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Abstract—One of the most important open problems in science
is the protein secondary structures prediction from the protein
sequence of amino acids. This work presents an application of
Deep Recurrent Neural Network with Bidirectional Long Short-
Term Memory (DBLSTM) cells to this problem. We compare
the performance of the proposed approach with the state-of-the-
art approaches. Despite the lower complexity of the proposed
approach (i.e. Neural Network architecture with fewer neurons),
results showed that the DBLSTM could achieve a satisfactory
level of accuracy when compared with the state-of-the-art ap-
proaches. We also studied the behavior of Gradient Optimizers
applied to the DBLSTM. Furthermore, this paper concentrates on
well-known quantitative analytical methods applied to evaluate
the proposed approach.

I. INTRODUCTION

Nowadays, one of the most important and open challenging
problems in Bioinformatics is to obtain a better understanding
of the protein folding process. In this process, every protein
folds into a unique three-dimensional structure, that determines
their specific biological function. The three-dimensional struc-
ture is also known as native conformation and it is a function
of its secondary structures. A number of diseases, including
cancer, Alzheimer’s disease, cystic fibrosis, Huntington’s dis-
ease and diabetes are linked to the result of the aggregation of
ill-formed proteins [1], [2]. Notwithstanding, despite a large
number of proteins that have been discovered recently (around
84.8 million records in the UniProtKB/TrEMBL repository as
in may/2017), only a few of them have their structure known
(129,745 in the Protein Data Bank – PDB as in may/2017).
Therefore, acquiring knowledge about the structure of proteins
is an important issue, since such knowledge can lead to
important medical and biochemical advancements and even to
the development of new drugs with specific functionality [3],
[2]. Here, Computer Science has an important role proposing
novel methods for studying the Protein Structure Prediction
(PSP). A possible way to infer the full structure of an unknown
protein is to determine secondary structures in it. However, the
pattern formation rules of secondary structures of proteins are
still not known precisely [3].

In this sense, the Deep Learning (DL) methods have yielded
significant results on Bioinformatics [4], [5], including to
the protein secondary structures classification problems [6],
[7]. Among DL approaches, the Long Short-Term Memory
(LSTM) networks have excelled results in sequential/temporal
problems. Mainly, because it is capable to find local and global
patterns from sequences, fundamental characteristic to find
different types of protein secondary structures [6].

The objective of this work is to classify secondary structures
of proteins from their primary structure (i.e. linear sequence
of amino acids). This is accomplished by using Deep Bidirec-
tional Long Short-Term Memory Networks (DBLSTM).

This paper is organized as follows: Section II presents
the background about protein structures and related works.
Section III presents the protein datasets and the sequence
encoding that were used. Also, Section IV describes in details
the DBLSTM network. Furthermore, Section V shows the
computational experiments and results. Finally, in Section VI
some conclusions and future directions are pointed out.

II. SECONDARY STRUCTURE CLASSIFICATION

The secondary structures (SS) of a protein represent the
local conformations of a three-dimensional structure. There
are three main secondary structures: α-helices [8], β-sheets
[9] and turns [10]. For instance, proteins 1DG2 and 1KFP
represent an α− helix and an β− sheet, respectively. Instead
of using three classes, [11] group the secondary structures into
8 classes, including others, such as 310-helix, π-heliX and β-
bridge.

As mentioned before, a step toward the three-dimensional
structure protein description is the determination of the sec-
ondary structures. In this work, we assess the secondary
structure classification from its primary structure. However,
there is no consensus about the classification task which can
be done using different properties of proteins. For instance,
early approaches were based on stereochemical principles [12],
statistics [13] and Position-specific Scoring Matrices (PSSM)
[14]. More recently, [3] used the Kyte and Doolittle (K & D)
hydrophobicity scale in order to represent the aminoacids of
proteins.978-1-5386-3734-0/17/$31.00 c© 2017 IEEE



From the approach point of view, [3] present the application
and comparison of Machine Learning and Evolutionary Com-
putation methods to define suitable classifiers for predicting
the secondary structure of proteins, such as Gene expression
programming (GEP), Sequential Minimal Optimization algo-
rithm (SMO) and RandomForest (collection of tree-structured
classifiers). [15] propose a new probabilistic method using
Conditional Neural Fields (CNF) for protein 8-class secondary
structure prediction. In addition, a Deep Convolutional Neural
Fields (DCNF) approach applied to the same problem is
presented by [7].

[16] present in details a Generative Stochastic Network
(GSN) based approach for predicting local secondary struc-
tures and an extension with a Markov chain to sample from
a conditional distribution. [17] proposed a template-based
approach to enhance 8-class secondary structure prediction.
[6] used a Bidirectional Recurrent Neural Network with Long
Short-Term Memory cells for the classification task. [18]
present the application of Cascaded Convolutional and Re-
current Neural Networks to predict secondary structures.

As mentioned in [15], compared with the protein 3-class
secondary structure prediction, the 8-class prediction gains less
attention and it is also much more challenging. Therefore, this
work aims to classify secondary structures of proteins from
their primary structure, considering the 8 classes proposed by
[11].

III. PROTEIN DATASETS AND SEQUENCE ENCODING

In this work, two datasets with 8 classes of secondary
structure were used: the so-called CB6133 [19] and CB513
datasets [20]. The CB6133 has 6133 protein sequences (in-
stances) and the CB513 has 513 instances which, in turn, were
included in the CB6133 dataset. The CB6133 (excluded the
CB513 intances) was used in the training (5278 instances)
and validation (256 instances) tasks, as in [16]. On the other
hand, the CB513 was used for testing the network with 513
instances.

The frequency of each class of secondary structure for both
training and testing datasets is shown in Table I. Here, it is
important to recall that the datasets are highly unbalanced.

TABLE I
FREQUENCY DISTRIBUTION

Freq. Train (%) Freq. Test (%) Class
34.535 30.85 H (α-helix)
21.781 21.25 E (β-strand)
19.185 21.14 L (loop)
11.284 11.81 T (β-turn)
8.258 9.81 S (bend)
3.911 3.69 G (310-helix)
1.029 1.39 B (β-bridge)
0,018 0.03 I (π-helix)

The natural encoding of the protein sequence is a string
of letters from the alphabet of letters representing the 20
proteinogenic amino acids. However, this encoding is not
appropriate for some classification algorithms [3]. Thus, an
encoding based on [18] and [14] was used in this work, as

shown in Figure 1, where each amino acid (ai) of the sequence
(with n amino acids) has 42 features: 22 profile features are
used for representing scores obtained from a Position-Specific
Scoring Matrix (PSSM) [21], which are normalized using the
logistic Sigmoid function. The last 20 features are used for
representing the amino acid, using the one-hot encoding. In
this encoding, only one bit is set and represents the name
category of the amino acid.

Fig. 1. The encoding scheme.

IV. The Deep Bidirectional Long Short-Term Memory
approach

Recently, Deep-Learning (DL) gained attention with appli-
cations in several domains, such as speech recognition systems
(the first major industrial application of DL), natural language
understanding, sentiment analysis, language translation, image
recognition, particle accelerator data analysis and Bioinfor-
matics. Here, it is important to recall that it was possible
with the advent of the Graphical Processing Units (GPUs). DL
approaches are representation-learning methods with multiple
levels of representation, from the raw input to a slightly more
abstract level [22].

Basically, a DL architecture is composed by a stack of
modules that are subject to learning with a large number of
parameters. Moreover, it is known that large networks rarely
present local minima. However, such networks are prone to
overfitting. Also, training different architectures is very hard
because finding an optimal set of hyper-parameters for each
architecture is a difficult task and training each network is
computationally expensive.

Dropout is a technique that assesses both problems and it
can be interpreted as a way of regularizing a neural network
by adding noise to its hidden units [23].

The training of deep networks was proved to be hard
due to the variation of the backpropagated gradients at each
time step, typically vanishing over several time steps [22].
Regarding this issue, [24] proposed a way to explore the
use of rectifying non-linearities instead of using the well-
known sigmoid and hyperbolic tangent functions, known as
the Rectified Linear Units (ReLU), which is a better model
of biological neurons and allows the network to obtain sparse
representations. Nowadays, the ReLU is considered to be the
most popular non-linear activation function. It is a half-wave
rectifier f(x) = max(x, 0) (where x is the input to a neuron).
The advantage of the ReLU, compared with other logistic



functions, is that it learns much faster in multi-layer networks,
allowing training of a deep supervised network [22].

The purpose of Recurrent Neural Networks (RNN) is to
learn long-term dependencies. However, it is known that is
difficult to learn to store information for very long [25]. One
approach to correct for that is to augment the network with
an explicit memory, called the Long Short-Term Memory
(LSTM) network [26]. It was proposed for using special
hidden units that lead to the natural behaviour of remembering
inputs for a long time, known as memory cells. In other words,
the gradient can flow for long time, thereby avoiding the
vanishing gradient problem. Figure 2 1 shows a memory cell,
which is an accumulator that has a connection to itself at the
next time step.

Basically, the LSTM process is composed by three gates
(i.e. the forgot gate ft, update gate it and output gate ot ).
The variables xt and ht represent the input and output of the
network at time t. The layers with sigmoid and hyperbolic
tangent activation functions are represented by σ and tanh.

Fig. 2. The internal structure of a Long Short-Term Memory cell (LSTM).

Equations 1–7 present the mechanism of a LSTM.

ft = σ(Wf [ht−1, xt] + bf ) (1) it = σ(Wi[ht−1, xt] + bi) (2)

∼
Ct = tanh(WC [ht−1, xt] + bC) (3) Ct = ft ◦Ct−1+ it ◦

∼
Ct (4)

ot = σ(Wo[ht−1, xt] + bo) (5) C̈t = tanh(Ct) (6)

ht = ot ◦ C̈t (7)

where, ft, it, Ct, ot and ht (∈ <k) are activations of the forgot
gate, update gate (or input gate vector), internal long term
memory cell state, output gate vector (candidate) and output
vector considering k hidden units, respectively. In addition,
Wf , Wi, WC and Wo (∈ <3q×k) are the weight matrices; and
bf , bi, bC and bo (∈ <k) are bias terms. Also, the symbol ◦
denotes the Hadamard product operator.

In this work, a Deep Bidirectional Long Short-Term Mem-
ory (DBLSTM) is used, which is based on [6] and it consists
of stacked bidirectional Long Short-Term Memory (BLSTM)
elements, as shown in Figure 3. Here, it is important to known

1Based on colah.github.io/posts/2015-08-Understanding-LSTMs/

that the BLSTM is considered to be the better choice because
of its ability to use both previous and future information [27],
accessing long-range context in both directions.

The features of the protein sequence, following the encoding
presented in Section III, are connected to the input of the
first layer at each time step. Each input of the forward
and backward LSTM blocks receive the features and the
reversed features, respectively. On the other hand, the output
layer has 8 neurons that represent the 8 classes of secondary
structure. Then, a softmax activation function returns a value
that represent the predicted secondary structure (SS), following
the 8-class SS classification (See Section III).

Finally, it is important to mention that the ReLU is used in
the input of each layer. Also, the Dropout technique is used
in the output of each layer during the training task.

Fig. 3. The Deep Bidirectional Long Short-Term Memory network.

A. Cost Function

The cost function used in this work is the categorical cross-
entropy between the predicted (pi,j) and target (ti,j) protein
secondary structure classes, as presented in Equation 8. It is
the loss function (Li) for multi-class problems with softmax
output.

Li = −
∑
j

ti,j log(pi,j) (8)

B. Gradient optimization approaches

Gradient optimization approaches are used in order to
optimize the gradient descendent of the network and to control
the value of the learning rate (η) which, in turn, determines
the size of the steps that are taken towards the minimum error



based on the cost function (See Section IV-A). In other words,
η defines the velocity at which the network reach the minimum
during the training process.

In this work, the following approaches were evaluated:
Stocastic Gradient Descendet (SGD) [28], Momentum [29],
AdaGrad [30], RmsProp [31], AdaDelta [32] and Adam [33].
Results are presented in Section V-A.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

All experiments done in this work were run in a computer
with an Intel Core i7 processor at 3.30GHz, a GPU Nvidia
Titan X and a minimal installation of Ubuntu 14.04 LTS 2.
The software was developed using the Python programming
language and the Lasagne framework 3.

The main objectives of this work are to evaluate the perfor-
mance of Gradient optimization approaches (see Section V-A)
and to compare the proposed approach with results obtained
by other researchers (see Section V-B).

The motivation to test several Gradient optimization ap-
proaches is to identify the most suitable one for optimizing
the DBLSTM architecture for the problem. The performance
of our proposed approach and the methods from literature are
measured according to their overall accuracy (ACC) and other
statistical parameters obtained from confusion matrices which
are more suitable, regarding the highly unbalanced datasets as
shown in Table I: weighted accuracy (wACC), Sensibility (Se)
and Specificity (Sp).

ACC =
TP

(TP + FP )
(9) wACC =

∑
i fi.ACCi

N
(10)

Se =
TP

TP + FN
(11) Sp =

TN

FP + TN
(12)

where,
TP , FP , TN , FN are the four possible outcomes that can be
computed: the true positive, false positive, true negative and
false negative, respectively.

Also, in Equation 10, the variables fi and ACCi
are the

frequency (see the 2nd and 3rd columns of Table I) and the
accuracy obtained for each ith class, respectively. N represents
the number of classes.

A. Evaluation of Gradient Optimization approaches

As mentioned in Section IV-B, the performance of the
Stocastic Gradient Descendet (SGD), Momentum, AdaGrad,
RmsProp, AdaDelta and Adam approaches is studied in order
to determine the most suitable approach to the problem.
There is no specific procedure for adjusting parameters of the
gradient optimization approaches. In this work, we decided to
use the default values for the parameters that are available in
the Lasagne Framework.

A visual comparison between the gradient optimization
approaches was done using a ROC (Receiver Operating Char-
acteristics) plot, which is commonly used in decision making
in Machine Learning [3] and shows the difference between
methods in a clear manner. For instance, Figure 4 presents the

2Available in: www.ubuntu.com
3Available in: http://lasagne.readthedocs.io/en/latest/user/tutorial.html

ROC plot for the approaches evaluated in this work for the
following secondary structures classes: E (β-strand), L (loop)
and T (β-turn). In a ROC plot, the x and y axes are defined
as (1 − Sp) and Se, respectively. The best prediction would
be the closer to the top left corner. Some of the optimizers
achieved almost the same performance

In Figures 4(a), 4(b) and 4(c), it is observed that some of
the optimizers have achieved almost the same performance.
However, the results strongly suggests that the RmsProp is
the top gradient optimizer for the problem and, therefore,
the results obtained using this approach were used in the
comparison with other approaches (see Section V-B).

B. Comparison with other Deep Learning approaches

In this section the results of our experiments are presented,
as well as a comparison with the best results found in liter-
atura. Table II presents the results obtained by our proposed
approach (DBLSTM) and other researchers [6], [18]. In this
table, first column represents the Deep network. The second
column shows the overall accuracy (ACC) obtained by our
approach and the best results found in literature. The third
column identifies the obtained weighted accuracy (wACC)
Here, it is important to recall that the wACC is more suitable,
regarding the highly unbalanced testing dataset, and it is not
reported by the other researchers. Then, it is calculated from
their reported results (note that [6] reports only the ACC).

Two BLSTM networks were used by [6]. The DCRNN,
DCNF, GSN, CNF and SSpro8 networks were used by [18].
In Table II, it is observed that our deep network achieved
superior results than both BLSTM networks, indicating that
the stacked BLSTM of our network brings higher levels of
abstraction. In addition, our network is superior to SSprop8,
CNF and GSN. Also, our model achieved slightly lower overall
accuracies than DCRNN and DCNF (1,4% 0,3% of difference,
respectively).

TABLE II
COMPARISON WITH OTHER METHODS ON THE TESTING SETS OF CB513

Methods ACC (%) wACC (%)
DBLSTM 68.0 66.0

BLSTM small [6] 67.1 *
BLSTM large [6] 67.4 *

DCRNN [18] 69.4 67.5
DCNF [18] 68.3 67.6
GSN [18] 66.4 63.6
CNF [18] 63.3 62.9

SSpro8 [18] 51.1 50.8

Regarding that the testing dataset is unbalanced, we also
compare the classification accuracies of individual secondary
structure classes obtained by our approach (DBLSTM) and
the previously cited works (see Figure 5). Comparing our
approach against the other methods, it is observed that the
DBLSTM performs higher on the S (bend) class which, in
turn, is a low frequency class. Also, the DBLSTM achieved
slightly lower accuracies on lower frequency classes G (310-
helix) and B (β-bridge), when compared with DCNF and
DCRNN, respectively. Moreover, β-bridges (class I) had not



(a) (b) (c)

AdaDelta AdaGrad Adam × Momemtum + SGD 4 RmsProp

Fig. 4. Comparative analysis for classes: (a) E (β-strand) (b) L (loop) and (c) T (β-turn)

been classified correctly due to the very low frequency of the
class (0.03%).

Considering high frequency classes H (α-helix), E (β-
strand) and L (loop), our approach (DBLSTM), DCRNN,
DCNF, GSN and CNF perform better than SSpro8. Also, it is
possible to observe that CNF is the best among other methods
for high frequency classes (H, E and L), considering the overall
accuracy. On the other hand, it performs very poorly for low
frequency classes (T, S, G, B and I). Furthermore, the DCRNN
is the best for the class B. Finally, it is observed that SSpro8
is the worst in this comparison.

Here, it is important to recall that a fairer comparison can
be done using ROC plots. However, the other works do not
present the sensitivity (Se) and specificity (Sp) measures.

Unlike the other previously cited works, we also reports the
sensitivity (Se) and Specificity (Sp) for each classes in Table
III. In this table, it is observed that the sensitivity is inversely
proportional to the frequency of the classes. The best results,
according to these metrics, are shown in bold in the table.

TABLE III
SENSITIVITY (Se) AND SPECIFICITY (Sp) PER SECONDARY STRUCTURE

CLASS ON CB513

H E L T S G B I
Se 0.922 0.854 0.620 0,524 0,127 0,245 0,005 0,000
Sp 0.918 0.900 0.869 0,934 0,988 0,988 1,000 1,000

VI. CONCLUSIONS

The prediction of protein structures is an important open
research problem in Bioinformatics, which can lead to the de-
velopment of highly specialised drugs for disease treatments.
In this work, the performance of a Deep Bidirectional Long
Short-Term Memory (DBLSTM) was analyzed in this paper,
under the Protein Secondary Structure Prediction Problem.

The results obtained by our approach were competitive with
the solutions found in literature. Also, with analysis according
to the sensitivity, specificity and frequency of the classes, it

is possible to verify that the DBLSTM approach can achieve
better results if training with data augmentation is used.

Considering that only the overall accuracy rate may be
misleading, we can conclude that the ROC plot analysis is
a better way to analyze the classification performance of the
approaches in this classification (or prediction) problem.

Parallel processing with GPUs is also essential to allow
us to obtain high quality results in a reasonable computing
time. As the size of the proteins and the network increase, the
computational complexity will increase.

It is possible to highlight that the use of a self-adjusting
strategy for tuning parameters of the gradient optimization
approaches can be explored. This could be achieved using
Evolutionary Computation approaches.

Future work will also include the use of hybrid techniques
incorporating other types of deep neural networks, as well as
hierarchical classification methods, memory network, Turing
machines and clock-wise recurrent network. For instance, a
Convolutional Neural Network (CNN) can be inserted in the
first layer of our network. Also, better results can be achieved
by increasing the number of neurons of the hidden layers and
increasing the number of stacked BLSTM layers.

In a broader sense, the proposed approach presented in
this paper is very promising for the research areas of Deep
Learning and Bioinformatics.
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