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Av. Sete de Setembro, 3165 - Rebouças CEP 80230-901

1 nmarceloromero@gmail.com
2 matheusgutoski@gmail.com

3 lthattori@gmail.com
4 hslopes@utfpr.edu.br

Abstract. This work presents a methodology to perform the classifica-
tion of soft biometrics in images of pedestrians using a Denoising Con-
volutional Autoencoder as feature extractor and a Support Vector Ma-
chine as classifier. The Denoising Convolutional Autoencoder was trained
with a custom dataset containing a combination of five available datasets
(3DPES, Market1501, PRID2011, VIPeR and ETHZ) and used as a fea-
ture extractor of the images of the VIPeR dataset. The extracted features
were then used as input values for a Support Vector Machine classifier,
with its hyper-parameters set by using Grid Search, in order to classify
the images according to two soft biometrics or labels: Long-Hair and Sun-
glasses. The results obtained with the proposed approach were compared
to those obtained using other well-known feature extractor: Histogram
of Oriented Gradients.

Keywords: Deep Learning, Convolutional Neural Networks, Data Aug-
mentation, Unbalanced Datasets

1 Introduction

Soft biometrics are human characteristics, physiological or behavioral, which
provide information that allows to differentiate two individuals. Although soft
biometrics are usually not unique for each individual, they can provide some prior
information about the subjects. Furthermore, using just one soft biometric may
not be a suitable option to identify individuals, however, a combination of them
can lead to satisfactory results. Soft biometrics can also be used to complement
other primary biometric identifiers such as fingerprints and faces. Some common
soft biometrics are: gender, age, height, weight, clothes color, tattoos and hair
length.

Over the years, the necessity to increase public security produced the growth
of the number of surveillance cameras installed in public places. They allow



to obtain images and videos in real time without much effort. Hence, a lot of
information can be extracted from these resources to solve different types of
problems. The identification of individuals in the images obtained by surveil-
lance cameras is one of those problems. For this task, soft biometrics are useful,
since they provide information that can be used to differentiate the subjects in
the images. Nonetheless, this is an exhaustive process to be done by a human
observer. Therefore, computer vision plays an important role in this problem.

Several works aimed at solving this problem during the recent years. Consid-
ering the Deep Learning (DL) [1] approaches, one of the most used approaches
is based on the use of Convolutional Neural Networks (CNNs) [2]. In [3], two
CNNs for classifying three soft biometrics traits (Upper Clothes, Lower Clothes
and Gender) were presented. Whilst [4] estimated the age and gender of individ-
uals from human faces in images using a CNN. Works by [5] and [6] presented
architectures based on training the feature extraction part of a CNN (Convolu-
tion and Pooling layers) separately for each patch of an image and joining the
features into a flattened vector that is fed to the Fully Connected layers of the
network. Both approaches allow to perform multi-label classification. All works
used variations of the Stochastic Gradient Descent (SGD) method [7].

DL approaches are also trained to serve as feature extractors. For instance,
Wang [8] presented an approach based on a 6-layer architecture CNN to serve as
supervised feature extractor in order to also estimate age from images containing
faces. On the other hand, [9] proposes the use of Stacked Convolutional Autoen-
coders (SCA) for unsupervised feature learning to initialize a CNN with filters
of the trained SCA. Following this line, this work presents a method to extract
features to perform the classification of soft biometrics of pedestrians in images.
A Denoising Convolutional Autoencoder (DCA) is used as feature extractor and
Support Vector Machine (SVM) is used as classifier. The results obtained when
classifying samples from the VIPeR Dataset [10] using the DCA were compared
to those obtained when using Histogram of Oriented Gradients (HOG) [11].

This work is organized as follows: Section 2 presents the theoretical aspects of
the methods. Section 3 presents the methodology, Section 4 presents the datasets
used in this work. Section 5 presents the experiments and results, and Section 6
presents the conclusions and points directions for future works.

2 Background

Image classification is the process of separating images according to their con-
tent after a pre-processing phase and the extraction of their features. For the
particular problem of soft biometric traits in images of individuals, the set of
images can be classified, for instance, by those that contain people with long hair
and those that do not. Traditionally, image classification consists of the follow-
ing steps: image segmentation, feature extraction, feature selection, classification
and validation.



2.1 Autoencoders

Autoencoders (AE), also known as Autoassociators or Diabolo Networks [12], are
neural networks capable of generating a latent representation of its input matrix
and giving as output a reconstruction of that original input. Usually, AE are used
to obtain a representation of the original data with a reduced dimensionality. The
training process of the AE is unsupervised, since labels are not necessary. When
an AE is trained, the objective is to minimize some measure of dissimilarity,
usually the Mean Squared Error (MSE) [13], considering the original input of
the network and its output. Thus, the number of input units of the network
must be equal to the number of output units. An AE has two main parts, the
Encoder, which is a single or a group of layers that allow to reduce the dimension
of the original data, and the Decoder, which performs the opposite operation to
produce the approximate reconstruction of the original input. Figure 1 presents
an AE with a simple architecture based on three fully-connected hidden layers.

Fig. 1: An Autoencoder with three fully-connected hidden layers. X is the input layer,
X´ the output layer, which is the approximate reconstruction of X. The output of the
second hidden layer is the latent representation z.

There are several methods to improve the performance of AE. A common
option is to use partially corrupted inputs during the training process, so that
the network can improve its capability to represent the original input. Networks
trained with this technique are called Denoising Autoencoders (DCA) [14].

For problems related to images, an alternative to the original AE is the
Convolutional Autoencoder, which is based on stacking convolutional layers [15].
This could be useful due to that convolutional layers allow the network to learn
high and low level features of images. The Decoder has an inverted structure,
having fully-connected layers at the beginning and convolutional layers at the
end. For the decoding, a special type of convolution is used: deconvolution [16],
which reverts the effects of the convolution.



The AE used in this work was composed of convolution layers only and on-
line corrupted input images with Gaussian noise were used during the training
phase. The final features are extracted by flattening the last layer of the encoder.

3 Methodology

The objective of this work is to classify soft biometrics images by using a De-
noising Autoencoders (DCA) as a feature extractor and a SVM as the classifier.
This section presents the details and parameters of the methods used in this
work. Figure 2 briefly shows each stage of the methodology.

Fig. 2: Phases of the soft biometrics classification process.

3.1 Denoising Convolutional Autoencoder

The AE is Denoising, that is, during the training its inputs were partially cor-
rupted with Gaussian noise and propagated through the network to obtain the
output, which is then compared to the original image (without the corruption)



using MSE as loss function. The MSE metric is presented at Equation 1, where
X is the original image and X´ is the reconstruction for n training samples.

MSE =
1

n

n∑
j=1

(X −X ′)2j (1)

The weights of the network were updated using the Adaptive Moment Esti-
mation (Adam) algorithm [17] searching to minimize the loss function. Adam is a
stochastic optimization method which only requires first-order gradients and has
little memory requirement. The method is based on the computation of adaptive
learning rates for each parameter from estimates of first and second moments of
the gradients.

The network is also a fully Convolutional AE since all of its hidden layers are
convolutional or deconvolutional. The architecture, with a fully convolutional
structure that is partially inspired on the fully Convolutional AE presented at
[15], is shown at Figure 3. It contains twelve hidden layers, the first six are
convolutional layers (Encoder) and the following six are deconvolutional layers
(Decoder). The output of the last convolutional layer, Conv6 at Figure 3, is the
latent representation z (a vector with 256 dimensions) of the input X, which is
a 128x128 image with three channels (Red, Green and Blue). z is then propa-
gated through the deconvolutional layers to produce the output X´, that is, the
reconstruction of X.

The weights of the hidden layers are initialized with a truncated normal
distribution with standard deviation equal to 0.1. A filter size of 3x3 is used for
all layers and Rectified Linear Units (ReLU) are used as non-linearity [18, 1].
All biases are initialized with zeros. Since there has not been used any type of
pooling to downsample the outputs of the convolutional layers, the downsample
was done by using strides equal to 2x2 for the convolutions, except for the last
convolutional layer Conv6 and the first deconvolutional layer Deconv1, both of
which use 1x1 strides.

The network is configured and trained using the TensorFlow framework [19].
The network is trained for 100 epochs and uses a learning rate equal to 0.0001.
The L2 Regularization method was also applied in order to reduce overfitting.
This method, adds an extra term to the cost function in order to force the net-
work to learn preferably small weights. The regularization parameter or weight
decay λ was set to 0.0005.

A NVIDIA Titan X Pascal GPU was used to train the network, built within
a computer with 12 CPUs with 1.2GHz clock rate and 32Gb RAM.

3.2 HOG Configuration

HOG [11] was used to extract features from the images using the Python library
Scikit-Image [20]. The features were extracted from local regions with 16 x 16
pixels and the histograms of edge intensity were calculated from 2 x 2 local
cells with 8 orientations. With this configuration, a HOG feature vector of 3872
dimensions is obtained for each image of the VIPeR (cam a) dataset.



Fig. 3: The architecture of the Denoising Convolutional Autoencoder. The bottom part
presents the shapes taken by the data during the propagation through the network
after each convolution or deconvolution, and some basic informations about the layers.

3.3 Training and Validating the SVM models

The SVM models are trained using a radial basis function kernel and grid search
method to automatically set the hyper-parameters: C (penalty parameter) and
γ (kernel coefficient). Grid search is a brute force method, it trains the model
by trying all the possible hyper-parameter combinations within a certain search
space previously defined (the grid) and gives as result the model with the com-
bination that gives the best result. It is not a fast nor efficient method, future
works will be focused on optimizing the SVM hyper-parameters. Stratified Cross-
Validation, with 10 folds, is used to validate the results obtained by the model.

During the Grid Search, the metric to evaluate the models is the Area Under
the ROC Curve (AUC) [21]. Which has been chosen due to the unbalance of
classes across the datasets. Metrics such as Accuracy are not useful at giving
information about the performance of the trained model when the classes are not
balanced. Hence, the SVM model which gives the wider AUC for the validation
data is chosen as the best for a particular label. A different SVM is used for
each label, i.e, long hair and glasses. The Accuracy metric is still used in case of
balanced classes.

The control parameters used for the Grid Search are presented at the Table
1. The value 1000 for the parameter C corresponds to the maximum number of
possible Cs.

Table 1: Control parameters used to train the SVM models.

C 1, 10, 100, 1000

γ 103, 102, 101, 1, 10−1, 10−2, 10−3

3.4 Evaluation

The results obtained using the DCA+SVM combination are compared to those
obtained by HOG+SVM. Stratified Cross-Validation with 10 folds is used as
validation method, a variation of the traditional K-Fold Cross-Validation, which
preserves the percentage of samples of each class.



4 Datasets

Two datasets are used in this work, one is a custom dataset created by combining
samples from five different datasets to train the DCA and the other one is the
VIPeR dataset, which is used for classification. Both datasets are composed of
bounding boxes containing pedestrians. Thus, the pedestrians detection stage is
skipped, for it is a problem that is not within the scope of this work. Details
about the configuration of these datasets and the pre-processing are presented
in this Section.

4.1 Custom Dataset

Deep Learning methods such as AEs require a large amount of data (thousands or
hundreds of thousands samples) in order to obtain satisfactory results. AE learn
in an unsupervised manner, which implies that the only issue when creating
or obtaining a dataset is the gathering of samples, on the contrary to other
supervised Deep Learning methods, which need a large amount of data that also
have to be labeled.

For this work, a custom dataset is created to train the DCA, aiming to obtain
a considerable amount of images containing pedestrians. The final dataset is a
combination of five datasets of pedestrians images, which in total contains 6465
images.

Market1501 [22]: a dataset created for person re-identification composed of
several sub-datasets, the one used in this work is the query sub-dataset.

PRID2011 [23]: this dataset contains images of pedestrians from two cam-
eras. Images from both cameras were used. Only images of the camera b are
used from the VIPeR dataset, since the images from the camera a are used to
train and test the classifier.

ETHZ [24]: this dataset provides a large number of images of different pedes-
trians captured in uncontrolled conditions. However, this dataset provides a large
number of images for each person (with invariant soft biometrics). Therefore, the
dataset is reduced by taking only 3-4 images of the same person and removing
the rest in order to obtain a more heterogeneous set of images.

3DPeS [25]: this dataset contains images of pedestrians mostly within bound-
ing boxes. However, not all images have the same size nor have bounding boxes
that fit correctly the pedestrian. To solve this issue, a previously trained model
that extracts HOG features from images and applies SVM with a sliding win-
dow to extract bounding boxes containing the pedestrian is used. The Python li-
brary OpenCV1 is used for this purpose, which contains the trained HOG+SVM
model. Figure 4 shows an original image of the dataset and the bounding box
containing the pedestrian extracted using the trained model from OpenCV. This
method has some errors: the model sometimes extracts bounding boxes that
do crop the pedestrian or that contain too much background. However, these
bounding boxes were maintained, so that the network may acquire a higher
generalization capability.

1 Avaliable in https://github.com/itseez/opencv

https://github.com/itseez/opencv


(a) (b)

Fig. 4: Sample images from the 3DPeS and the bounding boxes obtained applying
the trained HOG+SVM model from the OpenCV library. Sub-figure (a) contains the
original images, sub-figure (b) is the bounding box containing the detected pedestrian.

4.2 VIPeR Dataset

This dataset contains images from two cameras, each of which captures one image
per person. The samples from the camera a are used to test the performance
of our method; the same samples are used to train and test the HOG+SVM
model. The dataset contains 632 images per camera and it is labeled with 15
binary attributes [26]. The labels Long-Hair and Sunglasses are used to test
the classifier.

5 Experiments and Results

This section presents the experimental results obtained from two points of view:
the reconstruction capability of the DCA and the performance of the SVM ac-
cording to the feature extractor that was used.

5.1 Autoencoder Reconstruction

Images from the VIPeR (cam a) dataset were used to test the reconstruction
capability of the trained DCA. Figure 5 presents two original images from the
dataset and their reconstructed version given by the DCA.

(a) (b) (c) (d)

Fig. 5: Original and reconstructed images from the VIPeR dataset. Sub-figures a and
c are the original images from the dataset. Sub-figures b and d are the reconstructed
images by the DCA.

A visual comparison between the original images and the reconstructed shows
that the DCA does not reconstruct with fidelity some aspects of the original
images. Information about the colours are not present and the edges are blurred;
the reconstructions have less clarity compared to the originals. This happens



because the original images are shrunk so much during the Encoding phase
that a lot of information is lost when the dimensionality is reduced. This issue
can be solved by saving more information of the original image by setting an
architecture that leads to a higher dimensional vector z, so that more information
is conserved. However, this work aimed to obtain a relatively low-dimensional
feature vector that describes the original image. Therefore, the architecture was
kept considering that the reconstruction has a certain level of visual similarity.

5.2 Classification

This section presents the best SVM models for each method (DCA+SVM and
HOG+SVM) and their results for some labels of the VIPeR dataset. For the
balanced classes, the metric used to optimize the hyper-parameters of the classi-
fier using Grid Search was the Accuracy. For the imbalanced classes, the metric
was the AUC. The results achieved by the models correspond to the average
accuracy and the standard deviation obtained for the 10 folds of the Strati-
fied Cross-Validation process. A brief exploratory analysis (centered on the class
balance) of the dataset is presented for each label before presenting the results.

Experiment #1 Using the label Long-Hair, the dataset contains 324 images
that belong the class 0 and 308 that belong to the class 1. Since using this label
the dataset is almost balanced, the Accuracy was the metric to optimize during
the Grid Search in order to obtain the best SVM model. Table 2 presents the
results for each model.

Table 2: Results for the label Long-Hair.

Accuracy (%)

avg. ± std. dev.

DCA 52.704 ± 4.688

HOG 51.744 ± 5.586

Results show that almost both methods achieved similar performance, with
a slight improvement of the average accuracy when using the features extracted
by the DCA. The HOG+SVM achieved the worst average accuracy including the
highest standard deviation. The low average accuracy achieved by both methods
shows that classifying this dataset according to the label Long-Hair is a very hard
task.

Experiment #2 The second label that was studied defines if the individuals
wear Sunglasses. With this label, the dataset contains 517 (81.8%) samples of
the class 0 and 115 (18.2%) samples of class 1, which makes it an imbalanced
dataset. Thus, the AUC was used as metric for the Grid Search of the SVM.
Classifying instances for this label is a very hard task, since using this label
the dataset is highly imbalanced and that recognizing if an individual wears



something as small as sunglasses is inherently difficult, even for human beings.
Besides, evaluating a classifier for an imbalanced dataset can be tricky. Mod-
els usually tend to classify all samples as part of the majority class. Thus, we
consider the AUC as evaluation metric. The results are presented in Table 3.

Table 3: Results for the label Sunglasses

AUC (%)

avg. ± std. dev.

DCA 56.38 ± 8.72

HOG 52.26 ± 8.66

Results show that DCA+SVM achieved the best average AUC. The results
obtained for both labels discussed in the previous sections may lead to con-
sider that using DCA as feature extractor allows to achieve better results than
HOG. However, this may not occur for all cases, since DCAs learn features (in
an unsupervised manner) that allow to reconstruct the original image but the
information that those features contain may not be meaningful for classifying
certain labels.

6 Conclusion

The objective of this work was to train a Denoising Convolutional Autoencoder
(DCA) using a custom dataset and use the trained network as feature a extrac-
tor in combination with a Support Vector Machine (SVM) to solve an image
classification task: soft biometrics of pedestrians. The quality of the results ob-
tained with this approach was measured through a comparison with the results
obtained by other well-known method for the same dataset.

The proposed goal was accomplished and results show that, for the studied
labels, the DCA is an acceptable alternative: the performance of the classifier
slightly improves when using the DCA as feature extractor. However, this may
not occur for all labels of a dataset, as DCA is not a hand-crafted feature extrac-
tion method. We would also like to point out that the results obtained cannot
be considered satisfactory. Thus, we conclude that using pure DCAs as feature
extractors may not be suitable for supervised classification. Hence, this paper
must be considered as the initial step of a work in progress regarding the explo-
ration of the capability of Autoencoders to serve as feature extractors for soft
biometrics classification problems. Future work may aim at improving the results
by applying a fine-tunning phase during the training of the DCA or training one
DCA for each class of the problem.

Future works include testing other network architectures, using different
methods to optimize the hyper-parameters of the classifier (such as random
search and bio-inspired algorithms) and including supervised learning features



in the network, so that it can be able to learn features that not just allow to
reconstruct the original input but also to generate latent representations that
can be useful at the classification task.
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