
Int. J. of Innovative Computing and Applications, Vol. x, No. x, 2016 1

Evolutionary Computation Methods for the
Schedule Optimization of Pipeline Networks

Jonas Krause
Department of Information and Computer Sciences,
University of Hawai’i at Manoa,
Honolulu, HI, USA

E-mail: krausej@hawaii.edu

Heitor Silvério Lopes *

Bioinformatics & Computational Intelligence Laboratory,
Federal University of Technology Paraná – UTFPR,
Curitiba, PR, Brazil

E-mail: hslopes@utfpr.edu.br
*Corresponding author

Abstract: Two evolutionary computation methods are presented in this paper, both
variants of the Differential Evolution (DE) algorithm. Their main difference is the
encoding process (binary and continuous) and both methods were successfully applied
to the pipeline network schedule problem. A binary mathematical model is proposed
to represent the flow of oil products in a 48 hours horizon period. In this paper, we
introduce new benchmarks of the pipeline scheduling problem for testing the proposed
evolutionary algorithms on a specific network topology, but with different products and
demands. Although computationally expensive, a Mixed Integer Linear Programming
(MILP) approach is used to obtain optimal solutions so as to compare results with the
evolutionary methods. MILP results achieved optimal solutions for nine out of the fifteen
benchmarks proposed, but it requires far more computational effort than the DE-variants.
Even though it is a real-parameter algorithm, the DE can be consider as a good heuristic,
which is an alternative for the discrete problem studied. The overall comparison of results
between the proposed DE-variants and MILP supports the efficiency, robustness and
convergence speed of DE algorithm suggesting its usefulness to real-world problems of
limited complexity.

Keywords: Evolutionary Computation; Differential Evolution; MILP; Pipeline Network.

Reference to this paper should be made as follows: Krause, J. and Lopes, H. S.
(2016) ‘Evolutionary Computation Methods for the Schedule Optimization of Pipeline
Networks’, International Journal of Innovative Computing and Applications, Vol. x, No.
x, pp.xxx–xxx.

Biographical notes: Jonas Krause is graduated in Mathematics and has a MSc degree
in Computer Engineering from the Federal University of Technology Paraná, Curitiba,
Brazil, and currently he is a PhD student at the University of Hawaii at Manoa, USA.
Heitor S. Lopes has a BSc, MSc and PhD in Electrical Engineering, and currently he is
Titular Professor at Federal University of Technology Paraná, Curitiba, Brazil.

1 Introduction

One of the major problems of the oil industry is
the distribution of petroleum products by polyducts.
Transportation of crude oil to refineries and refined
products to depots through pipelines comprise a
distribution network. A precise schedule of each refined
products (gasoline, kerosene, diesel, gas fuel, etc.)
into the polyducts is crucial. Decision tools based
on operations research can be used to determine the
best sequence of batches to optimize the distribution.
The operation of these networks seeks to satisfy all

the constraints related to production, demand, storage
and transportation time, leading to a high complexity
schedule problem. A fast and efficient decision making
system is required to maximize these networks and
reduce the transportation costs. Bioinspired methods,
such as Genetic Algorithms (Garcia et al., 2004) and
Differential Evolution (Onwubolu and Davendra, 2006;
Dong et al., 2012; Krause et al., 2015), have already been
used in schedule problems to provide satisfactory and
fast solutions with reasonable computation efforts.

Those heuristic methods seek sub-optimal or,
eventually, optimal solutions in the search space of
feasible solutions, managing computational operators of

Copyright c© 2009 Inderscience Enterprises Ltd.



2 J. Krause, H. S. Lopes

local and global searches. Such algorithms are known as
meta-heuristics and can be defined as an iterative search
procedure inspired by biological mechanisms. The line
of research that deals with these algorithms is known
as Evolutionary Computation (EC) and covers the
study of evolutionary strategies, genetic programming,
evolutionary programming, genetic algorithms and other
population algorithms such as differential evolution. The
main advantage of EC is the possibility of finding good
solutions to complex problems. Once the objectives and
constraints are mathematically defined, EC algorithms
use generic and flexible procedures to search for
good quality solutions even without the guarantee of
optimality. These procedures can be adapted to a wide
range of problems, providing robustness and flexibility
to the selected method. Therefore, the EC can be
understood as a set of techniques that can be applied
to solve complex problems for which other known
techniques are impractical or difficult to apply.

The optimization problems are the ones that most
benefited from the use of EC algorithms. Many
engineering problems, for instance, may be modeled as
optimization problems (Michalewicz and Fogel, 2004;
Goldbarg et al., 2010). Such problems are often highly
complex and cannot be solved in polynomial time.
The application of meta-heuristics for solving these
optimization problems presents a new paradigm, because
it does not guarantee the optimal solution but achieves
good feasible solutions with reasonable computational
effort. An optimization problem widespread in the
literature is the scheduling one and it can be modeled as
a combinatorial problem (Andrade et al., 2015). Thus,
this work focuses on optimizing the scheduling of oil
products distribution network problem.

A pipeline network includes refineries, depots and
distribution centers. The ducts connecting each one of
these nodes compose the network structure. These ducts
can be unidirectional or bidirectional, and they usually
transport different types of products and so are called
polyducts. Products are transported in batches, such a
product is loaded into the pipeline pushing the previous
product batched. These batches can be fractionated
and frequently fill the entire duct. In these cases, the
complexity of the network increases due the number of
possible operations to be done in each node.

The optimization of the network consists in delivering
products to different demand points with minimum
operational costs (Magatão et al., 2004; Cafaro and
Cerdá, 2004), and recent studies have been focused on
the time delivery (Yongtu et al., 2012). Therefore, the
objective is to deliver each product as fast as possible
and the operational costs are represented as constraints.
The proposed mathematical model uses a time window
method and an objective function to be minimized.
Demands and costs are handled as restrictions. The
generality of the mathematical model allows it to be
applied to different network structures with different
products.

As mentioned before, mathematical programming
and heuristic methods have been used to determine the
best solution for such kind of problems. Depending on
the network structure, the number of possible solutions
is huge in such a way that browsing the search space
is intractable with mathematical programming methods,
since the processing time becomes unacceptable. In
these cases, heuristic methods such as Differential
Evolution can be an alternative to provide faster
sub-optimal solutions. In this work, two variants
of the DE are compared with MILP for specific
pipeline network schedule optimization problems. This
work is organized as follows: Section 2 describes the
problem formally, including its complete mathematical
formulation; Section 3 presents the two variants of
Differential Evolution used to solve the benchmark
problems; Section 4 presents some aspects of Linear
Programming with focus on Mixed-Integer Linear
Programming; Section 5 shows the proposed benchmarks
and the solutions obtained by all methods; finally,
Section 6 presents our final considerations about the
methods and results and, also, points future research
directions.

2 Problem Description

The discrete modeling of real-world problems using
MILP is frequently found in the recent literature.
However, the computational time to solve discrete
models can be very high. According to Schrage (2000),
the average processing time of linear programming is
directly related to the number of variables and to the
square of the number of constraints described in the
mathematical model. This is one of the main motivations
for using heuristic methods (such as those used
here) for finding sub-optimal solutions. Evolutionary
Computation methods can be an interesting alternative
for solving such sort of optimization problems, since they
have a lower computational cost (compared with MILP)
for complex problems with many variables. Even if those
methods do not guarantee the optimality of solutions,
they are very useful to find reasonable good solutions for
real-world problems in a relatively short processing time.

The pipeline schedule problem consists in distributing
N products from R refineries through D depots to C
distribution centers. Polyducts connect each one of these
nodes and they are represented by the letter P . A
simplified version of the network structure, introduced
by Garcia et al. (2004), is presented in Fig. 1, and it has
been the focus of other recent studies as well (Krause
et al., 2015; de Souza et al., 2010).

The network model used in this work has nine
polyducts represented by ten arrows (ducts). The
bidirectional duct connecting the two depots is
represented by two arrows, P5 representing the flow
from D1 to D2 and P6 vice versa. During the schedule
planning, these ducts are not allowed to be pumped at
the same time, otherwise it would have a collision. The



Evolutionary Computation Methods for the Schedule Optimization of Pipeline Networks 3

same flow rate is considered for all products. To reduce
product fragmentation and setup costs, each batch has
to fill the entire duct up to be fully transported. Storage
tanks on each node receive all types of products with
aggregate tankage. The length of each duct is given
by the number of time units needed for a batch to
traverse it. Table 1 presents these time units (P1,...,10)
corresponding to Fig. 1.

Products may be refined in different places. To reflect
this feature, the model considers that R1 refines products
N1, N2 and N3, and R2 refines N4, N5 and N6.

Generally, products are refined and transported to
storage centers, and then to a final destination (end-
customer, storage tanks ports or other companies). Real-
world polyducts are, for the most part, bidirectional,
usually connecting the storage tanks. In these polyducts
the various products can flow from a storage tank
to another in any direction, enabling the exchange of
products between the them. Some networks use one-
way pipelines, with a unique direction from refineries to
storage tanks and tanks to the final destinations.

The use of a specific polyduct can be constrained
due to specific pumping requirements or, eventually,
maintenance. In this case, the whole pipeline network is
affected and, as a consequence, the demand of products
by the customers may not be satisfied. In such situations
a re-scheduling of product batches to other ducts is
immediately required. To match those constraints, the
network management must compute, as soon as possible,
new paths for each product. However, the real-world
pipeline network cannot wait hours (or days) until the
system computes the optimal solution, thus making
evident the need of alternative methods. Given a fixed
planning horizon of 48 hours, this scheduling problem
consists of determining which product may be batched
from the refineries, through the depots, and finally to
the distribution centers, such that a given demand is
satisfied.

2.1 Mathematical Model Formulation

The proposed mathematical model uses binary variables
(Xn,p,k = {0, 1} ∀n, p, k) to represent the presence or
not (1 or 0) of each product on each polyduct during
a specific time period. Considering H the number
of hours of the time horizon and N the number of
products, the following indexes can be established:
n = {1, . . . , N}, p = {1, . . . , P} and t = {0, . . . ,H − 1}.
Index t represents each time unit of the horizon H. The
index k depends on the length of each polyduct and the
time units needed to traverse it. Equation 1 shows how
k represents each time period.

k = Pp × t, k < H (1)

The objective function Z, shown in Equation 2,
represents the minimization of the sum of the X binary
variables.

Z = min

(
N∑

n=1

P∑
p=1

H−1∑
k=0

(Pp × (k + 1))×Xn,p,k

)
(2)

Each binary variable X is weighted by each polyduct
time unit Pp and their position k on the schedule plan.
Index k is increased by one to take into consideration
the initial position.

The model constraints seek to represent the linear
restrictions of a real network. The constraints are created
to ensure the uniqueness of each product in each pipeline,
no collision on the bidirectional polyduct, the batches
order and supply/delivery demands, as follows:

• Products uniqueness: To ensure that only
one product is transported by each polyduct
in each period of time. Equation 3 represents
the restrictions of products uniqueness in all p
polyducts at all k periods of time.

N∑
n=1

Xn,p,k ≤ 1, ∀p, k (3)

• Bidirectional duct: To ensure that polyducts
P5 and P6 are not used at the same time.
Equation 4 shows the mathematical model for
these restrictions.

N∑
n=1

(Xn,5,k + Xn,6,k) ≤ 1, ∀k (4)

• Batches order: These constraints ensure that
the products arriving to distribution centers (C)
were previously stored in depots (D) and earlier
provided by refineries (R). For instance, polyduct
P7 that supplies client 1 depends on polyducts
P1 and P5 to receive products 1, 2 and 3, and
depends on polyducts P3 and P5 for products
4, 5 and 6. Similarly, polyducts P8, P9 and P10

have some dependence on previous polyducts in
the network. Also, polyducts P5 and P6 have to
respect the order of batches, since they depend on
the products pumped through ducts P1, P2, P3

and P4. Therefore, Equation 5 presents the order
constraints of the batches for polyducts P7 and P8,
which receive products 1, 2 and 3 (n={1, 2, 3})
from polyducts P1 and P6. Similarly, Equation 6
presents the order constraints of the batches for
products 4, 5 and 6 (n={4, 5, 6}) from polyducts
P3 and P6.

H−1∑
k=0

(P7 ×Xn,7,k+P7
+ P8 ×Xn,8,k+P8

) ≤

H−1∑
k=0

(P1 ×Xn,1,k + P6 ×Xn,6,k) , ∀n (5)



4 J. Krause, H. S. Lopes

H−1∑
k=0

(P7 ×Xn,7,k+P7 + W8 ×Xn,8,k+W8) ≤

H−1∑
k=0

(P3 ×Xn,3,k + P6 ×Xn,6,k) , ∀n (6)

Equation 7 presents the same order constraints for
polyducts P9 and P10, which receive products 1, 2,
and 3 (p={1, 2, 3}) from polyducts P2 and P5.

H−1∑
k=0

(P9 ×Xn,9,k+P7 + P10 ×Xn,10,k+P8) ≤

H−1∑
k=0

(P2 ×Xn,2,k + P5 ×Xn,5,k) , ∀n (7)

Similarly, Equation 8 do the same for products 4,
5 and 6 (p={4, 5, 6}) from polyducts P4 and P5.

H−1∑
k=0

(P9 ×Xn,9,k+P7 + P10 ×Xn,10,k+P8) ≤

H−1∑
k=0

(P4 ×Xn,4,k + P5 ×Xn,5,k) , ∀n (8)

The order of polyducts P5 and P6 is presented in
Equations 9 and 10, respectively.

H−1∑
k=0

(P5 ×Xn,5,k+P5
) ≤

H−1∑
k=0

(P1 × (X1,1,k +

X2,1,k + X3,1,k) + P3 × (X4,3,k + X5,3,k +
X6,3,k)), ∀n (9)

H−1∑
k=0

(P6 ×Xn,6,k+P5
) ≤

H−1∑
k=0

(P2 × (X1,2,k +

X2,2,k + X3,2,k) + P4 × (X4,4,k + X5,4,k +
X6,4,k)), ∀n (10)

• Supply and delivery demands: These
constraints ensure that the correct demand is
delivered and the origin of all products is one of
the refineries. The proposed model also allows that
the total pumping from refineries is larger than
the overall amount delivered. The extra products
remain stored in the intermediary tanks. Therefore
further demand can be satisfied faster in the next
period of time. Equation 11 defines that the total
amount of products supplied by the refinery is
larger than or equal to the amount requested
(Q1,2,3). Equation 12 defines that the total amount

of products delivered to final customers is equal to
the amount requested.

N∑
n=1

H−1∑
k=0

(P1 ×Xn,1,k + P2 ×Xn,2,k +

P3 ×Xn,3,k + P4 ×Xn,4,k) ≥ Q1,2,3 (11)

N∑
n=1

H−1∑
k=0

(P7 ×Xn,7,k + P8 ×Xn,8,k +

P9 ×Xn,9,k + P10 ×Xn,10,k) = Q1,2,3 (12)

For customers 1 and 3, who are supplied by only
one polyduct, Equations 13 and 14 represent the
delivery constraints such that Q1,2,3 is the amount
of each product to be supplied to each customer.

H−1∑
k=0

(P7 ×Xn,7,k) = Q1, ∀n (13)

H−1∑
k=0

(P10 ×Xn,10,k) = Q3, ∀n (14)

Customer C2 is supplied, simultaneously, by
polyducts P8 and P9. Hence, the amount Q2

requested by this customer is the sum of the
products carried by these polyducts, and Equation
15 represents such constraint.

H−1∑
k=0

(P8 ×Xn,8,k + P9 ×Xn,9,k) = Q2,∀n (15)

To represent the production constraints, the proposed
model assumes that refinery R1 produces only products
1, 2 and 3, and that refinery R2 produces only products
4, 5 and 6. Consequently, variables X1,3,k, X1,4,k, X2,3,k,
X2,4,k, X3,3,k, X3,4,k, X4,1,k, X4,2,k, X5,1,k, X5,2,k,
X6,1,k, and X6,2,k can be excluded from the model
studied in this paper. Notwithstanding, the model allows
other more complex production schemes.

The above-defined constraints, defined as linear
equations, restrict the search space of the problem. The
more restricted the search space, the more difficult is for
a given method to traverse it and find good (or even,
optimal) solutions. DE-variants and MILP are applied
using this binary mathematical model to determine the
best schedule for this pipeline network.

3 Differential Evolution (DE)

Evolutionary Computation (EC) methods propose
alternative solutions to the purely mathematical
methods. These methods have been frequently applied



Evolutionary Computation Methods for the Schedule Optimization of Pipeline Networks 5

to operations research problems, an interdisciplinary
area of knowledge dedicated to the development of
mathematical models and algorithms for solving real
complex problems. However, the search for the optimal
solution to real world problems (with thousands of
variables and constraints) requires a huge computational
effort. Therefore, a balance between accuracy of solutions
and time to obtain them is necessary for most of those
complex problems. This is where evolutionary algorithms
can be more useful. Many EC methods and variants have
been proposed along the last decades. Amongst them,
Differential Evolution (DE) is one of the most widely
used in recent years (Price et al., 2005).

The DE algorithm was first introduced by Storn
and Price (1995) and devised for optimization in
continuous spaces. It arose as a simple and efficient real-
parameter algorithm for global optimization. DE is a
stochastic population-based algorithm and, so, it evolves
a population of possible solutions (individuals) for the
optimization problem. Such individuals, encoded as real-
valued vectors, undergo the action of selection, mutation
and crossover operations, so that new individuals are
constantly generated and improved. DE is similar to
other Evolutionary Computation methods, but the
strategies used here aim at mutating the individuals after
vector operations. Different strategies were devised to
modify individuals of DE, although the most successful
and used one is the DE/rand/1/bin (Price et al.,
2005). This strategy consists in randomly selecting an
individual to be mutated, one difference vectors to
perturb the selected individual and a binomial crossover.
The mutation and crossover processes are applied in
a trial population, each individual fitness is calculated
and the new population is evaluated. The number of
individuals of the population is maintained constant
along iterations thanks to the selection procedure that
substitute worse by better-fitted individuals. Along
a large number of iterations, the population size is
maintained but its overall quality is improved or, at
least, does not deteriorate. Using continuous variables,
DE searches the best quality individual evolved in a
predetermined number of generations. The formulation
of the DE/rand/1/bin strategy is presented in Equation
16:

vi,g = xr1 + F × [xr2 − xr3] (16)

This equation represents the trial vector v receiving
the random vector x plus a random difference variation.
The DE/rand/1/bin represents the random individual x
to be mutated. Parameter F is the weighting factor used
to control the amplification of the differential variation.
Biologically, the term mutation means a sudden change
in the genetic characteristics of a chromosome. In the
context of DE, mutation can also be seen as a change
or disorder in the subject using a random element. This
algorithm selects a random vector using the Mutation
Parameter (MP) to be the basis of the new individual
called target vector. The vector obtained after the

mutation process is known as a donor vector and finally
after the donor recombination process or Crossover (CR)
this new vector is called a trial vector (Price et al., 2005).

The DE/rand/1/bin strategy may vary depending on
the individual selected. Elitism can be used to select the
individual with the highest fitness value for the mutation
process, and this strategy is known as DE/best/1/bin.
The best individual can also be added on the differential
variation, in this case the strategy is called DE/rand-
to-best/1/bin. Other strategies consist in using two
differential variations, represented by DE/rand/2/bin,
DE/best/2/bin and DE/rand-to-best/2/bin. The last
element is the crossover process and it can be set to
DE/rand/1/bin and DE/rand/1/exp, representing the
binomial and exponential crossovers, respectively. The
exponential crossover process can also be selected in all
described DE strategies, creating a list of ten possible
strategies that can be used on DE algorithm (Adeyemo
et al., 2010). Both proposed methods in this paper use
the classical DE/rand/1/bin strategy.

3.1 Binary Differential Evolution (BDE)

This DE variant was presented in Krause et al. (2013)
and it is adapted for binary spaces only. The adaptation
of the original DE starts in the initialization of the
population, such that random binary values are used to
create individuals instead of random continuous values.
The original mutation process of DE is replaced by
a random bit inversion. This adaptation of the DE
mutation process is inspired on the mutation process of
the Genetic Algorithm (Goldberg, 1989).

Algorithm 1 presents the pseudocode of the BDE
algorithm.

Algorithm 1: Binary Differential Evolution

Parameters: range, NP , MP , PR
Initial Population ~xi (i = 1, . . . , range)
Evaluate fitness f(~xi) of each individual
WHILE {not done} DO

FOR {i = 1 TO NP}
IF {rndreal(0, 1) < PR OR j = jrand}

IF {rndreal(0, 1) < MP}
InvertBit (~yj)

END IF
Crossover (~yj)

END IF
END FOR
Calculate fitness f(~y)
IF {f(~y) > f(~xi)}
~xi ⇐= ~y

END IF
Evaluate ~x*

END WHILE

A new parameter (Perturbation Rate) is inserted to
establish how many individuals of the population will
undergo the mutation and crossover processes. This new



6 J. Krause, H. S. Lopes

parameter also ensures that at least one individual will
be mutated. The DE crossover process is kept as the
original since all individuals will continue to be binary
after it. Adapted for binary problems, this meta-heuristic
is a general algorithmic structure that can be applied to
several optimization problems.

The BDE algorithm starts by setting parameters. The
first parameter is the individual dimension or range.
NP is the number of individuals of the population.
MP and PR are the mutation and perturbation rates,
respectively. A random population ~xi is created and
the fitness of each individual, f(~xi), is calculated. Each
individual is randomly selected by the perturbation
rate and it is submitted to the mutation and crossover
processes. The new individual ~y has its fitness calculated
f(~y). If the new fitness of the trial individual is better
(higher for maximization and lower for minimization)
than the previous individual fitness f(~xi), the trial
solution ~y will be part of the new population.

3.2 Discretized Differential Evolution (DDE)

This DE variant was was also presented in Krause
et al. (2013) and it evolves the possible solutions in
a continuous search space and, later, discretize them
to the binary space after the mutation and crossover
processes. The individual to be evolved by the DDE
is a n dimensional vector and each dimension is
populated with a random float number between −1
and 1. With a normalized entry for each individual
of the initial population, the DDE proceeds with the
DE/rand/1/bin strategy of mutation and crossover
through the generations. The new population is a group
of vectors of continuous variables and these individuals
are discretized to get their fitness evaluated. This
discretization method uses a sigmoid function that allows
each dimension to evolve gradually and individually
(Krause et al., 2015, 2013).

Let F be the float number in each i dimension, the
solution vector is discretized using the result of the
sigmoid function of F . If this result is greater than zero
the i-th dimension is set to 1, otherwise, it is set to 0.
This discretization process is represented by Equation
17.

Xi =

{
1, if 2

1+exp (−2.Fi)
− 1 > 0,

0, otherwise
(17)

Using this strategy, the evolved dimensions do not
jump from 0 to 1 in the binary. They evolve gradually
around zero using weighted values to search for the
best continuous combination. Although rather simple,
this feature is the key to efficiently apply continuous
algorithms to discrete problems.

Algorithm 2 presents the pseudocode of the DDE
algorithm.

The DDE algorithm is initialized with the parameters
NP , CR, F and range. The NP states for the
total number of individuals in the population. The

CR and F are the crossover and mutation rates,
respectively. Parameter range is the dimension of each
individual. An initial random population is created with
NP individuals and their initial fitness is calculated.
Through the number of generations previously set, a trial
population is created using the mutation and crossover
processes. This new population is discretized by the
sigmoid function which assigns values 1 or 0, depending
whether the continuous value for each dimension of
the individual. The fitness of the trial and discretized
population is calculated and if the trial individual fitness
is greater than the previous one, the new individual is
included to the new population.

This strategy is widely used when adapting
continuous devised algorithms to binary problems. It can
also be used to convert continuous values into integer
and, consequently, apply the DE to discrete problems.
Hence, this version of the DE may be called discretized
and can be adapted to other combinatorial problems.

4 Mathematical Programming

The Mathematical Programming consists in formulating
a real-world model, variables and procedures using
mathematical symbols to represent their relations.
Mathematical programming is frequently used in
decision-making processes in large engineering systems.
This technique allows the definition of inter-relationships
between variables that would be difficult to find
intuitively.

These mathematical models include three main
elements (Bazaraa et al., 1990): decision variables and

Algorithm 2: Discretized Differential Evolution

Function f(x) = DE (range, NP , CR, F )
x ⇐ random (range, NP )
fitx ⇐ f(x)
WHILE {not done} DO

FOR {i = 1 to NP}
vi,G+1 ⇐ mutation (xi,G, F)
ui,G+1 ⇐ crossover (xi,G, vi,G+1, CR)

END FOR
IF {sigmoid (ui,G+1) > 0}
ui,G+1 ⇐ 1

ELSE
ui,G+1 ⇐ 0

END IF
fitu ⇐ f(u)
FOR {i = 1 to NP}

IF {fitu(i) > fitx(i)}
xi,G+1 ⇐ ui,G+1

ELSE
xi,G+1 ⇐ xi,G

END IF
END FOR

END WHILE



Evolutionary Computation Methods for the Schedule Optimization of Pipeline Networks 7

parameters; restrictions; and the objective function.
The decision variables are the unknown values to be
determined by each method, while parameters refer
to the fixed input data. The constraints are a set
of equations or inequalities that limit the possible
values of variables. Finally, the objective function is
a mathematical function that evaluates a solution and
expresses the intention to maximize or minimize the
model output.

To solve this models, Dantzig (1963) devised a
method based on repetition cycles. This iterative
algorithm is called SIMPLEX and it has been used since
then to find the optimal solution of linear programming
models. SIMPLEX is regarded as one of the most
significant advances in the mathematics of the twentieth
century.

This method consists of a set of criteria for choice of
basic solutions to improve the model performance. For
that, the problem must submit an initial basic solution.
Subsequent basic solutions are calculated with the
exchange of base variables for not base ones, generating
new solutions. The criteria for selection of vectors and
therefore the variables that enter and leave for the
formation of the new base constituting the center of the
SIMPLEX method.

Mixed Integer Linear Programming (MILP) involves
mathematical models that can provide continuous,
integer and/or binary variables, all related by linear
constraints. Binary variables usually represent decisions
to be taken that mean yes or no, on or off, true
or false, and allow the programmer to specify logical
conditions of the model. Integer variables are used
to represent quantities considered indivisible, as the
number of vehicles or number of people.

5 Computational Experiments and Results

For the MILP implementations, the GLPSol 4.57
was used. This is a free solver of the GNU Linear
Programming Kit (GLPK) for linear programming based
on the SIMPLEX method. The DE-variants were based
on DE 3.6 1 implemented in ANSI C language. All
experiments done in this work used a cluster with
40 processing cores each one with Intel(R) Core(TM)
i7 (3.5GHz), 8GB RAM and Ubuntu Server 12.04
operational system.

The objective of testing the proposed mathematical
model and the DE-variants led to the creation of
benchmarks with different levels of complexity. The
scenarios simulated vary according to the number of
products and the demand of each final client and, so, the
complexity of the problem. Table 3 presents the proposed
benchmarks.

Consider N = {2, 3, 4, 5, 6} the number of products
transported, R1 = {N1, N2, N3} and R2 = {N4, N5, N6}
the products refined in each refinery and C1, C2 and C3

the demand of each product in each distribution center.
MILP experiments were set to maximum time-window

of 14 days to complete processing and find the optimal
solution. Benchmarks J01, J02 and J03 used a time
window of 5 hours to complete processing, benchmarks
J04, J05 and J06 required 5 days and benchmarks J07,
J08, J09 completed after 12 days. Benchmarks J10, J11,
J12, J13, J14 and J15 did not complete the processing
and presented only sub-optimal solutions. With the
increasing number of refined products (N), the number
of variables of the model increases proportionally.
Consequently, the search space increases exponentially
along with the necessary processing time.

The solutions can be represented in Gantt graphics,
where each product (N) is bumped into a polyduct
(P) for each time frame (t). As example, the optimal
solutions for benchmarks J03 and J09 are presented
on Figure 2 together with a sub-optimal solution for
benchmark J15. In these solutions we can see the “holes”
in the plot, representing that the polyduct is not being
used at that time. These gaps are network truncations
and they represent the waiting for the pumping of the
product by the refineries/storage tanks.

In all solutions, the polyducts P1, P2, P3 e P4 were
continuously used to deliver the demand of products as
soon as possible. The polyducts P5 e P6, representing the
bidirectional pipeline, were mostly used by benchmarks
with five and six products. These polyducts help in
diverting the products from storage tanks and it is
needed to carry larger amounts at the same time horizon.
Polyducts P7, P8, P9 e P10 deliver the products to end
customers and depend on the availability of each product
in storage tanks. Consequently, these polyducts have
time periods not being used because they must wait for
the subsequent polyducts finished their batches.

The experiments using the proposed evolutionary
algorithms (BDE and DDE) also presented some optimal
and sub-otimal solutions. Each method use a different
adaptation to work in binary spaces, resulting in different
possible solutions to the problem. As every heuristic
method, BDE and DDE start their individuals with
random values and seek the evolution of the population.
Therefore, the results are influenced by the number of
individuals of the population, the number of generations
and their control parameters.

The running parameters used in the DE-variants,
such as number of individuals in the population and
number of iterations, were mostly set according to
the literature (Price et al., 2005). Mutation (MP),
perturbation (PP) and crossover (CR) parameters were
tested with a ± 5% variation. The basic values for these
parameters were those used in Krause et al. (2015, 2013).
Table 2 shows the parameters of the with which the best
solutions were found.

After 100 runs, each individual of each DE-variants
achieved a feasible solution. Tables 4 and 5 present all
results (BDE and DDE respectively) and compares them
with the optimal and sub-optimal solutions. Each table
shows the best fitness solution achieved by each DE-
variant (Best), the average and standard deviation of the



8 J. Krause, H. S. Lopes

100 runs (Avg ± SD) and the percentage (%) achieved
of the optimal or sub-optimal found by MILP.

Results in bold (J01, J02 and J03 for BDE and
J01, J02, J03, J04 and J05 to DDE) indicate that
the DE-variants achieved the optimal solution for these
benchmarks. The processing time for BDE and DDE
on J01, J02 and J03 was less than 2 hours. The DE-
variants required different time windows to process the
other benchmarks: BDE used 3 hours for J04, J05 and
J06, 4 hours for J07, J08 and J09, 5 hours for the J10, J11
and J12 and 7 hours for the other three benchmarks (J13,
J14, J15). The continuous encoding of DDE requires
more processing time when compared with BDE. For
benchmarks J04, J05 and J06, DDE took 4 hours to
complete processing. Around 5 hours for J07, J08 and
J09 and 8 hours for benchmarks J10, J11 and J12. For
the last three benchmarks, DDE required almost 12
hours processing. The average time for both DE-variants
are considerably lower than the time required for MILP
processing.

These results also present the behavior of each
evolutionary method. In all proposed benchmarks, DDE
found better solutions when compared to BDE. Despite
that, the average and standard deviation of the DDE
solutions are greater than the average and standard
deviation of BDE. Suggesting that DDE has a good
global search. This fact is probably associated with
the original process of DE mutation, this characteristic
was maintained throughout the iterations of the DDE.
However, both methods presented viable solutions to the
proposed combinatorial problem.

Statistical hypothesis tests were executed to compare
the results obtained by each method. The statistical
analysis of the average results was done with box plots.
Significant differences in most benchmarks tested were
found. Fig. 3 presents the box plots from benchmarks
J03, J09 and J15.

Benchmarks J01, J02, J03, J08, J09, J10, J11
, J13 and J15 presented a similar behavior. As
presented in Fig. 3, intervals between the first and
third quartiles do not overlap themselves, indicating
that results are statistically significant by both DE-
variants. Benchmarks J04, J05, J06, J07 and J12
presented an overlap on the quartiles ranges of their box
plots. This fact indicates that the difference between
these results may not be significant. For these cases,
statistical normality and non-parametric tests were
used to determine the significance of the results. The
Shapiro-Wilk test was performed with 95% of confidence
to determine whether the data followed a normal
distribution or not. All the five tested benchmarks
reject the test hypothesis since data deviate from the
normal distribution. Consequently, the non-parametric
Wilcoxon Signed-Rank test was used to compare these
results. For J04, J05 and J12, there was no significant
difference, meaning that both evolutionary methods
found similar solutions. For J06 and J07, the statistical
test showed a significant difference (98% and 99%
respectively) between the results.

6 Conclusions

This work compared methods for binary optimization
of a real-world scheduling problem. Optimization of oil
distribution networks is essential to reduce the costs
associated to the transportation and to the correct
delivery of each product to end customers. The proposed
binary mathematical model is flexible enough to allow
the study of different network topologies, with different
structures, products and time horizons. However, it leads
to a complex combinatorial problem and requires a
large computational effort to solve it, even for moderate
instances of the problem. To illustrate the applicability
of this model, the simplified network described in Section
2 is solved by MILP and two Differential Evolution
variants, BDE and DDE. These two meta-heuristics were
recently proposed in the literature and, basically, the
main difference between them is how the individuals of
the population are encoded for binary problems.

The proposed benchmarks present a set of rules
and restrictions that simulate a real-world situation. A
more detailed representation of real situations brings
the possibility to create new case studies. The difficulty
of representing all the constraints of the problem leads
to simplifications in the benchmarks constrains. Real-
world problems may require additional restrictions and
changes in the mathematical model. Notwithstanding,
is a fair approximation of a real problem and the
proposed benchmarks can be very useful for testing
the performance of exact and heuristic optimization
algorithms.

Experiments sought to test the proposed binary
model and reached the main goal of finding feasible
solutions to the problem. MILP was successfully
applied in this model and provide optimal solutions
for benchmarks J01, J02, J03, J04, J05, J06, J07,
J08 and J09. Sub-optimal solutions were obtained for
benchmarks J10, J11, J12, J13, J14 and J15, after a
predefined processing time (14 days).

Overall results found by the DE-variants can be
considered very good. BDE achieved the optimal
values for three instances and DDE for five of them.
As expected, the performance of the meta-heuristics
degraded as the size of the search space increased.
However, considering the processing time needed by
DE-variants when compared with MILP, they presented
themselves as good alternative methods with low
computational effort.

Results of the BDE and DDE also show the behavior
of each algorithm. Average and standard deviation
results of DDE suggest this algorithm is consistent
and an effective method for global optimization. It is
known that the regular Differential Evolution algorithm
performs well for many problems due to its crossover
and mutation processes, which use vector differences
for the evolution of solutions. These processes, as
well as continuous encoding were maintained in the
DDE algorithm. These features are responsible for the
diversity of the achieved results. When DDE is compared



Evolutionary Computation Methods for the Schedule Optimization of Pipeline Networks 9

to the BDE, it presents different (better and worse)
solutions to the proposed problem. Numerical results
obtained by DDE suggest that algorithms designed for
continuous spaces can be efficiently applied to some
discrete problems. The use of the sigmoid function in the
discretization process allows the application of the DDE
algorithm to other binary and integer combinatorial
problems.

The high complexity of the scheduling optimization
problem was one of the main motivations for this work.
The new modeling presented here aims to adapt a real-
world continuous problem to binary spaces. With a large
number of variables and several constraints, the meta-
heuristic algorithms showed a good balance between
global and local search. This equilibrium is essential to
achieve good feasible solutions with less computational
effort. Although the application of DE-variants here can
be considered successful, future work will focus on self-
adaptation of parameters, that was proved to lead to
better results than fixed-parameters’ algorithms (Maruo
et al., 2005).

Another important contribution of this work is the
set of benchmark instances for the simplified pipeline
network model. These benchmarks may be useful
for other researchers to test optimization methods.
The possibility of creating new and more complex
benchmarks also provides a wide range of case studies.

ACKNOWLEDGMENTS

This work was partially supported by grants from
the National Counsel of Technological and Scientific
Development (CNPq) to J. Krause and H.S. Lopes.

References

Adeyemo, J., Bux, F., and Otieno, F. (2010). Differential
evolution algorithm for crop planning: single and
multi-objective optimization model. International
Journal of the Physical Sciences, 5(10):1592–1599.

Andrade, M. R. Q., Ochi, L. S., and Martins, S. L.
(2015). Heuristics for the periodic mobile piston pump
unit routing problem. Int. J. Nat. Comput. Res.,
5(1):1–25.

Bazaraa, M., J., J., and Sherali, H. (1990). Linear
Programming and Network Flows. J. Wiley & Sons,
New York, USA.

Cafaro, D. C. and Cerdá, J. (2004). Optimal
scheduling of multiproduct pipeline systems using a
non-discrete milp formulation. Computers & Chemical
Engineering, 28(10):2053–2068.

Dantzig, G. (1963). Linear Programming and
Extensions. Princeton University Press, Princeton,
USA.

de Souza, T. C. N., Goldbarg, E. F. G., and Goldbarg,
M. C. (2010). Transgenetic algorithm for the
biobjective oil derivatives distribution problem. In
IEEE Congress on Evolutionary Computation, pages
1–8, Piscataway, USA. IEEE Press.

Dong, X.-l., Liu, S.-q., Tao, T., Li, S.-p., and Xin,
K.-l. (2012). A comparative study of differential
evolution and genetic algorithms for optimizing the
design of water distribution systems. Journal of
Zhejiang University – Science A, 13(9):674–686.

Garcia, J. M. C., Martin, J. L. R., Gonzales, A. H.,
and Blanco, P. F. (2004). Hybrid heuristic and
mathematical programming in oil pipelines networks.
In Proc. Congress on Evolutionary Computation,
volume 2, pages 1479–1486, Piscataway, NJ, USA.
IEEE Press.

Goldbarg, M. C., Goldbarg, E. F. G., and Duarte,
H. D. M. (2010). Transgenetic algorithm for the
periodic mobile piston pump unit routing problem
with continuous oil replenishment. Int. J. Innov.
Comput. Appl., 2(4):203–214.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
Boston, MA, USA.

Krause, J., Parpinelli, R. S., and Lopes, H. S. (2013).
A comparison of differential evolution algorithm with
binary and continuous encoding for the MKP. In Proc.
of BRICS Congress on Computational Intelligence
and 11th Brazilian Congress on Computational
Intelligence, pages 381–387, Piscataway, NJ, USA.
IEEE Press.

Krause, J., Sieczka Jr., E. L., and Lopes, H. S.
(2015). Differential evolution variants and MILP
for the pipeline network schedule optimization
problem. In Proc. of 2nd Latin-American Congress
on Computational Intelligence, pages 1–6, Piscataway,
NJ, USA. IEEE Press.

Magatão, L., Arruda, L. V. R., and Neves Jr., F. (2004).
A mixed integer programming approach for scheduling
commodities in a pipeline. Computers & Chemical
Engineering, 28(1-2):171–185.

Maruo, M. H., Lopes, H. S., and Delgado, M. R.
B. S. (2005). Self-adapting evolutionary parameters:
encoding aspects for combinatorial optimization
problems. In Raidl, G. R. and Gottlieb, J., editors,
Proc. 5th European Conference on Evolutionary
Computation in Combinatorial Optimization, volume
3448 of Lecture Notes in Computer Science, pages 154
– 165. Springer-Verlag, Heidelberg, Germany.

Michalewicz, Z. and Fogel, D. B. (2004). How to Solve
It: Modern Heuristics. Springer, Berlin, Germany, 2nd
edition.



10 J. Krause, H. S. Lopes

Onwubolu, G. and Davendra, D. (2006). Scheduling flow
shops using differential evolution algorithm. European
Journal of Operational Research, 171(2):674–692.

Price, K., Storn, R., and Lampinen, J. (2005).
Differential Evolution: a practical approach to global
optimization. Springer-Verlag, Heidelberg, Germany.

Schrage, L. (2000). Optimization Modeling with LINGO.
Lindo Publishing, Chicago, USA.

Storn, R. and Price, K. (1995). Differential evolution:
A simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical Report
TR-95-012, International Computer Science Institute,
Berkeley University, Berkeley, CA, USA.

Yongtu, L., Ming, L., and Ni, Z. (2012). A study on
optimizing delivering scheduling for a multiproduct
pipeline. Computers & Chemical Engineering,
44(9):127–140.

Figure 1 Example of a distribution network presented by
Garcia et al. (2004).

Table 1 Units of time needed for one batch to traverse
each duct.

Ducts Time

P1 1
P4, P8, P10 2
P2, P3, P5, P6, P9 3
P7 4

Table 2 BDE and DDE parameters

Parameter BDE DDE
Population 300 300
Generations 20,000 20,000

MP 15% 10%
PR 50% –
CR – 80%

Table 3 Proposed benchmarks. Solutions with “*” are
sub-optimal.

Bench N R1 R2 C1 C2 C3 Solution

J01 2 1 4 12 12 12 658
J02 2 1 4 12 24 12 1100
J03 2 1 4 12 24 18 1450
J04 3 1,2 4 8 8 8 803
J05 3 1,2 4 12 12 12 1654
J06 3 1,2 4 12 18 12 2288
J07 4 1,2 4,5 8 8 8 1207
J08 4 1,2 4,5 8 16 8 1968
J09 4 1,2 4,5 12 18 10 3170
J10 5 1,2,3 4,5 8 8 6 1617 *
J11 5 1,2,3 4,5 8 12 6 2179 *
J12 5 1,2,3 4,5 8 12 8 2860 *
J13 6 1,2,3 4,5,6 4 6 4 1037 *
J14 6 1,2,3 4,5,6 4 8 4 1260 *
J15 6 1,2,3 4,5,6 4 12 6 2393 *

Table 4 Results obtained by BDE algorithm.

Bench Best Avg ± SD %

J01 658 664.40 ± 11.04 0.00%
J02 1100 1128.33 ± 14.98 0.00%
J03 1450 1458.55 ± 24.58 0.00%

J04 857 866.30 ± 15.03 6.72%
J05 1747 1752.68 ± 17.89 5.62%
J06 2446 2460.84 ± 24.59 6.91%

J07 1345 1370.03 ± 33.49 11.43%
J08 2177 2213.92 ± 37.98 10.61%
J09 3517 3564.02 ± 73.66 10.94%

J10 1770 1819.23 ± 30.77 9.46%
J11 2401 2506.54 ± 59.06 10.18%
J12 3344 3481.07 ± 80.27 16.92%

J13 1210 1244.26 ± 48.68 16.68%
J14 1493 1688.22 ± 61.30 18.49%
J15 3153 3240.42 ± 94.29 31.75%

Table 5 Results obtained by DDE algorithm.

Bench Best Avg ± SD %

J01 658 720.20 ± 36.59 0.00%
J02 1100 1198.55 ± 46.74 0.00%
J03 1450 1541.90 ± 57.43 0.00%

J04 803 867.62 ± 46.32 0.00%
J05 1654 1739.40 ± 51.56 0.00%
J06 2358 2479.30 ± 76.73 3.06%

J07 1303 1396.79 ± 59.88 7.95%
J08 2136 2331.53 ± 74.49 8.53%
J09 3438 3625.86 ± 98.89 8.45%

J10 1715 1928.06 ± 82.30 6.06%
J11 2392 2673.06 ± 98.31 9.77%
J12 3307 3485.51 ± 107.32 15.62%

J13 1201 1292.96 ± 94.40 15.81%
J14 1479 1734.32 ± 101.79 17.38%
J15 3000 3372.58 ± 138.35 25.36%



Evolutionary Computation Methods for the Schedule Optimization of Pipeline Networks 11

Figure 2 Graphic solutions for benchmarks J03, J09
(optimal) and J15 (sub-optimal)

Figure 3 Boxplot of BDE and DDE results for J03, J09
and J15 benchmarks.


