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Abstract: This work proposes an efficient approach to recover the mechanical strain profile
applied on fibre Bragg grating sensors. The proposed method is based on differential evolution
and uses only the sensor reflectivity, without requiring phase information. The method has
been shown to be highly parallelisable, with the fitness evaluation procedure implemented on
graphical processing units. Experiments were performed to evaluate the performance of the
method on three distinct graphic processing units (GPU), under a series of increasing loads.
An enhancement up to three orders of magnitude in performance was obtained in respect to
other evolutionary method proposed in the literature for the same purpose. Furthermore, it was
observed that, for smaller problem sizes, the GPU clock rate was more significant than the
number of cores of the GPU.
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This paper is a revised and expanded version of a paper entitled ‘An efficient
method to determine strain profiles on FBGs by using differential evolution and GPU’
presented at 2015 Latin America Congress on Computational Intelligence, Curitiba, Brazil,
13–16 October 2015.

1 Introduction

Fibre Bragg gratings (FBGs) are devices produced within
the core of optical fibres. An FBG reflects light at certain
wavelength bands, according to its structure. Changes in the
grating structure result in the modification of its reflection
spectrum, allowing the device to be inherently sensitive
to temperature variations and mechanical deformation
(Hill et al., 1978; Kersey et al., 1993). Also, FBGs are
immune to external electromagnetic fields, they have
intrinsic wavelength multiplexing capabilities and are
convenient for integration in optical links over long
distances. These characteristics make FBGs suitable for a
wide range of sensing applications.

FBG transducers can be interrogated by illuminating
them with a broadband light source and detecting the
spectral position of the reflected band, which is related
to the measurand. This principle of operation of an FBG
sensor is depicted in Figure 1. Changes in the measurand
are then determined by traditional methods (Kersey et al.,
1997) used to detect spectral shifts in the central wavelength
of the reflected band. These methods are efficient when
the external parameters affects uniformly the whole
device. Nevertheless, such methods cannot be efficiently
employed when the FBG sensor is subject to non-uniform
perturbations along its length.

Figure 1 Principle of operation of an FBG sensor:
a broadband light source illuminates the FBG,
that reflects light at a given wavelength band
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Note: The reflection and transmission spectra are complementary.

A method based on differential evolution (DE) (Storn,
1996; Price et al., 2005) was proposed by Negri et al.
(2014) to circumvent these issues, enabling the recovery of
the mechanical deformations profiles applied to the FBG.

This method requires only information about the magnitude
of the band reflected by the FBG sensor, with no need
for phase information. This method showed a reduced
computational time when compared to another evolutionary
computation solution (Cheng and Lo, 2004), but it is still
not enough for high demand applications such as real time
monitoring.

The present paper proposes a new implementation of
the DE method to take advantage of the parallel processing
capabilities of modern graphical processing units (GPU).
The performance of the resulting central processing unit
(CPU) and GPU hybrid method was assessed for a series
of problem instances with increasing loads under three
different GPUs.

2 Related works

Methods to determine the periodicity of FBGs from their
reflection signal were already proposed in the literature.
Such methods are useful mainly for distributed strain
sensing and for FBG synthesis. Each method have its own
advantages and limitations.

The method proposed by Leblanc et al. (1996) allows
measuring the distributed strain on an FBG by means of
its reflectance. Nevertheless, the method works only for
monotonic strain profiles.

A subsequent work by Ohn et al. (1997) introduced
an interferometric method to determine arbitrary strain
profiles. In this method, the strain profile is determined
from the complex reflection spectrum of the FBG. This
requirement prevents the application of the method when
only the FBG reflectance is available. On the following
years, other methods that also required complex spectra
were proposed (Muriel et al., 1998; Azaña et al., 2001;
Skaar and Feced, 2002).

Later, Cheng and Lo (2004) proposed a method to
determine the strain profile on an FBG by using its
reflectance. The method employed a genetic algorithm (GA)
to evolve a population of strain profiles, selecting the
profile that resulted in a reflectance as close as possible to
the measured reflectance. However, the method required a
computational effort of hours and also required the use of
two FBGs that must be subject to the same strain profile
simultaneously, thus limiting its applicability.

The method proposed by Negri et al. (2014) showed a
strategy similar to the GA method (Cheng and Lo, 2004),
replacing the GA by a DE method and introducing a
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smoothness constraint. The computational time was reduced
from hours to tens of seconds, and the drawback of using
two FBGs was dropped. However, the performance of the
method was still not enough for real-time applications. In a
subsequent work (Negri et al., 2015), the usage of GPU was
proposed to reduce the computational time. Initial results
showed a reduction of the computational time from tens to
tenths of seconds.

3 Methodology

The process of determining the mechanical deformation
profile for a given FBG sensor starts with the acquisition
of the FBG reflectance spectrum, that can be routinely
obtained with interrogation methods (Kersey et al., 1997).
The spectrum obtained is, henceforth, referenced as target
spectrum, and contains the information used by the DE
method to determine the deformation profile.

The DE method proposed maintains a population of
candidate solutions, where each individual corresponds to
a deformation profile. By using DE, this population is
improved until a suitable deformation profile is found.
A deformation profile is deemed suitable when it results
in a light reflectance spectrum that matches the target
spectrum, with the reflectance spectrum being simulated
by using the transfer matrix method (Yamada and Sakuda,
1987). This evolutionary process is guided by evaluating
the fitness of each individual, composed of the difference
between the obtained and target spectra plus a term to avoid
convergence to undesired solutions.

Simulating the reflectance spectrum for the whole
population requires more time than the other steps of the
evolutionary method due to the sequence of operations
performed in the transfer matrix method. To compute the
reflectance of an FBG at a given wavelength, the transfer
matrix method requires a series of trigonometric operations
and matrix multiplications with complex numbers (floating
point).

To reduce the computation time required by the
method, GPUs with capacity of running multiple parallel
threads were used. By taking advantage of the massive
parallelisation capabilities of modern GPUs, the fitness
evaluation can be divided into multiple threads, each one
computing the reflectance of a candidate profile for a given
wavelength, thus achieving a fine granularity.

3.1 Transfer matrix method

As shown by Huang et al. (1995), the transfer matrix
method can be used to compute the reflectance of a FBG
in a simple way. A non-uniform FBG can be analysed
as a sequence of uniform sections. Each uniform section
can be modelled as a 2× 2 matrix (transfer matrix) that
provides the relationship between the incident and reflected
power of that section. The resulting transfer matrices are
then sequentially multiplied to obtain the response of the
whole FBG.

The transfer matrix for a FBG section of length l, for
a specific wavelength λ, is given by equation (1), where b
corresponds to the forward signal (b(0) is the input, and b(l)
the output) and a corresponds to the backward signal (a(l)
is the input and a(0) the output). Here, we are interested in
the reflectance R = |a(0)/b(0)|2.[

a(0)
b(0)

]
=

[
T11 T12

T21 T22

] [
a(l)
b(l)

]
. (1)

The transfer matrix coefficients T11 and T22 are given by
equation (2), and the coefficients T12 and T21 are given by
equation (3):

T11 = T22∗ =
∆β sinh(sl) + is cosh(sl)

is
exp(−iβ0l), (2)

T12 = T21∗ =
k sinh(sl)

is
exp(iβ0l), (3)

where k = π∆n0/λ, s = (|k|2 − ∆β2)1/2 and
∆β = 2nπ/λ − π/λ (Huang et al., 1995).

The mean value of the core refractive index is given
by n. This refractive index is assumed to be sinusoidal
modulated, with amplitude ∆n0 and modulation period
(pitch) Λ.

When a FBG is subject to a dilatational deformation
gradient, its structure changes. These modifications are
associated with the photoelastic effect (Huang et al.,
1995) and the longitudinal dilation. The non-uniform FBGs
analysed here are decomposed into 20 uniform sections,
where each section is subject to an uniform strain ϵ. The
new pitch Λ′ is given by equation (4) and the new mean
refractive index value n′ is given by equation (5):

Λ′ = Λ+ Λϵ, (4)

n′ = n− 0.5n3(p12 − ν(p11 + p12))ϵ, (5)

where p11 and p12 are the fibre photoelastic coefficients and
ν is the Poisson coefficient.

An FBG can present a variation of the pitch along its
axis (chirp). The pitch is modelled by equation (6), that
computes the new pitch Λ′ as function of the position z and
pitch factor δΛ:

Λ′(z) = Λ0 + (δΛ/Λ0)z. (6)

The modulation of the core refractive index of a grating
can present a Gaussian envelope due to the writing process
or to achieve the apodisation of the reflection spectrum. A
Gaussian envelope is described here by equation (7):

∆n0(z) = ∆noc exp

[
−α

(
z − l/2

l

)2
]
, (7)

where α is a control parameter and noc is the amplitude
corresponding to the central point of the envelope.
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3.2 Differential evolution

The DE is a metaheuristic optimisation method initially
proposed by Storn (1996). Due to its characteristics, the
method has been used successfully in many engineering
optimisation problems (Kalegari and Lopes, 2013; Krause
and Lopes, 2013). In this application of the DE algorithm,
a population NP = 96 individuals is evolved. Each
individual corresponds to a deformation profile, discretised
in D = 20 points.

The individuals are randomly initiated. At each iteration
of the method, a new trial population is built from
the current population by using the crossover and
mutation operators. The new individuals are evaluated
by the fitness function, replacing the old individuals if
a higher fitness value is found. This iterative process
runs for 2,000 iterations (value experimentally chosen),
when the individual with highest fitness is selected as
solution. Figure 2 shows an algorithmic description of the
DE method, with the mutation and crossover operators
described in Figures 3 and 4.

Figure 2 Differential evolution (rand/1/bin scheme)
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Figure 3 Mutation operator (rand/1/bin scheme)
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Figure 4 Crossover operator (rand/1/bin scheme)
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The DE/rand/1/bin (Price et al., 2005) scheme was
employed with a crossover rate CR = 0.95 and mutation
factor F = 0.7. This classic scheme was preferred here for
its simplicity, as newer variations (Zhang and Sanderson,
2009; Cai et al., 2014) of the DE method did not result
in a significant enhancement for this application. Each
individual in the current population (base-individual) is
used to construct a new individual in the trial population
by means of the mutation and crossover operators. For each
base-individual, the mutation operator chooses another three
distinct individuals from the base population and combines
them, generating a new mutant individual. By using the

crossover operator, the mutant individual is recombined
with the base-individual, generating a new individual in
the trial population. The trial population is evaluated and
its individuals replaces their respective base-individual if a
higher fitness is reached.

The fitness evaluation is performed by simulating
the reflectance spectrum of the FBG when applying the
deformation profile represented by the individual. The mean
squared error (MSE) between the simulated reflectance
and the target spectrum is computed, with the fitness
value being inversely proportional to the MSE. Thus, the
algorithm searches for a deformation profile that minimises
the MSE.

However, distinct deformation profiles can result in
similar reflectance spectra. To avoid this ambiguity, we
employ FBGs with linear chirp. Also, it is assumed that
there are no abrupt changes in the deformation profile.
This smoothness is enforced by penalising solutions which
sections showed a strain differing more than 0.2 mϵ from
the strain in the previous section. This penalty was added
to the fitness evaluation and corresponds to the excess
difference between the strain of each consecutive section,
multiplied by 10 and divided by the total number of
sections, as seen in Negri et al. (2015).

3.3 Parallel computation using GPU

Evaluating the fitness of the individuals is the most
computationally expensive procedure of the proposed
method. The fitness evaluation of a single individual
requires computing the FBG reflectance for a sequence of
64 wavelengths in a predefined range. For each wavelength,
the transfer matrix method is employed to compute the
corresponding reflectance, requiring the calculation of a
sequence of matrices that are then multiplied to compose
the grating response. However, this problem can be easily
divided into independent problems, taking advantage of a
hardware capable of executing parallel threads.

In the fitness evaluation procedure, the evaluation of
each individual can be seen as an independent process that
depends only on the FBG structural parameters and the
information carried by the individual. The evaluation of an
individual can be further divided into independent threads,
each one being responsible for computing the reflectance at
a given wavelength. The difference between the resulting
reflectance and the target spectrum is computed point by
point by each thread, and the total error for an individual is
computed by using a parallel sum reduction operator.

The characteristics of the proposed problem make
modern GPUs a very suitable hardware for performing the
fitness evaluations, due to the high number of independent
threads and low requirements on memory transfer
and sharing. The compute unified device architecture
(CUDA R⃝) platform was used in this work with compatible
GPU boards. The DE method was implemented in CPU,
with the exception of the fitness evaluation that was
implemented as a kernel for parallel execution in a GPU.
This strategy of running the fitness evaluation of an
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evolutionary method on GPU, while the overall process
is run on CPU has been successfully employed in the
literature (Harding and Banzhaf, 2008).

An algorithmic representation of the kernel is shown in
Figure 5. This kernel is initially executed with a total of 96
thread blocks, each block corresponding to one individual.
Each block is composed by 64 threads, where each thread
simulates the FBG response for a given wavelength. The
kernel creates a total of 96 × 64 = 6,144 threads at
each iteration, with the number of actual parallel threads
being dependent of the GPU hardware used. Each process
block shares the information about the individual analysed,
with the FBG parameters stored in static read-only global
memory. Also, the number of individuals (process blocks)
and wavelengths (process per block) were increased to
further evaluate the performance of the method.

Figure 5 Structure of the kernel executed on GPU
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4 Experiments and results

Two experiments were performed, E1 and E2. The first
experiment (E1) evaluated the convergence of the method
to the correct solution by using three deformation profiles
(P1, P2 and P3), shown in Figure 6. Profile P1 consisted
of a linear gradient, P2 was a mirrored version of P1 and P3
employed a trapezoidal scheme of deformation. Experiment
E1 was run with a NVIDIA GeForce R⃝ GTX480 GPU
(GPU1) in a desktop with an Intel R⃝CoreTM2 Quad
Processor Q9550 and 8 GBytes of RAM.

Figure 6 Deformation profiles employed (P1, P2 e P3)
(see online version for colours)
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In experiment E1, the mean absolute error (MAE) between
the resulting deformation profile and the target deformation
profile was used as error metric. Equation (8) was used to
compute the MAE, where ns is the number of segments
(20), targeti is the target strain in the ith segment and
resulti is the resulting strain in the ith segment. Each
profile was evaluated 1, 000 times, since the method is
stochastic.

MAE =

ns∑
i=1

|targeti − resulti| (8)

The second experiment (E2) evaluated the performance of
the method on three distinct GPUs (GPU1, GPU2, and
GPU3), by varying the number of individuals to 96, 384,
and 1,536 and the number of distinct wavelengths, from
16 to 1,024 (in steps of power of two). The employed
GPUs were an NVIDIA GeForce R⃝ GTX480 (GPU1), an
NVIDIA GeForce R⃝ GTX660 (GPU2), and an NVIDIA
Tesla R⃝K40C (GPU3). The specifications of the GPUs
are shown in Table 1. Profile P3 was used as the target
profile in experiment E2. Each wavelength evaluation was
repeated five times in order to measure the mean running
time and to increase precision of the timing.

Table 1 Specifications of the evaluated GPUs

GPU Clock rate CUDA cores

GPU1 (GTX480) 1.40 GHz 480
GPU2 (GTX660) 1.06 GHz 960
GPU3 (K40C) 0.75 GHz 2,880

The timing was done for the entire process and not only
for the time spent executing the kernels in the GPUs. This
timing strategy includes the initialisation time, that can be
significant for some applications.

Both the experiments E1 and E2 used the FBG
structural parameters shown in Table 2.

Table 2 Parameters used to simulate the spectral response of
the FBGs

Parameter Value

p11 0.113
p12 0.252
vf 0.17
l 1 cm
Λ 532.4 nm
λ 1,552 nm to 1,555 nm
n 1.457
∆n 2.5× 10−4

δΛ 5× 10−8

α 5
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4.1 Results

An example of the evolutionary process in experiment E1
with target profile P3 is shown on Figure 7, where the best
solution found is seen at different iterations (1, 250, and
2,000).

Figure 7 Example of evolution of the best individual in
experiment E1, using profile P3 as target
(see online version for colours)
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A summarisation of the results of experiment E1 is shown
in Table 3, while the complete results (MAE computed for
every repetition of all experiments) are shown in Figure 8.
These results corresponds to the ones already presented
by Negri et al. (2015).

Table 3 Results from experiment E1, according to the target
profile

Experiment MAE [mϵ]

P1 0.006937± 0.078082

P2 0.009022± 0.050273

P3 0.003254± 0.040156

Figure 8 MAE obtained in experiment E1 (see online version
for colours)
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Figures 9 to 10 show, respectively, the running time
according to the number of wavelengths evaluated when
using 96, 384, and 1,536 individuals.

Figure 9 Running time for each GPU when using
96 individuals (see online version for colours)

Figure 10 Running time for each GPU when using
384 individuals (see online version for colours)

5 Discussion

According to the results of experiment E1 shown in
Table 3, the MAE for all experiments was in the order of
µϵ. Results from Table 3 also presented a standard deviation
higher than the mean value. This high deviation shows
that some repetitions did not converge to the expected
solution. This can also be inferred from the results shown
in Figure 8, where a small number of repetitions differs in
orders of magnitude from the others.

Figure 9 shows that for 96 individuals (from 1,536 to
98,304 threads), the number of threads is small enough for
the performance to be directly related to the GPU clock
rate of the evaluated GPUs. When using 96 individuals,
GPU1 (the GPU with the highest clock rate) had the best
performance for all tests, while GPU3 (lowest clock rate)
showed the worst performance.

For 384 individuals, Figure 10 shows that the number
of CUDA cores starts to be more important for the
performance when the number of threads is high enough
(turning point at 512 wavelengths, meaning 196,608
threads).

The tests performed with 1,536 individuals (Figure 11)
show a greater difference in the performance of the GPUs
for a higher thread count (1,536 × 1,024 = 1,572,864
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threads at 1,024 wavelenghts). For 1,536 individuals, it is
clear that the higher number of CUDA cores of GPU3
(in comparison to GPU1 and GPU2) compensates for its
lower GPU clock.

Figure 11 Running time for each GPU when using
1,536 individuals (see online version for colours)

Experiment E2 shows that for a lower thread count the
GPU clock rate may be more significant than the number
of CUDA cores, whereas a higher tread count changes the
situation. Different applications may have different results
than the ones obtained in this work, depending on the
memory requirements of the application. Since a relatively
low amount of memory needed to be shared between the
threads, memory transfer speed and the amount of shared
memory per block were not critical issues.

Also, results from experiment E2 suggest that a single
GPU can evaluate the fitness for multiple populations
(for a multi-population DE), allowing for detecting the
strain profile on multiple FBG sensors. This can be seen
when comparing the results of the GPUs for 64 wavelengths
for 96, 384, and 1,536 points. Taking GPU1 as example,
the running time for 64 wavelengths is multiplied by 4.3
when the population was multiplied by 16 (from 96 to 1,536
individuals).

6 Conclusions

Previous results (Negri et al., 2015) showed that the GPU
implementation had a decrease in orders of of magnitude
when compared to existing methods. The results obtained
in this work complements the previous results, showing that
GPUs still have capacity for more parallel load.

The performance evaluation with distinct GPUs showed
that the GPU clock rate is more significant than the number
of cores for smaller problem sizes. Accordingly, a higher
number of cores compensated lower clock rates for larger
problem sizes (higher thread count). This information is
useful as a criteria for choosing an adequate GPU for
parallel applications.

Results showed that, by using the proposed evolutionary
method in conjunction with high performance GPUs, it
is possible to recover the mechanical deformation profile
applied on an FBG in less than a second. The achieved

processing rate greatly enhances the applicability of the
method when compared to previous (Cheng and Lo, 2004;
Negri et al., 2014) CPU implementations.
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