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Abstract. This paper presents a novel distributed bio-inspired approach that uses
Gene Expression Programming (GEP) to evolve transition rules for two-dimensional
Cellular Automata (2D-CA). The 2D-CA are simulated in parallel using a master-
slave distributed environment. The fitness function of the GEP ultimately measures
the ability of a given CA to create a suitable solution for a complex Bioinformat-
ics problem. To validate the proposed approach, extensive experiments were done
dealing with a computationally expensive problem, that is considered to be one
of the most important open challenges in Bioinformatics. Results of simulations
show that the proposed approach was effective for the problem. Future works will
investigate other distributed approaches of this approach, such as those based on
General-Purpose Graphics Processing Units (GPGPU) or hardware-based acceler-
ators. Finally, we believe that the method proposed in this work can be useful for
other computational problems.
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1 Introduction

Stephen Wolfram proposed a “New kind of Science” that is based on general
types of rules that can be embodied in simple computer programs for reproducing
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real-world complex behaviors, instead using traditional mathematical methods [17].
A particular class of such computer program are the Cellular Automata (CAs),
which are simple discrete idealizations of natural systems. CAs are families of
simple, finite-state machines that exhibit emergent behaviors through their inter-
actions [8].

The computational simulation of a CA system is relatively simple, where a con-
figurational state of the CA is determined according to its predecessor state and a
transition rule. However, finding a transition rule for a given dynamic behavior is a
very difficult task, for which there is no efficient method [16].

The main objective of this work is to propose a novel parallel approach for the
induction of transition rules of two-dimensional Cellular Automata (2D-CA), us-
ing Gene Expression Programming, for solving complex problems in a reasonable
computing time. The second objetive, not less important, is to apply the proposed
approach to the Protein Contact Map prediction, validating the proposed approach
and proposing a novel method for the Protein Folding Prediction Problem (PFP).

This paper is organized as follows: Section 2 presents an overview about Cellular
Automata; Section 3 describes the Gene Expression Programming (GEP); Section
4 presents an overview about the PFP; Section 5 describes the proposed approach;
Section 6 shows how the experiments were conducted and the results; finally, in
Section 6 conclusions and future works are presented.

2  Cellular Automata (CA)

Cellular Automata (CAs) were introduced by John von Neumann in his work on
self-reproducing machines [12] and have been used to model several biological,
physical and engineering systems. For instance, simulation of the HIV infection
dynamics [19], and water flow simulation [14]. Basically, CAs are discrete dynamic
systems that are be represented by a d-dimensional array, composed of identical
interconnected components (cells).

The dynamic behavior of a CA is represented by its spatio-temporal diagram
[17]. Each cell has a discrete state that is updated on discrete time steps, consider-
ing its current state and the state of the neighboring cells (neighborhood relation-
ship). All cells of the d-dimensional matrix are updated at the same time step by the
application of a transition rule. Thus, sucessive applications of the transition rule
will lead to a dynamic behavior, from the initial state in ¢y to successive states in
subsequent time steps (t1,--- ,tp).

The following formal notation for CAs is presented by [11]: >_ set of possible
states of a cell; k£ number of elements of the set Y _; ¢ index of a specific cell; S}
state of a cell in a given time ¢; ! neighborhood of cell 4; @(n!)] transition rule that
defines the next state Sit *1 for each cell 7, as function of nt.

The neighborhood of each cell (¢; ;) of a two-dimensional Cellular Automaton
(2D-CA) is composed following a neighborhood relationship. The neighborhood
relationship is determined by a predefined radius () and the size (number of cells)
of the neighborhood (m) is defined as a function of r, acoording to m = 2r + 1.
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The most common types of neighborhood for 2D-CA are the von Neumann and the
Moore neighborhoods. The size of the von Neumann neighborhood with » = 1 is
m = 5, comprising the four orthogonally neighboring cells (¢;—1,j, ¢i j—1, Cit1,j,
¢i,j+1) surrounding a central cell (¢; ;). On the other hand, the Moore neighborhood
is composed by the central cell and eight neighboring cells (¢;—1 j, ¢; j—1, Cit1,j
Cij+15 Ci—1,5—15 Ci+1,5—15 Ci—1,5+1> Ci+1,j+1)-

In addition, boundary conditions are used to allow the connection between cells
that are situated at the extremities, forming a toroidal arrangement. Thus, the tran-
sition rule (@(n!)) is applied over all cells of the CA, without failure.

The number of transitions (possible configurations of the neighborhood) that
compose the rule @ is given by k2"+! and the number of rules represented by
those transitions is k**"" . For instance, the rule of a binary 2D-CA with von Neu-
mann neighborhood (with » = 1) is composed of 32 transitions. In other words,
the rule is composed of 32 bits, where each bit represents the result of a transition
(i.e. cgtj)» — cgtfl)
Wolfram. 7

), according to the concept of elementary automata proposed by

3  Gene-Expression Programming (GEP)

Gene-Expression Programming (GEP) is an extension of Genetic Programming
(GP) that was proposed by [5]. The difference between these approaches lies in
how the individuals are represented. In GP, the individuals are nonlinear entities of
different sizes and shapes (concrete syntax trees). On the other hand, in GEP the
individuals are encoded as fixed-size linear strings (also known as genome or chro-
mosome), which are afterwards expressed as nonlinear entities of different sizes and
shapes (i.e. expression trees or diagram representations) [5].

The encoding of individuals in GEP is based on the biological concept of open
read frame (ORF), that is the coding sequence of a gene. However, it is important
to know that genes are composed of more sequences than the respective ORF. In
biology, an ORF is composed of amino acid codons, beginning with a “’start” codon
and ending at a termination codon. GEP genes are composed of a head and a tail.
The head has symbols that represent functions and terminals. On the other hand, the
tail contains only terminals. GEP genes can have noncoding regions, that, in fact,
are the essence of GEP, allowing modifications of the genome using any genetic
operator without restrictions, producing valid programs without the need for editing
processes [5]. In other words, the encoding region of a gene (ORF) can "activate* or
“deactivate* portions of the genetic material algorithm, according to the functions
and their arities (i.e. number of arguments) encoded in the head of the gene.

GEPCLASS [18] is an implementation of GEP specially designed for finding
rules for classification problems based on supervised learning, where it is aimed to
find rules for modeling a given domain of known data samples, and then classify un-
seen sets of data. In GEPCLASS, a population of individuals evolves for a number of
generations, where selected individuals are subjected to genetic operators (mutation,
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recombination and transposition), generating diversity and, consequently, allowing
the evolutionary process to continue for more generations, increasing the chances
of finding even better solutions. The head of the gene can have elements belonging
only to the set of functions, such as logical and comparison operators.The tail, in
turn, can have elements either from the set of functions or from the set of terminals,
which in turn, includes the attributes that describe particular values.

The mapping between the genotype to the phenotype is carried out as follows.
The chromosome is transcribed into a variable-size expression tree (ET), following
the Karva language [5], where each gene is trascribed to a separated sub-tree. Then,
all sub-trees are joined together by a linking function (AND or OR operator), com-
posing the ET that represents a candidate solution to a given problem. The quality
of the candidate solutions is measure by a fitness function.

4  The Protein Folding Problem and the Protein Contact Maps

Under physiological conditions every protein folds into a unique three-dimensional
structure, also known as the native tertiary structure or native conformation, that
determines their specific biological function. This process is known as the Protein
Folding.

Despite the considerable theoretical and experimental effort expended to study
the protein folding process, there is not yet a detailed description of the mechanisms
that govern the folding process.

Although the concept of the folding process arose in the field of Molecular Bi-
ology, the Protein Folding Problem (PFP) is clearly interdisciplinary, requiring sup-
port of many knowledge areas, and it is considered to be one of the most important
open challenges in Biology and Bioinformatics.

Better understanding the protein folding process could help to: (a) accelerate drug
discovery by replacing slow, expensive structural biology experiments with faster
computational simulations, and (b) infer protein function from genome sequences.

Contact Maps (CM) are minimalistic representations of protein structures. The
contact map for a protein sequence with N amino acids is a N x N binary symmet-
rical matrix (C'), which is defined as follows: C; ; = 1 if residues ith and jth are in
contact, otherwise C; ; = 0. Each position of the matrix (:th,jth) is 1 if the amino
acid pair (¢th and jth amino acids) fulfills the connectivity condition. One can define
a contact between two amino acids in different ways. For instance, we can consider
two amino acids in contact when their Ca atoms are closer than a arbitrary threshold
distance [4].

As commented in last section, the solution of the folding problem is still lacking.
Among different possibilities, the prediction of protein contact maps is particularly
promising, since even a partial solution of it can significantly help the prediction
of the protein structure [4]. Several methods have been developed for CM predic-
tion from sequence. For instance, Neural Networks (NN) [7], Genetic Programming
(GP) [9] and neuro-fuzzy systems [1].
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5 Implementation of the Parallel GEP-CA (pGEP-CA)

Algorithm 2 shows the pseudo-code of the pGEP-CA. A parallel master-slave archi-
tecture is employed in order to allow a reasonable computing time. The processing
load is divided into several processors (slaves), under the coordination of a master
processor. The master is responsible for initializing the population, determining the
ORFs, performing the selection procedure, applying the operators( clone operator,
mutation, recombination, IS (insertion sequence) transposition, RIS (root IS) trans-
position and genic transposition) based on the GEPCLASS [18] and distributing
individuals to the slaves. Slaves, in turn, are responsible for reading the initial and
final 2D-CAs, simulating the 2D-CAs from the initial 2D-CA, using the induced
rules and computing the fitness function of each individual received, using the fi-
nal (expected) 2D-CAs and the obtained 2D-CAs. In Algorithm 2, bold instructions
are processed in parallel. The software was developed in ANSI-C programming
language, using the Message Passing Interface (MPI) for communication between
processes' and the Mersenne Twister random number generator [10].

Algorithm 2. Pseudo-code for paralle]l GEP-CA (pGEP-CA)

1: Start

2: Initialize population;

3: Determine ORFs

4: Simulate 2D-CAs and Evaluate fitness in parallel
5: while stop criteria not satisfied do

6: Clone operator — part 1
7.
8
9

Selection
Apply genetic operators
: Update population
10:  Determine ORFs
11:  Simulate 2D-CAs and Evaluate fitness in parallel
12: Clone operator — part 2
13: end while
14: Export postprocess results: best transition rule, obtained CM, metrics
15: End

5.1 Solution Encoding and Fitness Function

First of all, it is important to know how the transition rule is composed. As com-
mented in Section 2, the transition rule is formed by concatenating all transi-
tions, which in turn, are defined by the possible combinations of the neighbor-
ing cells. The number of combinations, using the von Neumann neighborhood
with unity radius, is 32, obtained as shown in Section 2. For instance, the rule

' Available at: http: //www.mcs.anl.gov/research/projects/mpich2/
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”010101110111111101111111011001015* is formed by the transitions, from right
to left, ’000002“—1; ”000012“—0; 000102*“—1; - - -5 "111112“—0.

In this work, the encoding of the individuals is defined according to the set of
terminals and their domains, following the Pittsburgh approach [6]. The terminals
are binary and represent the state of the neighboring cells (’1’=contact, ’0’=non-
contact). The set of terminals represent all possible combinations of the neighbor-
hood, mapping all transitions of a given rule. Considering the von Neumann neigh-
borhood with » = 1, the terminal set is composed of five terminals (labeled as a, b,
¢, d and e). The terminals have the same domain, which in turn, is defined by the
possible states of the cells of the CA (3~ = [0; 1]).

The individuals are represented by two multigenic chromosomes, which in turn,
are composed of more than one gene of equal size. As stated in Section 3, every
gene is divided into a head and a tail. The size of the head (h) of each gene and the
number of genes of each chromosome can be chosen a priori. On the other hand,
the size of the tail (¢) is determined according to the size of the head as proposed
by [18]: t = IntegerPart[0.5(h(n — 1) + 1)], where n represents the largest arity
(number of arguments) of the functions used.

Each gene is directly translated into an expression tree (ET). In this work, each
chromosome is composed of two genes. Thus, the sub-ETs codified by the genes are
linked together by a logical function (AND or OR), which can be chosen a priori.

A possible transition encoded in an individual is written in the form IFF A THEN
C as in data classification systems. For example, a possible rule encoded in an indi-
vidual would be: IF (a = 1 AND b = 0) THEN Rule = ’1’; else Rule = ’0’.

Figure 1 shows a simplified example of the transcription process.

Contact maps (CMs) are generally sparse symmetric matrices, populated primar-
ily with non-contacts (or zeros). Therefore, a similarity measure between two CMs
based on the Hamming distance [13] or Euclidean distance does not work well for
CMs, because contacts (true) and non-contacts (false) values carry the same weight.
Therefore, the fitness function proposed in this work is based on three metrics, that
are better suited to this problem, chosen to measure the ability of a transition rule
to generate a CA that represents a CM correctly. The fitness function is shown in
Equation 1.

fitness = S * Sne * S? (D

where: S¢, Sy are based on the sensitivity and specificity measures, respectively.
Sensitivity and specificity are commonly used in classification systems. Sensitivity
measures the ability of the classifier to correctly assign a data to its real class. On
the other hand, specificity measures the ability to reject a given data as belonging to
a class to which it does not belong. In this work, S¢ and Sy ¢ measure the ability
of a transition rule to generate correct contacts and non-contacts, respectively. S¢
and Sy ¢ are defined following four types of result, as shown in Equations 2 and 3,
respectively. S; measures the symmetry of the CM, as shown in Equation 4, where
m and n are the number of rows and columns of the CM, respectively.
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BT EEECTC T TR PTEERRRR Individual -----eeeemeeimnneans -
+———Chromosome 1————+———Chromosome 2 ———

AND==al0cl0 | OR=<alibjt [ NOT!=allblic|0] AND <=bh|1c|0

Gene 1 Gene 2 Gene 1 Gene 2

@ Linking Functions @

Expression Tree (ET) Expression Tree (ET)
for class 0 (non-contact) for class 1 (contact)

*Candidate solution : IF ( (a=0 AND c=0) AND ( a=1 OR b<1) ) THEN RULE =0
ELSE IF ( NOT (a!=1) AND (b<1 AND c=0) ) THEN RULE =1

Fig. 1 GEP Transcription process — example

i<m—1 j<n

T, = —UCs —Cs
Se=—T0 o Sye=—NC (3% E: E:[l I(Cij=Cj.i)]
Fe+Tnc i=0 j=it1
C))

where:

* True contacts (7c): number of contacts generated by the transition rule that, in
fact, are contacts;

* True non-contacts (7 ¢): number of non-contacts generated by the transition
rule that, in fact, are non-contacts;

» False contacts (F): it counts the contacts generated by the transition rule that,
in fact, are non-contacts;

» False non-contacts (Fy¢): it counts the non-contacts generated by the transition
rule that, in fact, are contacts;

» (; ; represents the value at cell location (z, j) of the CM.
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6 Computational Experiments and Results

All experiments done in this work were run in a cluster of networked computers.
Each computer has an Intel Core-2 Quad processor at 2.8GHz. All computers run a
minimal installation of Arch Linux 2.

The contact maps (CMs) used in the experiments to validate our proposed ap-
proach — the pGEP-CA — were generated by Molecular Dynamics (MD) simulations
following our previous work [2], using the 3DAB model of the protein 2gb1, which
is composed by 56 amino acids. Each CM is a 56x56 matrix and represents a folding
state of the folding process. In this work, 100 CMs were generated for the follow-
ing threshold values: 6.65,7, 8, 9, 10, 11 and 12A. Thus, a total of 700 CMs were
generated.

In this work, CMs are represented by 2D-CAs, which in turn, are simulated us-
ing evolved (or induced) transition rules by GEP simulations. In order to evaluate
the proposed approach, experiments were done using consecutive ¢th and jth CMs,
which in turn, represent the initial 2D-CA configuration and the expected final 2D-
CA configuration, respectively. The fitness of the GEP individuals is computed us-
ing the expected CM (obtained by MD simulations) and the achieved 2D-CA built
using the obtained rules. Due to the stochastic nature of the algorithm, 30 inde-
pendent runs were done with different initial random seeds. Thus, a total of 20790
experiments were done.

The running parameters for the pGEP-CA are: population size (Pop = 100),
number of GEP generations (Maxgen = 350), linking function (link =AND),
function set = [AND, OR, NOT], terminal set = [a, b, ¢, d, €], number of genes
per chromosome (ny, = 2), size of head (h = 10), selection method sel, genetic
operators probabilities (pcross = 0.8 — recombination, pmut = 0.1 — mutation,
ptlS = 0.7 —1I8S transposition, pt R1.S = 0.7 — RIS transposition, pgt = 0.7 — genic
transposition), number of 2D-CA interactions (C' Aiter = 1), 2D-CA von Neumann
neighboorhood (with » = 1, m = 5) and number of slaves (s = 50).

The results of our experiments are shown in Table 1. Some results are not shown
here due to space restrictions. In this table, the first column shows the metrics.
Next columns show their values for each threshold value. We can observe, from the
fitness, Sc and Sy, values, that the induced transition are able to generate 2D-
CAs with correct contacts and non-contacts, despite the Fo and Fy¢. It can also be
observed that parallel processing was essential for obtaining results in reasonable
processing time ().

Figure 2(a) shows a plot of the fitness (best and average) obtained in a simulation.
In this figure, that the genetic diversity is preserved, since the distance from average
to best is maintained along GEP generations. Results can be improved hybridizing
the pGEP-CA with specialized strategies in order to keep high genetic diversity
and explore the search space efficiently leading to better individuals, such as local
search methods or coevolution with other Evolutionary Computation algorithms as
proposed by [3]. Figures 2(b) and (c) show a expected (final) CM and the obtained

2 Available in: https: //www.archlinux.org
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CM generated using the induced rule ("O11111110111111101111111011111115%,
with fitness = 0.85). The obtained CM suggest that the proposed fitness function
is adequate to induce transition rules for evolving 2D-CAs, which in turn, represent
CMs. We believe that best results can be obtained, using a knowledge-based strategy
to correct the faults of the obtained CMs.

Table 1 Numerical results obtained using CMs with different threshold values

Metric CM threshold [A]
Avg(Min/Max) 6.65 9 10 12
Best fitness 0.91 (0.73/0.97) 0.92 (0.76/0.97) | 0.897 (0.76/0.93) | 0.89 (0.74/0.95)

Tc 393.3 (216/428) | 1323.4 (556/1392) | 1548.6 (650/1644) 12160.4 (770/2280)
Fe 34.1 (12/277) 63.1 (12/211) 78.62 (20/202) 61.12(2/182)

Tnc 2677.2 (2493/2789)[1682.6 (1608/2408) [ 1424.4 (1328/2307)| 834.9 (730/2130)

Fnc 31.4 (12/277) 66.9 (28/206) 84.4 (32/218) 79.64 (26/338)
Sc 0.92 (0.76/0.98) 0.95 (0.76/0.98) 0.95 (0.78/0.98) | 0.96 (0.74/0.988)

Snc 0.98 (0.9/0.996) 0.96 (0.9/0.99) 0.95 (0.90/0.99) | 0.93 (0.87/0.999)
Si 0.9998 0.9999 0.99997 0.99999

AV t5(S) 12.68 12.69 12.70 12.69

Average -
Best

Fitness

0 50 100 150 200 250 300 350

Generation

Fig. 2 (a) Example of performance of the pGEP-CA and Example of an obtained CM: (b) Expected
CM (c) Obtained CM, where cells in states 0’ and "1” are represented by white and black squares
(or dots), respectively.
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7  Conclusions

The process of 2D-CA transition rules induction for simulating dynamic behaviors
is still an open research problem. Therefore, the approach presented in this work
represents an important contribution regarding this issue.

As commented in last section, the hybridization with specialized strategies, such
as local search methods and coevolution with other EC algorithms will be focused
in future works.

Regarding the processing time for the simulations, future research will need
highly parallel approaches for dealing with the problem, such as the use of GPGPU
(General Purpose Graphics Processing Units) [15].

This work also contributes significantly to Bioinformatics, presenting the first
implementation of a parallel computational approach based on GEP and CA applied
to the Contact Map Prediction.

In a broader sense, we believe that the proposed approach presented in this paper
is very promising for the research areas related to Cellular Automata and Protein
Folding Problem.
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