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Abstract— This paper presents a methodology to perform
multi-class image classification using Gene Expression Pro-
gramming(GEP) in both balanced and unbalanced datasets.
Descriptors are extracted from images and then their di-
mensionality are reduced by applying Principal Component
Analysis. The aspects extracted from images are texture, color
and shape that are, later, concatenated in a feature vector.
Finally, GEP is used to evolve trees capable of performing
as classifiers using the features as terminals. The quality of
the solution evolved is evaluated by the introduced Cross-
Entropy-Loss-based fitness function and compared with stan-
dard fitness function (both accuracy and product of sensibility
and specificity). A novel GEP function linker Softmax-based is
introduced. GEP performance is compared with the obtained
by classifiers with tree structure, as C4.5 and Random Forest
algorithms. Results show that GEP is capable of evolving
classifiers able to achieve satisfactory results for image multi-
class classification.

I. INTRODUCTION

Image classification is the process of separating images
according to their content. This task may consist of a series of
steps as image pre-processing, image segmentation, feature
extraction, dimensionality reduction and image classification
[1]. During the years, several methods have been proposed
to perform image classification, pursuing to achieve better
classification performances.

Evolutionary Computation (EC) approaches have been
used mainly for optimization problems. However, some clas-
sification problems can also be dealt with EC, by evolving
Decision Trees, nonlinear classifiers, symbolic regression
models, rule induction systems, among others. In this work,
we use the Gene Expression Programming (GEP) algorithm
[2], which creates computer programs that can represent
Decision Trees. GEP has elements from both Genetic Al-
gorithms (GA) and Genetic Programming (GP), since it uses
a population of individuals which encoded chromosomes are
further transformed as expression trees.

GEP has been applied to solve classification problems in
several domains. For instance, [3] proposed a GEP-based
system for data mining. They used a multiple master-slave
for parallel processing of large-scale data and classification
was accomplished as a multi-objective problem. Overall

results indicated that the proposed system achieves better
predictive accuracy with shorter rules, when compared with
the classical C4.5 method. Also, [4] proposed a multi-
class classification rules were evolved with GEP using the
one-against-all learning method, where the fitness function
considers the rule consistency gain and completeness. An-
other the approach, presented by [5], also aimed at solv-
ing multi-class classification problems by evolving GEP
Expression-Trees (ET) using the eigenvalue centroid of each
class and the eigenvalue-power function, where the fitness
function is composed by the similarity and dissimilarity of
the classes. Furthermore, the Unconstrained Linear Encoded
GEP (UGEP) was proposed by [6]. Basically, it is based on
dynamically adjusting the amount and length of the genes
that compose the individuals during the evolution process
with a fitness function based on the accuracy.

Recently, GEP has gained attention from multi-
disciplinary researchers. For instance, a novel distributed
bio-inspired approach that uses GEP to evolve rules for two-
dimensional Cellular Automata (2D-CA) was proposed by
[7] which, in turn, was used to deal with a computationally
expensive problem, protein structure prediction, that is
considered to be one of the most important open challenges
in Bioinformatics. Also, [8] applied GEP to predict lung
cancer, using as fitness function some metrics commonly
used in Machine Learning, such as sensitivity, specificity,
positive and negative predictive values. Regarding image
related problems and EC algorithms, an approach based
on Genetic Programming (GP) applied to multi-class
classification was recently proposed by [9], where the
quality of the candidate solutions was evaluated using
the product of sensibility and specificity. For the final
classification, the approach is based on the assumption that
the outputs of the GP trees belong to a normal distribution,
and then a Probability Density Function (PDF) is used
for classifying the output according to the probability of
it belongs to a given class. Furthermore, [10] presented a
hybrid approach based on Artificial Neural Networks and
GEP to classify whether a pixel corresponds to an image
region containing water or not, considering the spectral



features of the pixels. In addition, [11] proposed a GEP
to evolve a classifier of crop data obtained from satellite
images. Notwithstanding, it is important to recall that GEP
is still under-explored for multi-class image classification,
despite the simplicity and comprehensibility of the decision
trees generated by it.

The usual approach for tackling multi-class classification
problems is the use of the one-against-all strategy as well as
measuring quality based on well-known metrics commonly
used in Machine Learning. In this work we propose a
novel GEP approach, introducing a fitness function based
on the Cross-Entropy-Loss (CEL), as well as a GEP linker
based on the Softmax function. These functions are widely
used in Deep Neural Networks and were chosen aiming at
improving the classification performance when faced with
highly unbalanced multi-class datasets.

In this work, several subjects were addressed, and the main
contributions are:
• To introduce the use of GEP in the context of multi-

class image classification;
• To propose the use of Softmax-based function as the

GEP linker;
• To present a fitness function based on the Cross-

Entropy-Loss to evolve unbiased classification rules for
highly unbalanced datasets.

This paper is divided into four sections. Section II presents
a thorough description of image classification, feature extrac-
tors, dimensionality reduction and GEP. Section III describes
in details the proposed methodology. Section IV presents
the experiments and results achieved in this work. Finally,
section V presents conclusions and future research directions.

II. BACKGROUND

A. Image Descriptors

Images can be described through numerical vectors called
descriptors (or feature vectors), obtained by means of a
feature extractor. Descriptors are commonly used as input
to a classifier and, there are four categories of descriptors:
texture, color, shape, and motion [12]. The last one is used
for moving images (videos). Therefore, in this work, we
focus on the texture, color, and shape descriptors presented
below.

A powerful texture descriptor is the Local Binary Patterns
(LBP), proposed by [13]. Due to its simplicity, LBP is fastly
computed, and is very robust to illumination changes.

Possibly, the most popular descriptor for representation
of the color is the color histogram (HST). It describes
the distribution of the colors of an image by counting the
number of pixels within a range of the space color. It is the
great advantage of being invariant to translation, rotation and
viewing angle [14].

Shape descriptors can be classified in two categories, local
and global. Local features describe portions of the object or
are derived of a partial analysis of an image, accomplished
by analyzing its segments. Some local shape features are
the corners, points of curvature and turning angle. Global

features describe properties of the entire shape of the objects
in the image. Hu Moment Ivariants (MOM)[15] are very
efficient used to characterize the outline of an object in an
image, and it is used in this work.

B. Principal Component Analysis

Visual descriptors may have a high dimensionality. For
instance, in the paper that introduces Over-Complete Local
Binary Patterns (OCLBP) [16], which is a variant of LBP, the
authors propose a configuration for the descriptor that gives
as result a 40887-dimensional feature vector for an image of
size 150×80.

Since the predictive power of an algorithm reduces as
the dimensionality of a fixed number of training samples
increases [17], high-dimensional data is likely to negatively
affect the performance of a classifier. To avoid this issue, an
alternative is to apply some transformation on the original
data in order to reduce its dimensionality whilst aiming at
maintaining most of the information. Principal Component
Analysis (PCA) [18] accomplishes this task by performing
an orthogonal transformation on a set of correlated variables
of a dataset, so as to convert them into linearly uncorrelated
values, known as Principal Components (PCs). The number
of PCs is usually smaller than the original number of
variables.

C. Gene Expression Programming

GEP is a variant of Genetic Programming, and was created
by [19]. In GEP, individuals are fixed-length strings that are
later expressed as non-linear entities called Expression Trees
(ETs), which, in turn, may have different sizes and shapes.
An ET is, basically, the program evolved by the algorithm.

GEP chromosomes are relatively small entities that can
be modified by genetic operators (mutation, transposition and
recombination, for instance), thus generating diversity so that
the evolutionary process can continue for many generations,
aiming at finding well-fitted solutions. Each position of a
chromosome encodes a function (e.g., addition, subtraction,
root square) or a terminal (variable of the problem). GEP
genes, understood also in terms of Open Reading Frames
(ORFs), are structurally organized as a head an a tail. The
head can have elements from the functions set and the
terminals set, whilst the tail can have terminals. Thus, based
on the ORF principle, a gene can have coding and non-coding
regions, leading to the creation of valid, but differently sized,
programs.

In GEP there is a mapping between the genotype and the
phenotype, similarly as Genetic Algorithms. This mapping
is done by transcribing the chromosome into a variable-size
Expression Tree (ET), following the Karva language [2],
where each gene is trascribed into a sub-tree. Then, all sub-
trees are joined together by a linking function (commonly
mathematical or boolean functions), composing the ET that
represents a candidate solution to a given problem. This is
analogue to the aggregation of different protein subunits into
a multi-subunit protein.



Since GEP is an EC approach, the quality of the candidate
solutions is measured by a fitness function. For instance, the
fitness functions commonly used with GEP are: number of
hits, accuracy, the product of sensitivity and specificity, Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) [3]

III. METHODOLOGY

An overview of our approach is shown in Figure 1. The
first two elements are based on [9]: the feature extraction
method (see Section II-A) and the use of PCA (see Section
II-B) for dimensionality reduction. First, features describing
the texture (LBP), color (HST), and shape (MOM) of the
images are extracted from the dataset. The extracted features
are comprised in a high-dimensional feature vector which,
in turn, is reduced by applying PCA. This is useful since
the use of a lower data dimension reduces the search space
for the GEP algorithm. Following, GEP is used to evolve
simple programs capable of classifying images. Finally,
their performances are evaluated and compared with other
classifiers, such as the C4.5 [20] and Random Forest, that are
usual baselines for data classification. When compared with
previous works, our approach presents two novel contribu-
tions: (1) a fitness function based on the Cross-Entropy-Loss
to evaluate the quality of the solution, and (2) a novel GEP
linker based on the Softmax function that gives a probability
for each class. Moreover, we propose an evaluation procedure
that uses not only the accuracy (as in [9]), but also Sensibility
(Se) and Specificity (Sp).

The next Section presents in details the feature extraction
and dimensionality reduction processes. Also, the imple-
mentation of the GEP is presented in Section III-B. the
metrics that were used for evaluating the performance of
the classifiers.

A. Feature Extraction and Dimensionality Reduction

To create a feature vector of each image, we used LBP,
HST and MOM for describing its texture, color and shape,
respectively. All these features were normalized to a common
scale, in the range [0..1] and then concatenated to form a
single feature feature vector with 2592 elements: 256 from
LBP, 768 from HST and 1568 from MOM.

Both LBP and HST features are extracted by using the en-
tire images as input for the feature extractors. As for MOM,
since it describes the moments of different elements (regions
of interest) within an image, a segmentation technique was
applied to obtain those elements.

The MOM features were then extracted from each seg-
mented element. Finally, those feature vectors are concate-
nated in order to create the final MOM descriptor of the
entire image. The process of extraction of the MOM features
for an image is described as follows. First, the image is
converted into grayscale, which is an image composed of
shades of gray in the range [0..255]. A Gaussian blur filter
is then applied and Canny detection is performed [21]. Next,
the edge of each object is obtained. Finally, the Hu moment
invariants of the edges are calculated.

Since the feature vectors obtained through the feature
extraction process are high-dimensional, it is necessary, as
mentioned before, to reduce their dimensionality. PCA is
applied to transform the original variables set into a new
ortogonal coordinates system in which they are represented
by Principal Components (PCs).

The more PCs are considered, the more the cumulative
variance, given by the PCA eigenvalues, is explained. How-
ever, for exploratory purposes, a threshold λ should be set
to determine the number of elements that will be used as
terminals by the GEP algorithm. The number of PCs are
chosen considering the accumulated. The threshold λ was set
around of 50%, meaning that first PCs chosen will represent
at least 50% of the cumulative variance.

B. Implementation of the GEP Algorithm
1) Encoding and Initial Population: In this work, GEP

chromosomes are composed by 5 genes, each coding a sub-
ET implicitly specialized on giving as result a numeric value
related to one of the classes of the problem. That is, the sub-
ET coded by the first gene gives a score related to the first
class (class 0). The second sub-ET gives a score related to
the second class (class 1), and so on.

Sub-ETs must be connected by means of a custom linker
function. It receives the output of each sub-ET and calculates
the probabilities of an instance to belong to each class. This
is accomplished by the Softmax function, shown in Equation
1. These probabilities are real values in the range [0..1] that
add up to 1. The label of the class with the highest probability
is then returned as the final classification of the tree.

P (class = j|x) = exj∑
i=1

exi
, (1)

where xj is the output of the j-th sub-ET.
Also, the initial population is randomly initialized.
2) Fitness Function: This work proposes a novel ap-

proach, based on the Cross-Entropy Loss (CEL), which is
a cost function that allowed us to exploit the use of Softmax
as the linker function.

Since GEP is designed for maximizing the fitness function
and CEL has to be minimized in order to improve the
classification measure of the model, we used the inverse of
the CEL, as shown in Equation 2.

CEL = −
1∑

i y
′
i log(yi)

, (2)

where yi is the probability that the sample belongs to the
class i and y′i is the ground truth label.

Besides CEL, two other fitness functions were tested to
evolve GEP trees: Accuracy and the product of Sensibility
(Se) and Specificity (Sp). Accuracy measures how well a
classifier performs without taking into account the distri-
bution of the instances among the classes. It is calculated
by dividing the number of correct classifications C by the
number of samples N (Acc = C/N ). Details regarding the
product of Se and Sp are presented Equations 4 and 5,
respectively.



Fig. 1. Overview of the proposed approach

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS

All experiments were carried out using open source soft-
ware, thus making them reproducible by anyone. GEP was
implemented using the PyGEP Python library1, version 0.3.0.
The Open Source Computer Vision Library (OpenCV)2 ver-
sion 2.4.9, includes all the feature extraction algorithms used
for this work. Functions from the scikit-learn library3 were
used to implement the PCA algorithm. C4.5 and Random
Forest algorithms, used for performance comparison, were
applied using Weka4 version 6.3.13. Sections IV-D and IV-E
present the experiments and results with highly unbalanced
and balanced datasets, respectively. Next, a comparison with
well-known classifiers is presented in Section IV-F.

A. Evaluation Metrics

The results obtained by the classifiers were evaluated with
three metrics. The first one is the weighted mean overall
Accuracy considering all classes (wAcc). It is based on
the mean overall accuracy taking into account the class
distribution of the samples. It is shown in Equation 3.

wAcc =

∑
i fi ·Acci
N

(3)

where fi and Acci are the frequency and accuracy of the
class i, respectively, whilst N is the number of samples.

The product of Sensibility and Specificity (Se× Sp) and
the number of Nodes of the model (our simplicity metric)
were the other two metrics used.

Sensibility is also known as True Positive Rate. It mea-
sures the proportion of true positives that are classified
as such by the model. Conversely, Specificity is the True
Negative Rate, and measures the proportion of true negatives
that are classified as such. They are presented in Equations 4
and 5, respectively, where TP is the number of True Posi-
tives obtained by the classifier, FN is the number of False

1Available at http://code.google.com/p/pygep
2Available at http://opencv.org
3Available at http://scikit-learn.org
4Available at http://www.cs.waikato.ac.nz/ml/weka/

Negatives, TN is the number of True Negatives and FP is
the number of False Positives.

Se =
TP

TP + FN
(4) Sp =

TN

TN + FP
(5)

Since Se×Sp is designed to measure the performance of
binary classifiers and we deal with a multi-class classification
problem, it was calculated by using a one-against-all strategy.

B. Datasets

Two public-domain image datasets were used in this work:
a reduced version of the Caltech101 dataset5 and the STL-
10 dataset6 Our version of the Caltech101 is composed of
five subsets from the original dataset. Since most categories
of the dataset have about 50 images, we used the first five
categories with the largest amount of images: Airplanes (800
images), Backgrounds (467), Faces (435), Motorbikes (798)
and Watches (239). For standardization purposes, all images
were scaled to 128×128 pixels. The dataset was divided into
train (80% of the samples) and test (20%) sets. The STL-
10 dataset is a balanced dataset that contains 10 classes:
airplane, bird, car, cat, deer, dog, horse, monkey, ship and
truck. We only used the labeled part of the dataset, which
is composed by 5000 images for train set and 8000 for test
set. Thus, each class have 500 images for training and 800
for testing. For this dataset, images have 96× 96 pixels.

C. Control Parameters of the GEP

There is no specific method for adjusting GEP parameters.
In this work, we did this experimentally by combining
several possible values of the population size (popsize) and
the number of generations (maxgen). For each combination,
10 independent runs were done using different random seeds.
The values tested were: popsize = [50; 100; 200; 500; 1000]
and maxgen = [100; 200; 500; 1000]. In addition, the main
parameters were selected according to the recommendations
of [19] and the default settings of PyGEP.

5Available at http://www.vision.caltech.edu/Image Datasets
6Available at http://www.cs.stanford.edu/ acoates/stl10/



TABLE I
PERFORMANCES OF THE CLASSIFIERS FOR THE CALTECH101 DATASET

Metric C4.5
Random
Forest

GEP
Fitness

Acc Se × Sp CEL

wAcc (%) 73.18 75.18 74.30 73.36 74.82
Se 0.732 0.752 0.743 0.734 0.748

Sp 0.925 0.921 0.936 0.933 0.937

Se × Sp 0.677 0.693 0.695 0.685 0.701
Nodes 363 5 trees 37 34 51

D. Experiment #1: Unbalanced multi-class classification

In this experiment we used the Caltech 101 dataset, which
is a highly unbalanced dataset. The objective of this exper-
iment is to verify the GEP ability to evolve classification
rules to categorize instances in a balanced way. To carry this
experiment, we tested the three fitness functions presented
in Section III-B.2: Acc, Se× Sp and CEL. Results of this
experiment are shown in columns 4–6 of Table I.

If we consider the wAcc metric and the three GEP
approaches (i.e. the three fitness functions), the performance
of the GEP with CEL-based fitness function (shown in bold)
is slightly better than the obtained with the other fitness
functions: 2% higher than Se × Sp and 0.7% higher than
Acc. If we consider Se×Sp as performance metric, the per-
formance is similar: 2.3% and 0.9% higher than Se×Sp and
Acc, respectively. However, such performance was obtained
using a number of nodes larger than the other approaches
(shown in bold). Therefore, results suggest that the CEL-
based fitness function allows to obtain better performance
in unbalanced multi-class classification, although with a
more complex structure of the tree. Notwithstanding, the
GEP trees are usually simpler and have a higher level of
comprehensibility, when compared to other algorithms that
generate classification trees as C4.5 and Random Forest.

E. Experiment #2: Balanced multi-class classification

For this experiment we used the STL-10 dataset that
has balanced classes. This experiment aimed at obtaining
information regarding the capability of GEP to evolve tree
classifiers to balanced dataset classification. The fitness func-
tions used to evolve the tree were the same as used in
the Experiment #1. Results obtained for this experiment are
presented in Table II.

TABLE II
PERFORMANCES OF THE CLASSIFIERS FOR THE STL-10 DATASET

Metric C4.5
Random
Forest

GEP
Fitness

Acc Se × Sp CEL

wAcc (%) 34.89 41.41 36.15 37.06 34.18
Se 0.349 0.414 0.362 0.371 0.342

Sp 0.928 0.935 0.929 0.930 0.927

Se × Sp 0.324 0.387 0.336 0.345 0.317
Nodes 2049 10 trees 51 38 36

In this experiment, it is observed that the Se× Sp-based
fitness function leads to a better classification performance. It
can be verified from both wAcc (2.5% and 8.4% higher than
Acc and CEL, respectively) and Se× Sp (2.7% and 8.8%
higher than Acc and CEL, respectively) metrics, which are
shown in bold. On the other hand, the GEP evolved with
CEL obtained a lower performance. Despite the number of
nodes of the best trees obtained using the CEL and Se×Sp
functions are similar (shown in bold), their performances are
substantially different due to the difference between their
structures.

Results presented in Experiments #1 and #2 suggest that,
considering the specific datasets used, CEL-based fitness
function can be more suitable to perform unbalanced multi-
class classification. On the other hand, the Se × Sp-based
fitness function is more appropriate to balanced multi-class
classification.

F. Performance Comparison

In order to verify the efficiency of the proposed approach
for multi-class classification, we compared with C4.5 and
Random Forest, two well-known classification methods. We
divided the comparisons in multi-class unbalanced classifica-
tion and multi-class balanced classification. The evaluation
metrics used to compare the overall performance were pre-
sented in Section IV-A.

Since comparing methods in a fair and informative manner
is generally not straightforward, we limited the number of
trees of the Random Forest algorithm to be equal to the
number of GEP sub-ETs. Also, the pruning parameter of the
C4.5 was activated to reduce the number of nodes of the tree.
Thus, it was possible to carry a relatively fair comparison.

We consider the C4.5 algorithm as the comparison base-
line. The GEP approach was better than the baseline to both
unbalanced and balanced comparisons. For the unbalanced
dataset, GEP evolved with all the tree fitness functions
overcome the baseline. The Random Forest algorithm under
the wAcc evaluation was better than the others. However,
analyzing by Se× Sp evaluation metric, the GEP approach
(with CEL-based fitness function) achieved the better result.
In other words, our approach had a slightly better perfor-
mance in terms of balanced classification. Moreover, our
approach evolved simpler solution with a small number of
nodes.

Regarding the balanced classification, the Random Forest
algorithm was the best overall classifier for both wAcc
and Se × Sp evaluation metrics. GEP overcame the results
obtained by the baseline, considering both wAcc and Se×Sp
evaluation metrics. However, the solution evolved by GEP is
simpler than the other solutions.

V. CONCLUSION

Classifying images from highly unbalanced and balanced
datasets is still an open research problem in Machine
Learning. The approach proposed in this work presents a
contribution regarding this issue. This work proposes the



use of GEP to evolve decision trees for performing multi-
class image classification. For this purpose, we introduced a
novel approach based on the use of Softmax as GEP Linker
function and CEL-based fitness function (besides accuracy
and the product of sensibility and specificity).

We measured the performance of our approach by com-
paring its results with those achieved by other well-known
classifiers for a balanced dataset (STL-10) and a highly
unbalanced dataset (Caltech101). The results obtained show
that the GEP approach is able to achieve satisfactory results
when considering the C4.5 algorithm as baseline. It overcame
the baseline and Random Forest for the Caltech101 dataset
in terms of the product of sensitivity and sensibility. For the
STL-10 dataset, our approach is very close to the baseline
considering all evaluation metrics.

Results suggest that GEP approach can be an alternative
to classical tree-based classifiers to multi-class classification.
In addition, the CEL-based fitness function seems to be an
option to evolve GEP classifiers applied to unbalanced multi-
class classification. However, this may also be dependent
upon several factors as the GEP control parameters, the
features used to feed the classifier or particular characteristics
of the samples of the dataset. These aspects will be assessed
in future works.

The comprehensibility of a classifier is an important issue
for tree-based models, since they are not only used to
perform the classification task but also to understand the cor-
relations between the features and the underlying operation
of the model in order to make decisions. Regarding this issue,
our approach was able to generate very simple classifiers,
since it allowed to generate trees that overcame both C4.5
and Random Forest algorithms in terms of simplicity for the
two datasets tested in this work.

For future works, our approach will be tested for other
datasets. Another strategies to express the fitness function
will also be studied, aiming at improving the classification
performance. The use of other image descriptors is also an
alternative along with the use of different numbers of PCs
to express the original data. The exploitation of strategies
to generate smaller trees but maintaining the performance
is another path to explore in order to create classifiers with
high comprehensibility. Regarding the GEP algorithm, the
hybridization with local search methods and self-adjusting
of control parameters strategies will be assessed in future
works.
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