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Abstract Nature exhibits extremely diverse, dynamic,
robust, complex and fascinating phenomena and, since long
ago, it has been a great source of inspiration for solving
hard and complex problems in computer science. Hence, the
search for plausible biologically inspired ideas, models and
computational paradigms always drew the interest of com-
puter scientists. It is worth mentioning that most bio-inspired
algorithms only focuses on and took inspiration from specific
aspects of the natural phenomena. However, in nature, bio-
logical systems are interlinked to each other, e.g., biological
ecosystems. The ecosystem as a whole can be composed by
species that respond to environmental and ecological stimuli.
This work reviews the theoretical foundations and applica-
tions of a computational ecosystem for optimization, named
ECO. Also, as some concepts and processes inherent to bio-
logical ecosystems have already been explored in the ECO
approach, some related works are described. Finally, several
future research directions are pointed.
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1 Introduction

Problem solving methodologies involve two branches: exact
methods and (meta-)heuristic methods. Metaheuristic
approaches have proven to be efficient in solving hard and
complex optimization problems, particularly where tradi-
tional methods fail. Bio-inspired algorithms are such meta-
heuristics that mimics/imitate the strategy of nature since
many biological processes can be thought of as processes of
optimization.

It is known that Nature is an endless source of inspiration
for computational models and paradigms [5]. Bio-inspired
computing in general have attracted great interest in almost
every area of science, engineering, and industry over the last
decades. In fact, the mid-2000s turned out to be a plentiful
of bio-inspired algorithms.

The careful observation of the behavior of some living
beings can give us insights on how to map their natural
behavior into algorithmic routines, e.g., metaheuristic algo-
rithms. Basically, these global optimization metaheuristics
are composed by a selection (of the best) scheme and by
a randomization scheme. The former hopefully guides the
algorithm to converge to improved solutions (exploitation)
and the later avoids both the loss of diversity and the algo-
rithm to get trapped in local maxima (exploration). A good
balance between exploitation and exploration may lead to the
achievement of global optimality.

Some examples of natural processes that inspired com-
putational methods are: the evolution of species, the multi-
cellular development of organisms, the animal nervous sys-
tem, the immunological system in vertebrates, the social
behavior of insects, and the ecological relationships between
populations. Evolutionary algorithms [13], cellular automata
[15,21], artificial neural networks [29], artificial immune sys-
tems [10], and swarm algorithms [24,38,51] are some of
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those bio-inspired methods. An important fact to be high-
lighted is that, despite the variety of available bio-inspired
optimization strategies, it is generally difficult to determine a
priori the best algorithm(s) to solve a given problem instance
[50].

It is worth mentioning that most bio-inspired algorithms
only focuses on, and took inspiration from, specific aspects of
the natural phenomena. However, in nature, biological sys-
tems are interlinked to each other, e.g., biological ecosys-
tems. Hence, hybrid bio-inspired systems arise and are devel-
oped with and defined by cooperative search concepts. Coop-
erative search strategies involve concepts of parallelism and
hybridism where a set of potentially good algorithms for
the optimization problem are executed in parallel, sharing
information during the run [12]. These hybrid strategies are
expected to provide more efficient and flexible approaches
to solve complex problems that would be very difficult to
solve with simple methods. Some related works have shown
good results when using hybrid bio-inspired search strategies
cooperatively [3,18,27,30,36,47].

Taking into account the diversity of search strategies and
the advantages of applying them cooperatively, it is possi-
ble to establish an analogy with the dynamics of biologi-
cal ecosystems. An ecosystem can be considered as a set of
species that interact and share information with each other
in a given environment, and always search for an adapted
and equilibrated state against disturbances that may suffer
(i.e., homeostatic state) [31]. In this analogy with biolog-
ical ecosystems each species can behave according to an
optimization algorithm. The ecosystem as a whole can be
composed by species that respond to multiple environmen-
tal and ecological stimuli. Also, interactions and informa-
tion exchanges between species can favor co-evolution. Co-
evolution can be seen as a complementary form of evolution
where two (or more) species reciprocally affect each other’s
evolution through symbiotic relationships [31].

An ecological framework for optimization, named ECO,
was first presented in [39] and is discussed in this paper. Also,
some other works [4,37,40-43] using the ECO framework
are briefly analyzed.

The main discussion presented here is related to the coop-
erative use of populations of candidate solutions, co-evolving
in an ecological context. With this ecology-based analogy,
each population can behave according to a specific search
strategy, employed in the evolution of candidate solutions.
In addition to the possibility of using different optimization
strategies cooperatively, this analogy opens the possibility of
inserting ecological concepts into the optimization process,
thus allowing the development of new biologically plausible
hybrid systems [39].

This paper reviews and highlights the main achievements
using an ecological framework for optimization and points
promising research directions in the field of metaheuristics
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concerning its application. Therefore, the paper is structured
as follows. Section 2 presents some related works. Section 3
describes the basic organization of a computational ecosys-
tem and presents some fundamental ecological concepts that
can be explored in the context of problem solving. Section 4
shows several perspectives for future research. Finally, Sect.
5 presents final considerations.

2 Related works

The term Computational Ecosystem has been previously used
in different contexts of applications. For example, in the con-
text of computational ecology for simulating the behavior of
real ecosystems [16,23], and in the context of multi-agent
systems for simulating the artificial life of virtual agents [1].
In this work, the context is focused on the use of computa-
tional ecosystems for optimization of complex problems.

Some concepts and processes inherent to biological eco-
systems have already been used to develop computational
systems for optimization. Following are briefly presented
some works that, in some way, are related with the subject
of this paper.

In [49] was proposed a model inspired by natural ecosys-
tems to optimize resource management in a grid of comput-
ers. The model considers hardware and software resources,
management policies, various applications, quality of service
(QoS) and the users of the grid. The harmony of the compu-
tational ecosystem (homeostatic state) is given through the
automatic management of computational resources and is
verified by the QoS in grid applications. In this computational
ecosystem, competition for the available resources does exist
between users, and the evolution is achieved by optimizing
the management process and the resources allocation. This
model proposes the use of Knowledge Discovery in Data-
bases (KDD) strategies to aid the self-organization process
of the system. The discovered knowledge can be used to
predict the resource requirements and, thus, to optimize the
allocation. However, in the work cited, no experiments were
performed with the proposed model.

In both papers, [6,7], a Digital Ecosystem was proposed
to optimize the use of software services available in a dis-
tributed network. The model uses concepts of multi-agent
systems, distributed evolutionary computation, and ecology.
In this Digital Ecosystem a decentralized point-to-point net-
work forms a web of distributed agents that feed evolutionary
algorithms located at each point of the network, called habi-
tat. Each habitat represents a network user on an access point.
Habitats, in turn, connect dynamically to each other in accor-
dance to migratory paths, forming a network of habitats. Dif-
ferently from the island model in evolutionary computation,
each connection between habitats has a probability associ-
ated with the movement through the connection, affecting
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migration decisions. These probabilities are updated accord-
ing to the success rate of migrating agents. An agent repre-
sents an user service and includes a semantic description of
the business process involved. The dynamics of the proposed
digital ecosystem occurs as follows: the users of the system
formulate requests (represented by agents) in their respective
habitats specifying a desired service or application. Next, a
population is instantiated in the user’s habitat in response to
open requests and is fed by available agents in the habitat.
The population then begins an evolution process of the agents
with their respective semantic descriptions, in order to meet
the user’s request. In this model, a process based on a genetic
algorithm performs a combinatorial search of the space of the
possible software services available to the users. Finally, once
executed an agent coming from the evolutionary process, it
migrates to other habitats in order to meet other requests.

A predator—prey ecosystemic model served as inspiration
to optimize the texture synthesis problem in binary images
[48]. Given a binary texture, the goal is to find the optimal
set of parameters of a Markov Random Field (MRF) capable
of generating the input texture. The texture whose parame-
ters should be found is mapped into the environment. The
parameters to be optimized are mapped as evolutionary fea-
tures of the prey. Thus, each prey is born with a texture that
camouflages itself in the environment. Every prey evolve at
each iteration and have a life cycle such that they are born,
move, reproduce and die. A prey that cannot be seen by the
predator is said to be fully adapted to the environment. The
predator species is only capable of identifying the prey and
kill them. In this work a logistic function was used to regu-
late the population dynamics in order to maintain the balance
between predator and prey species. The predator—prey adap-
tation emerge from the interactions of individuals between
themselves and with the environment.

In the work of [28], experiments were carried out con-
sidering the population dynamics of natural ecosystems to
self-adjust the population size of a genetic algorithm. The
logistic function was used to modify the size of the popula-
tion during the evolution process. The problem addressed was
an extremely simple toy problem that consists of identifying
blocks of prefixed sizes with value 1 in a binary chromosome.
The greater the number of blocks identified, the higher the fit-
ness. The results showed improvement in around 50 % using
the non-linear function with respect to the use of a genetic
algorithm with fixed size population.

The maintenance of diversity at all ecological levels is
critical to the development and evolution of an ecosystem.
The work of [32] presents several metrics to quantify the
diversity of populations and species. The main idea is to
generate foundations to develop methods for controlling the
population diversity loss. However, in this work, ways to
measure and maintain diversity in an ecosystemic context,
considering multiple populations, are not addressed.

In [45] the Biogeography-based Optimization (BBO) was
proposed. Biogeography deals with the aspects of living
beings associated with its geographic and spatial distribution.
This subject seeks to explain why the living organisms are
in the place that they are and how this relates to their evolu-
tionary past and its conservation. Biogeography is, therefore,
very close to the ecology of populations and communities,
and evolutionary biology. In BBO, each individual is con-
sidered as a “habitat” with a habitat suitability index (HSI),
which is similar to the fitness of EAs, to measure the individ-
ual. The model uses the concepts of how a species migrates
from one island to another and how species arise and are
extinguished within the islands.

The work of [44] formalizes what the authors called
biogeographic computing. In the formalization of biogeo-
graphic computing, micro and macro-evolutionary opera-
tors are defined and the main features are the generation
and maintenance of genetic diversity and automatic adjust-
ment of the number of species and individuals. To define
the species and habitats, metrics of dissimilarity (distance)
are used. They are: dissimilarity between individuals (Dy);
dissimilarity between individuals and species (D;g); and dis-
similarity between species (Dgg). Using this formalization,
the work presents an evolutionary algorithm with dynamic
control of the population size, covering concepts of specia-
tion and gene flow to optimize multi-modal functions. The
algorithm was applied to the optimization of a multi-modal
continuous function. In a nutshell, in this algorithm, a popu-
lation of candidate solutions (initially small) evolves in order
to define geographically dispersed species in the search space
being optimized.

In all the previous works, it can be noticed that concepts
and processes present in biological ecosystems are used in
some way. However, none of these computational systems
take into consideration the whole biological ecosystem as
inspiration. On the other hand, in the present work we dis-
cuss the application of an ecological framework for compu-
tational optimization inspired by biological ecosystems. It
opens the possibility to develop new optimization systems
with biologically plausible inspirations, and is presented
next.

3 Computational ecosystem for optimization

A computational ecosystem for optimization is composed
by candidate solutions (individuals) scattered in an environ-
ment that, itself, is the search space defined by an objective
function f(.) and its constraints which represents a hyper-
surface of the problem to be solved. The problem may have
diverse characteristics: mono or multi-modal, constrained or
unconstrained, continuous or discrete, static or dynamic, and
others. A given set of candidate solutions define a population
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Fig. 1 Possible representation for the elements of a computational
ecosystem. Four populations with different behaviors. Adapted from
(39]

of the ecosystem [39]. The computational ecosystem can be
composed of several populations that can interact to each
other.

Figure 1 shows a possible representation for the elements
of the proposed computational ecosystem. This figure shows
four populations where each population behaves according to
the mechanisms of intensification and diversification, tuned
by the control parameters, specific to an optimization strat-
egy. In this example, the behavior of individuals is driven
by the survival of the fittest evolutionary mechanisms, the
foraging strategies of bees, the foraging strategies of ants,
and by the flocking behavior of birds. As Fig. 1 shows, the
computational ecosystem can be composed of several search
strategies. Concerning this diversity, the model can be clas-
sified as homogeneous or heterogeneous. In a homogeneous
model all populations evolve in accordance to the same opti-
mization strategy, configured with the same control parame-
ters. Any change in strategies or parameters in at least one
population characterizes a heterogeneous model. Hence, Fig.
1 exemplifies a heterogeneous model.

A computational ecosystem can use any search strategy.
However, something obvious to concern about the search
strategies to employ is that they must be subject to the features
of the problem being solved. For example, a canonical Ant
Colony Optimization algorithm is not suitable for continuous
problems as well as a canonical Particle Swarm Optimization
algorithm (PSO) is not suitable for combinatorial problems.
In other words, either canonical or not, all search strategies
must be able to handle the problem features.

Another representation is shown in Fig. 2. The lower level
of the figure illustrates an environment defined by a function
f(.) which describes the hyper-surface of the search space.
In this example, the hyper-surface has two dimensions only
for visualization purposes.

In the intermediate level of Fig. 2, small circles represent
populations Q; withi = 1,..., NQ, where NQ is the total
number of populations in the ecosystem. The NQ populations
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Fig. 2 Generical view of a computational ecosystem for optimiza-
tion. Lower level problem-dependent search space that defines a hyper-
surface. Intermediate level intra-habitats communication topologies
where each small circle represents a population. Upper level five habi-
tats connected through inter-habitats communication topology. Adapted
from [39]

evolve and interact with each other and with the environment.
Again, each population Q; is composed of a set of candi-
date solutions, and behaves according to the rules of specific
search strategies. The degree of variability of the organisms
in the ecosystem, that is, the biodiversity, is represented by
all biotic components, i.e., all individuals of all populations.

Once dispersed in the search space, populations of individ-
uals established in the same region constitute an ecological
habitat. Thus, a habitat is a group of populations that belongs
to the same region in the search space. A hyper-surface may
have several habitats H; with j = 1,..., NH, where NH
is the total number of habitats in the ecosystem. As well as
in nature, the populations can move around through all the
environment. Hence, the notation Ql.j () means that popula-
tion i belongs to the habitat j at time ¢. The ecosystem can
be composed of several habitats that can also interact to each
other, as shown in the upper level of Fig. 2.

After defining the habitats, two categories of ecologi-
cal communication topologies can be defined. Intra-habitats
topology that occur between populations inside each habi-
tat, and inter-habitats topology that occur between habitats
[2,31].

Each habitat H;(¢), with their respective populations,
has an intra-habitat communication/interaction topological
structure 7C () that defines which populations, belonging
to the habitat j, will be able to communicate/interact to
each other at time 7. The intermediate level of Fig. 2 shows
five intra-habitats communication topologies. Hence, popu-
lations located in the same habitat can interact among them-
selves according to their topology.

Besides the interconnection topology within each habitat,
it is necessary to define the inter-habitats communication
topology TH (¢) attime ¢, as shown in the upper level of Fig. 2.
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Once defined the communication topologies TC (¢) and
TH(t), flows of information, matter, and energy may arise
within the ecosystem. With the appearance of flows it is nec-
essary to define how populations can interact with each other,
i.e., how each population will deal with the flow sent/received
to/from other populations. The ecological relationships or
ecological interactions define the ways in which individuals
interact. In this way, symbiosis occurs and it can be defined by
a relationship between two individuals where one individual
directly affects the other individual [2].

Both positive and negative relationships can occur
between individuals of the same species (intraspecific rela-
tionships or homotipic) or between individuals of different
species (interspecific relations or heterotipic). Examples of
negative intraspecific relationships are cannibalism and com-
petition. Examples of positive intraspecific relationships are
the constitution of societies and colonies.

The positive interspecific relationships can be the mutu-
alism, protocooperation, inquilinism, and commensalism. In
mutualism, both species take benefits and the association is
mandatory for the survival of both species. In protocooper-
ation, although the two species involved be benefited, they
can live independently. In inquilinism, only one of the par-
ticipants is benefited, without causing any harm to the other.
Finally, commensalism is a type of association between indi-
viduals where one of them takes advantage of the food that
remains from the another. The living being that takes advan-
tage of the food remaining is called commensal, while the
living being that gives food is called host.

Examples of negative interspecific relationships are the
competition, amensalism, predatism, parasitism, and slavery.
In competition, species compete each other for some type of
resource. In amensalism, individuals of a population secrete
or expel substances that inhibit or prevent the development of
individuals of other species. In predatism, the predator cap-
tures and kills another living being, the prey, in order to feed
itself. In parasitism, an individual is the parasite that lives
in or on the body of another individual and removes food.
Finally, in slavery, a living being takes advantage of the activ-
ities, the work, or products produced by other living being.

From intraspecific relationships arise population level
behaviors through the interactions between their individuals.
From interspecific relationships arise the ecological commu-
nities. An ecological community is a group of species that
occur in the same habitat and relate to each other in some way.

Within a computational ecosystem it must be defined
which environmental factors may influence the development
of the populations, e.g., temperature, humidity, and popula-
tion density. Such environmental factors can influence the
behavior of populations and the dynamics of the entire com-
putational ecosystem, affecting diversity.

The maintenance of an assortment of populations and
the diversity inside each population is fundamental for the

evolution of a computational ecosystem. In addition to the
mechanisms of intensification and diversification specific
to each search strategy (evolutionary or swarm intelligence
algorithm, for instance), when considering the ecological
context, the computational ecosystem provides a new level
for information exchange between individuals. The intra-
habitats relationships are responsible for intensifying the
search and the inter-habitats relationships are responsible for
diversifying the search, thus creating another diversity main-
tenance mechanism for the system.

The ecosystem ontogeny (i.e., development) represents a
particular form of evolution, and is called ecological succes-
sion to differentiate from the selective evolution that occurs
internally in the parts of the ecosystem [2]. Hence, the ecolog-
ical succession is the gradual process by which ecosystems
change and develop over time. There are two main types of
succession: primary and secondary. Primary succession is
the series of changes which occur on an entirely new land-
scape which has never been colonized before. For example,
anewly exposed rock face or sand dunes, or a newly formed
lake. Secondary succession is the series of changes which
take place on a previously colonized, but disturbed or dam-
aged habitat. For example, after felling trees in a woodland,
land clearance or a fire.

In this transformational process the ecosystem evolves,
groups are created or destroyed (habitats), flows are modi-
fied and the system shapes itself through the process of self-
organization.

Figure 3 depicts the elements that compose the ECO
framework and they will be further detailed in Sect. 4.

In order to better understand the basis of the proposal,
in next section a conceptual illustration of a canonical ECO
algorithm is presented.

3.1 Conceptual illustration

The parameters of the canonical ECO algorithm are: number
of populations (NQ) that will be co-evolved, the initial pop-
ulation size (POP), number of cycles for ecological succes-

[Organization}
[Synchronism]
[Diversity]

Environmental
Factors

[ Environment]
4 Initialization
| Heterogeneity

| Ecological
Successions

Computational
Ecosystem

Ecological |
Relationships

Communication
Topologies

Fig. 3 The elements of a computational ecosystem
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sions (ECO-STEP), the size of the evolutive period (EVO-
STEP) that represents the number of function evaluations
in each ECO-STEP, the tournament size (7-SIZE) used to
choose solutions to perform intra and inter-habitat commu-
nications and the proximity threshold p used to define the
habitats.

The generalized Schaffer function f was chosen to illus-
trate in details the behavior of the proposed algorithm [14].
Its definition is presented in Eq. 1 where x is a solution
vector defined inside [—100, 100]" and the global opti-
mum for f(x) is 0, corresponding to the optimum solution
Xopt = (X1, %2, ...,%,) =(0,0,...,0).

fx) = nz—}‘ 0.5+ sin’” (m) -05

p (0.001 (x2,, +x2) +1)°

ey

With the purpose of allowing a visual assessment of the
behavior of the algorithm, the Schaffer function was defined
here with only two dimensions. The surface plot for this func-
tion are shown in Fig. 4a, b.

The parameters used were: NQ = 10, POP = 10, ECO-
STEP =100, EVO-STEP =100, T-SIZE =5 and p = 0.5. With
this configuration, the total number of function evaluations
is 10,000 for each population. A total of 100 evaluations for
each population was done in each ecological succession. The
parameters were chosen empirically.

In this illustration the Artificial Bee Colony Optimization
(ABC) algorithm [20] was used in a homogeneous manner,
i.e., all populations use this algorithm with the same adjust-
ment of parameters to evolve their candidate solutions. For
the ABC algorithm, besides the population size (POP) para-
meter, another parameter is the /imit = 100.

First of all, all populations are randomly initiated. This
initialization uses a normal distribution (N (g, o)) with both
average (u) and standard deviation (o) randomly chosen
within the domain of each dimension of the problem. How-
ever, other distributions could be also explored.

(a)

100-100

Fig. 4 2D Schaffer function. a Side view. b Upper view
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Figure 5a shows the initial distribution of the individuals
of all NQ populations: Sp0, ..., Sp9. Also, each population
has POP candidate solutions.

Once initialized the populations, the algorithm enters the
ecological succession loop that begins with the evolutive
period. In this stage, all populations evolve their solutions
for a pre-established number of function evaluations. In this
example, the evolutive period (EVO-STEP) was defined as
100 function evaluations.

After each evolutive period, the definition of habitats
occurs. The habitats are the regions in which the populations
are concentrated. In this illustration, the region of reference
of a population is defined by its centroid and it is calculated
by Eq. 2. Figure 5b illustrates the distribution of all centroids
of all populations for the first ecological succession.

29 x
C= POP 2)
Once found the centroids for each population, the Euclid-
ean distance between them is calculated and the habitats
are defined in accordance to the minimum threshold p. The
adjacency matrix is generated according to p. Two popu-
lations are called adjacent among themselves if they are
at a distance of at least p one of another. In Fig. 5b all
information of adjacency between centroids are shown in
arrows:

— Sp0 is not adjacent to any population;

— Spl is adjacent to Sp7;

— Sp2 is adjacent to Sp7;

— Sp3 is adjacent to Sp6;

— Sp4 is not adjacent to any population;

— Sp5 is not adjacent to any population;

— Spb6 is adjacent to Sp3;

— Sp7 is adjacent to Sp1 and Sp2;

— Sp8 is not adjacent to any population; and
— Sp9 is not adjacent to any population.
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Fig. 5 Conceptual illustration of the proposed algorithm. a Initial distribution of all populations. b Centroids of all populations. ¢ Initial distribution

of habitats. d Final distribution of habitats

The habitats are generated using the adjacency matrix.
Figure 5c illustrates the habitats found for the centroids dis-
tribution of Fig. 5b, with p = 0.5. It is observed in this figure
the existence of seven habitats:

— Hy composed of Sp0;

— Hj composed of Spl, Sp2 and Sp7;
— H; composed of Sp3 and Sp6;

— Hz composed of Sp4;

— Hy composed of Sp3;

— Hs composed of Sp8§; and

— Hg composed of Sp9.

The adjacency matrix also defines the intra-habitat com-
munication topology. For example, in habitat H;, composed
by populations Spl, Sp2 and Sp7, the population Spl can
establish a relationship with the population Sp7, the popula-
tion Sp2 can establish a relationship with the population Sp7,
and the population Sp7 can establish a relationship with pop-
ulations Spl and Sp2. At this moment the habitats are well
defined with their populations and communication topolo-
gies.

The next step is the communication between populations
within each habitat. Populations that are adjacent between
themselves interact by the mating ecological relationship.
Consider, for example, the habitat H;. The population Sp7
selects an individual of its population and an adjacent pop-
ulation to establish a relationship. The adjacent population
is chosen at random and, in this case, could be the popula-
tion Spl or Sp2. In each population, the individuals chosen
to carry out mating are selected by using the tournament
selection of size 5. The new generated individual replaces an
individual randomly chosen within the adjacent population.
The populations Spl and Sp2 perform the same procedure.
All habitats composed of more than one population carry out
mating according to the topology defined by the adjacency
matrix.

After the intra-habitats interactions it is necessary to define
the inter-habitats communication topology. This topology is
used to perform the great migrations ecological relationship.
In this relationship, for each habitat a random population
is chosen at random. The best individual of the population
chosen migrates to another random habitat and, in the des-
tination habitat, it replaces an individual chosen at random,
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excluding the best individual. In this stage of the algorithm
the ecological succession loop restarts. It is worth to men-
tion that co-evolution is achieved by intra and inter-habitats
communications.

Figure 5d illustrates the habitats found in the last ecolog-
ical succession step. They are: Hy composed of Sp0, Spl,
Sp2, Sp3, Sp4, Sp5, Sp7 and Sp9; H; composed of Sp6;
and H, composed of Sp8. It is also possible to observe in
Fig. 5d that populations belonging to the habitat Hy con-
verged towards the global optimum and other habitats have
converged to regions close to the global optimum. Figure 6
shows the evolution of the number of habitats for each eco-
logical succession step. It is observed that the system has
evolved and converged to the formation of three habitats.

Once made the conceptual illustration, next section
describes some applications of the ECO framework and
points some future directions.

4 Features explored and perspectives for future research

Before discussing the functionalities of the ECO framework
that were computationally explored, it is important to quote
how the results were obtained and highlight the methodology
for the statistical tests applied in the works reviewed.
Owing to the stochastic nature of the proposed ECO
approach and other meta-heuristic algorithms employed,
their performance cannot be evaluated by the result of a single
run. Many trials with independent population initializations
should be done to obtain an useful conclusion. Therefore, in
the experiments reported below, the results were obtained
with 30 trials. Also, statistical tests were conducted over
the results obtained in order to better understand and sup-
port the conclusions. All statistical tests were run using the
R Statistical Computing tool (see the R Project web site at
http://www.r-project.org/). Some tests employed were: the
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ity, the Kruskal-Wallis test to compare more than two algo-
rithms, and the Wilcoxon rank-sum test to compare only two
algorithms [9,11,34].

The ecology-based approach was developed using a par-
allel strategy to take advantage of the computational power
available. The Portable Operating System Interface (POSIX)
Threads Programming standards' were applied through the
Pthreads Application Programming Interface (API). Fig. 7
shows how parallelism was achieved. At each evolution-
ary period (EVO-STEP) each population triggers a different
thread and the Pthreads API schedules the populations to the
available processors.

The first application of the ECO framework was done in
[37] and a canonical ecology-based optimization algorithm
was defined. The ABC algorithm [20] was used in a homoge-
neous model, i.e., all populations use this algorithm with the
same control parameters to evolve their candidate solutions.
The characterization of the computational ecosystem in this
application, following the elements from Fig. 3, is:

— Environment: landscape defined by continuous uncon-
strained multi-modal benchmark functions, all static. The
biotic components are the candidate solutions of each
population. The abiotic component is the environment
itself;

— Initialization: all populations are initialized using Normal
distributions;

— Heterogeneity: concerning the heterogeneity of the model,
in this application, all populations have the same evolu-
tionary behavior. Thus, the system is classified as homo-
geneous;

— Ecological successions: primary ecological succession is
explored;

— Habitats: are defined deterministically using the centroid
information and a proximity threshold;

— Communication topologies: the intra-habitats communi-
cation topologies are defined deterministically and the
inter-habitat communication topology is defined at ran-
dom;

—_

Web site: https://computing.llnl.gov/tutorials/pthreads/.
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— Flows: flow of candidate solutions is explored;

— Ecological relationships: mating and migrations are
explored;

— Environmental factors: it is not explored;

— Diversity: gene flow is explored

— Synchronism: the system is synchronous with periodical
updates;

— Organization: structures and patterns are self-organized.

Although in its canonical version, according to the results
reported in [37], the benefit of using the ecology-inspired
approach can be best observed with problem instances of
high dimensionality. This can be noticed in Figure 8 that
summarizes the results and shows the differences between
the results obtained by ABC and ECO4pc approaches. The
benchmark functions used are Schaffer, Rastrigin, Griewank,
and Rosenbrock with 2, 5, 10, and 200 dimensions. The x-
axis represents the dimensions and the y-axis represents
the differences. For a better visualization, the y-axis is in
logarithmic scale.

From Fig. § it is possible to observe that the difference
between ABC and ECOy4pc increases proportionally to the
number of dimensions for Rastrigin and Rosenbrock func-
tions indicating that the more complex the problem, the more
challenging it is to be solved. For the Griewank function the
difference is around zero for all dimensions and the results
obtained are around the global optimum for both algorithms
(i.e., the algorithms are in their limit, very close to the global
optimum). This indicates that the function is not challenging
enough for both optimization approaches considering these
degrees of complexity. For the Schaffer function, the differ-
ence increases from 2 to 5, and from 5 to 10 dimensions but
it is almost constant from 10 to 200 dimensions. This fact
suggests that it was more difficult for the algorithms to find
good solutions for this function, regardless of its dimension-
ality. The overall analysis suggests that the ECO approach
is more effective in solving more complex problems rather
than populations evolving alone. Also, the ecological inter-
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actions (intra and inter-habitats) favor the co-evolution of
populations and better explores the diversity of solutions.

In [42] the use of population dynamics inside the ECO
framework was explored. The population sizing is viewed not
as a parameter but as a dynamic process that changes deter-
ministically over time, and the logistic model was applied
to control the size of populations [19,31]. The logistic map
was chosen due to its simplicity and its rich dynamic behav-
iour as discrete-time demographic model. The one-parameter
logistic map was applied to drive the population dynamics
between ecological successions. Also, the logistic map para-
meter was set to @ = 3.57 and this is called ‘route to chaos’
[19]. This choice was done based on the work of Ma [28]
where experiments were performed with different values for
the parameter a. The ABC algorithm was used in a homo-
geneous model. In addition to the exploration and exploita-
tion routines provided by the evolution of populations and
by the ecological interactions (inter and intra-habitats), the
use of population dynamics creates a new biologically plau-
sible mechanism to diversify the search. Also, due this new
feature, the use of a population dynamics model inside the
ECO framework considerably improved the results for the
benchmark functions. From the previous application [37],
the only modification in the characterization of the compu-
tational ecosystem is the use of primary and secondary eco-
logical successions carried by the non-linear dynamics of the
logistic model.

In another application [40] the authors explored the het-
erogeneity of the ECO framework using two different algo-
rithms cooperatively: the previous ABC and also the PSO
[8,22]. In the heterogeneous application, the ABC algorithm
and the PSO algorithm are used in such a way that half the
number of populations (NQ/2) is managed by the ABC algo-
rithm, and the other half by the PSO algorithm to evolve their
candidate solutions. As result, the use of different search
strategies inside the ECO framework obtained better results
than the homogeneous application of ECO. The main reason
for this improvement is the fact that the heterogeneous model
uses different intensification and diversification procedures.
This creates different dynamics and evolutive behaviors in
the search for promising regions in search space. From the
first application [37], the only modification in the characteri-
zation of the computational ecosystem is the use of different
evolutionary behaviors.

Next, in [41] a hierarchical clustering technique [25,33]
was used as a biologically plausible strategy to probabilisti-
cally set the habitats of the computational ecosystem. The
single-link hierarchical clustering algorithm was used to
setup the habitats where each cluster represents a habitat. This
approach suppressed the control parameter p that was used in
previous versions as a proximity threshold. Also, differently
from previous applications, the communication topologies
(intra and inter-habitats) are probabilistically defined. In this
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application, the ABC algorithm was used in a homogeneous
model. According to the results reported, the use of a prob-
abilistic strategy for habitats definition allowed the system
to self-adapt in the search for best regions in the space of
solutions. Moreover, this self-adaptation occurs during the
optimization process. From the first application [37], the two
modifications in the characterization of the computational
ecosystem are the use of a probabilistic strategy for habitats
and communication topologies definition.

With the aim of applying the ECO approach to a complex
problem from bioinformatics, [43] reported the application of
ECO to the Protein Structure Prediction (PSP) problem. Con-
cerning the AB off-lattice model in its 2D version the aim is to
search for low energy conformations [26]. The AB off-lattice
model is, possibly, the most studied non-lattice model to rep-
resent protein structures. In this model the protein sequences
are composed by only two species of monomers: ‘A’ for
hydrophobic amino acids and ‘B’ for hydrophilic (or polar)
amino acids. Althoughitis a very simplified representation of
areal protein structure, this model is useful to verify some of
the properties of proteins in the real world. The ECO frame-
work was tested using six configurations and all configura-
tions implement the strategy of defining the habitats with
the hierarchical clustering algorithm previously mentioned.
The first configuration, ECO4pc, employs the ABC algo-
rithm homogeneously. The second configuration, ECOpgp,
employs the PSO algorithm homogeneously. The third con-
figuration, ECOpg, employs the Differential Evolution (DE)
[46] algorithm homogeneously. The fourth configuration,
ECOjpg/Bpo, employs the BBO algorithm hybrid with DE
[17], also homogeneously. The fifth, ECO4;;, employs a het-
erogeneous approach combining all four algorithms in with
1/4 of the populations behaves according to one of these
strategies. The sixth configuration, ECO4j—1/, acts hetero-
geneously as the fifth configuration and adds the popula-
tion resizing feature. Also, the overall best solutions are
compared with other results found in literature. The authors
reported that when using the heterogeneous model (ECO 4;;)
the search process gets more robust than the other approaches
(e.g., for 13, 21, and 34 amino acids-long sequences) possi-
bly due the use of different intensification and diversifica-
tion strategies provided by different search algorithms. Also,
ECOyy; has had the best average result for the large sequence
of 55 amino acids. Results concerning the processing time
encourages the use of massive parallel strategies inside the
ECO framework when applied to such complex class of prob-
lem.

In [4] a heterogeneous parallel version of the ecology-
inspired approach (pECO) was applied to another application
of the PSP problem, now concerning the 3D AB off-lattice
model [35]. In pECO, a parallel master-slave architecture
is employed in order to allow the accelerate the process-
ing time of the computational ecosystem. The processing
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load is divided into several processors (slaves), under the
coordination of a master processor. Each processor (master
or slaves) is responsible for initializing the population, and
performing the evolutive period of an population indepen-
dently. The master processor is responsible for defining the
communication topologies between populations and habi-
tats. As in the previous work, four different algorithms were
used: ABC, PSO, DE, and jDE/BBO. In such heterogeneous
model of the computational ecosystem, 1/4 of the popula-
tions behave according to specific rules of one of those algo-
rithms. All speed-ups obtained in the results were higher
than one indicating that the parallelization of the algorithm
decreases the overall computational cost. Also, the com-
puted efficiency suggests that the processors are not being
fully used all the time. In fact, speed-up and efficiency are
a direct consequence of the balance between the process-
ing load of the slaves and the communication load between
master and slaves. Concerning the energy of conformations,
pECO approach obtained the best conformation for the 13
amino-acid long sequence and competitive results for the
other sequences when compared with the ground solutions
found in literature.

Once a brief review of the applications using the ECO
framework is presented, it is possible to highlight which fea-
tures of the entire ecological framework were used in those
applications. Figure 9 shows an extended illustrative map
with all definitions that a full computational ecosystem for
optimization can have. Highlighted are the features used in
at least one of the previously mentioned applications.

It is possible to note that there are plenty of other features
that can still be explored in the proposed ecological frame-
work. Some few examples are:

— The environment can be explored with the insertion of
abiotic components biasing the behavior of populations.
Also, other problem domains can be explored (e.g., dis-
crete domains) as well as dynamic instances;

— By using some source of feedback from the optimization
process during its course, the habitats formation can be
better distributed, as well as the intra and inter-habitats
communication topologies, can be better defined;

— Flows of information (e.g., stigmergic communication)
and energy (e.g., definition of trophic structure) can be
explored;

— Other ecological relationships can be applied;

— Environmental factors can be added to bias the develop-
ment of populations;

— Strategies and metrics for maintaining the diversity of
solutions both at micro and macro levels can be applied;

— Single solution optimization algorithms can be added,
e.g., Variable Neighbor Search and Simulated Annealing;

— The whole ECO framework can be explored asynchro-
nously;
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— Decentralized paradigms can be used to develop the ECO
framework (e.g., P-systems).

5 Conclusion

Typical bio-inspired systems are influenced by different
aspects of biological phenomena. Also, most of them focus
only on and take inspiration from isolated aspects of such
phenomena. However, in nature, biological systems are inter-
linked to each other, e.g., biological ecosystems. This work
presented a formal computational model relating the cooper-
ative use of populations of candidate solutions, co-evolving
in an ecological context. This is the basis of a computational
ecosystem for difficult optimization problems.

The ECO framework is an approach that takes inspiration
from real ecosystems. Firstly, this paper described all com-
ponents that can compose a computational ecosystem. Then,
we present several works focusing on different characteris-
tics of the framework. The aim of such experiments were
to validate the relevance and importance of the ecologically
inspired approach in the field of optimization. Hence, the
main goal of the presented work was to point out which fea-
tures were explored and to propose research lines for future
works.

The main features of the ECO framework is that it opens
the possibility to integrate different meta-heuristics, the topo-
logical structure for communication between populations is
dynamically defined using informations from the populations
during the optimization process, there are two levels of com-
munications, namely intra-habitats and inter-habitats com-
munication, that favors co-evolution. Also, through intra and
inter-habitats communications different kinds of ecological
relationships can be modeled in order to better explore the
space of solutions. The source code of the ECO framework
can be found in the following link: http://udesc.academia.
edu/RafaelStubsParpinelli.

Based in all works previously done using the ECO frame-
work it is possible to conclude that it is better suited for highly
constrained multi-modal problems, such as the PSP problem.
Certainly, for uni-modal problems with few or no constraints
other classical methods can be more effective.

Although some features were experimented inside the
ECO framework, many other computational issues can be
approached to bring even more biological plausibility to the
system (e.g., speciation, other ecological relationships, envi-
ronmental factors, etc). It is very important to highlight that
adding new biologically plausible features to the ECO frame-
work does not guarantee improvement of the optimization
process. Only extensive large-scale experiments can deter-
mine their usefulness.

Besides adding new features to the ECO framework, a
research direction for future developments is the understand-
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ing of the relationships between the parameters of ECO. Also,
in order to increase the computational capabilities of the
framework, massive parallel architectures such as general-
purpose graphical processing units (GP-GPUs) can be natu-
rally explored due the intrinsic parallelism and asynchronism
present in ecological systems.

Finally, the description of a computational ecosystem pre-
sented in this work does not accomplish the whole complexity
of a real ecosystem but shows some potential directions to
develop new bio-plausible hybrid systems.
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