different criteria, discussed in
Sections IV-C, IV-D and IV-E. Then, a SDAE is trained for
each experiment using the re-labeled normal class. Next, the
SDAE is further trained using the DEC method. Last, the
bottleneck data is used to classify both normal and anomalous
images according to a similarity measure to the nearest cluster
centroid. The network was implemented using the Caffe Deep
Learning Framework [24], as provided by [18].

B. Training the Stacked Denoising Autoencoder

The SDAE chitecture proposed by [18] was trained layer
by layer followed by a fine-tuning step. The encoder contains
three hidden layers, with 500-500-2,000 neurons in each layer,
respectively, followed by a bottleneck layer, which has a
variable amount of neurons according to the experiment. The
decoder follows the reverse order of neurons presented in the
encoder. Inputs are corrupted by using dropout layers [25] with
a probability of 20%. Weights are initialized using a Gaussian
distribution, and the Rectified Linear Unit (ReLU) is used
as the activation function. The Stochastic Gradient Descent
method is used to perform the optimization.

C. DEC optimization

In this step, we use DEC to simultaneously learn cluster
centers and map the features into a compact representation.
This is done by using the weights learned during the SDAE
training to initialize a Deep Neural Network with the same
architecture of the SDAE, discarding the decoder part [18].

In this phase, the network is trained for 150 epochs. How-
ever, we evaluate the model after every epoch to study the
effects of the method throughout the whole training phase.
We only report the results obtained in the best number of
epochs for each experiment. The number of groups to cluster
the data was set according to the experiment being performed,
as explained in Section IV.

D. Classification and Evaluation

The classification task has been done using a similarity
score between the bottleneck features and the learned centroids
(as shown in Equation 3). For each test image, we compute
the similarity score between the bottleneck data and every
cluster center. This score provides means to classify whether
an instance belongs to a group, i.e., is close enough to a
centroid. Only the centroid with the highest score is used to
classify each sample. The Area under the Receiver Operating
Characteristic Curve (AUC) is used to measure the quality
of the classifier. This allows the evaluation of a classifier
regardless of the classification threshold.

To evaluate the standard SDAE, we cluster the bottleneck
data using the k-means++ method [26], initialized 100 times.
The number of clusters parameter was set according to each
experiment.

IV. EXPERIMENTS AND RESULTS

A. Datasets

The STL-10 dataset [27] originally contains 96x96 pixels
color image data divided into 10 classes: airplane, bird, car,
cat, deer, dog, horse, monkey, ship, truck. The dataset is
divided as follows: unsupervised train, containing 100, 000
unlabeled instances from all 10 classes and some variations;
supervised train, containing 500 labeled images per class;
test, containing 800 images per class. In this work, only the
supervised train set and the test set were used.

MNIST is a well known handwritten digit recognition
dataset introduced in [28]. The handwritten digits range from
0 to 9 (10 classes). The train set contains 60,000 images,
whereas the test set contains 10,000 images. Images are in
gray scale and have a dimension of 28×28 pixels.

NOTMNIST is a printed character dataset containing 10
classes of letters from A to J. It contains 200,000 images in
the training set, 10,000 images in the validation set and 10,000
images in the test set. Images are in grayscale and have a
dimension of 28×28 pixels. Only the test set was used in this
work.

B. Experiments

All three experiments reported below were modeled as an
OCC problem. The SDAE is trained using only the known
class, i.e., the normal class. Class labels were used only during
the evaluation phase.

C. Experiment #1: MNIST 8-0

In this experiment we divided the MNIST dataset as follows:
digits 0 and 8 were considered the normal class, and the
remaining data were considered anomalous. Therefore, final
train and test sets had 11,774 (normal) and 10,000 images
(20% normal and 80% anomalies), respectively. The number
of neurons in the SDAE bottleneck layer was set to 10 and
the number of groups to 2.

Figure 3(a) shows the ROC curves resulting from the SDAE
before and after applying the DEC method. The best result
was obtained in the 9th refinement epoch. Results show a
small improvement over the standard SDAE (AUC increased
0.0432).

D. Experiment #2: MNIST – NOTMNIST

In this experiment we merged the MNIST and NOTMNIST
datasets. Classes that contain numbers (MNIST) were con-
sidered normal, whereas the printed characters (NOTMNIST)
were considered anomalies. Both datasets were normalized in
the same range before applying the method. The final train and
test sets had 60,000 images (normal) and 20,000 images (50%
normal and 50% anomalies), respectively. In this experiment,
the number of neurons in the SDAE bottleneck layer was set
to 10 and the number of groups to 10.

Figure 3(b) shows the ROC curves before and after applying
the DEC method to the SDAE. The best result was obtained
after 41 epochs. A significant improvement has been achieved
(AUC increased 0.2016).



(a) (b) (c)

Fig. 3. ROC curves using SDAE and DEC (best epoch) for each experiment. Figure 3(a) shows the ROC curves for the experiment #1. Figures 3(b) and 3(c)
show the ROC curves for the experiments #2 and #3, respectively.

(a) (b)

Fig. 4. Two-component PCA representation of the test dataset used in experiment #2. Each dot represents an image from the dataset. Figure 4(a) shows the
normal and anomalous bottleneck features using the SDAE. Figure 4(b) shows the features after 41 epochs of training using the DEC method. Some regions
may appear overlapped due to the distortion caused by the two-dimensional PCA representation.

In order to visualize results, we used Principal Component
Analysis (PCA) in the data, and the first two components
were plotted in Figure 4. The feature representation of the
default SDAE is shown in Figure 4(a). Figure 4(b) shows the
bottleneck features in epoch 41. The figure shows that after
refinement using DEC, the normal class (green) forms more
compact clusters, making the anomalies (red) more discernible
from the normal patterns.

E. Experiment #3: STL10

This experiment uses the STL-10 train and test sets. The
data was divided as follows: classes containing animals were
considered normal (6 classes), while the remaining classes
were considered as anomalies (4 classes). The final train and
test sets had 3,000 (normal) and 8,000 images (60% normal
and 40% anomalies) images, respectively. In this experiment,
the number of neurons in the SDAE bottleneck layer was set
to 100 and the number of groups to 6. We choose 100 neurons
instead of 10 to compensate for the complexity of the images
in this dataset.

Figure 3(c) shows the ROC curves with and without the
DEC method. The best result was obtained after 77 epochs. An
improvement was observed in terms of AUC (AUC increased
0.053).

The overall results for all experiments are shown in Table I.
The DEC method leads to improvements for all experiments
performed in this work. The most significant result was that
of the experiment #2.

TABLE I
EXPERIMENTAL RESULTS (AUC) FOR THE SDAE AND DEC IN THREE

DIFFERENT EXPERIMENTS.

Experiment SDAE DEC
#1 - MNIST 0.8276 0.8708
#2 - NOTMNIST 0.7450 0.9466
#3 - STL10 0.6364 0.6894

V. CONCLUSIONS

The anomaly detection problem in images has been a subject
of growing interest in recent years. Anomaly detection can be
defined as an OCC problem, where the objective is to detect
deviations from the normal or expected patterns. This work
presented a study of the applicability of the Deep Embedded
Clustering [18] method in the image OCC problem.

The working hypothesis is that by having compact represen-
tations in the bottleneck, anomalies become more distinguish-
able from normal patterns. In this work, we have studied the
importance of having compact representations when solving
an OCC problem, and found that it can significantly improve
the classification performance.



One way to achieve compactness in the representations is by
using DEC. The method automatically learns cluster centers
and compact feature representations in the normal class, al-
lowing the classifier to discriminate anomalous instances more
efficiently. By exploring this compactness characteristic, our
experiments have shown a better separability between normal
and anomalous patterns as compactness increases.

We compare the method with a Stacked Denoising Au-
toencoder in three different experiments using different public
image datasets. In the first experiment, we re-labeled the
MNIST dataset such as 0 and 8 digits belong to the normal
class and the remaining of the digits belong to the anomaly
class. In the second experiment, we merged the MNIST and
NOTMNIST datasets such as that numbers belong to the
normal class, whereas printed characters belong to the anomaly
class. The third experiment uses a re-labeled STL-10 dataset,
such that classes containing animals belong to the normal
class, and non-animals belong to the anomaly class.

The results obtained in this work suggest that the Deep
Embedded Clustering method is promising anomaly detection
context. Future work comprises refinements of the method and
its application to real-world anomaly detection datasets. Also,
a Hybrid Autoencoder architecture containing convolutional
layers should also be explored in future works.
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