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Abstract—This work presents a methodology for using Princi-
pal Component Analysis (PCA) and Genetic Programming (GP)
for the classification of multi-class objects found in digital images.
The image classification process is performed by using features
extracted from images, through feature extraction algorithms,
reduced by PCA and labeled by similarity comparing with
other previously classified objects. GP uses two sets of elements:
terminals, composed by the features extracted by PCA; and non-
terminals, composed by algebraic operations. The fitness function
was defined by the product of sensibility and specificity, two
performance measures. A penalty term is also used to decrease
the number of nodes of the tree, while minimally affecting the
quality of solutions. The proposed approach was applied to set of
2739 digital images divided into objects representing airplanes,
motorbikes, background from google, faces and watch classes,
provided by the Caltech101 image database. The proposed
approach was compared with SVM, Naïve Bayes and C4.5.
Results suggest that the approach PCA+GP is able to evolve
solutions for the problem as a simple classification rule with true
positive rate above 70%. Additionally, we observe that PCA+PG
obtained results slightly better than SVM and C4.5, besides these
methods give a result that is not comprehensible by humans.

Index Terms—Partner Recognition, Principal Component Ana-
lysis, Classification Methods, Evolutionary Computing, Genetic
Programming

I. INTRODUCTION

Classification is an important computational task to solve
problems found in a large number of interesting real-world
problems, such as identification of people in video, recognition
of words in texts, medical diagnosis, detection of objects in
images, anomaly detection, for instance. In the context of
object detection in images, automatic classification systems
can be very useful, mainly due to the high dimensionality of
the data to be analyzed.

Evolutionary approaches, such as Genetic Programming
(GP), have gained interest for general classification problems,
because of their robustness, easy implementation and large
range of applicability. GP is a stochastic optimization method,
derived from Genetic Algorithms, that is aimed at building
automatic programs. GP was inspired in the Darwinian prin-
ciple of natual evolution that states that the most well adapted

individuals in an environment can have greater chance to
survive and generate offsprings. In GP, a solution to a problem
is represented as program similar to a tree, where the program
functions are represented by the internal nodes of the tree and
the inputs to these functions are represented as terminals in
the tree. The functions and terminals sets are defined by the
user according to the specific problem[1].

The main motivation for this work is to investigate the
utility of GP and Principal Component Analysis (PCA) for
the classification of multi-class objects in digital images. More
specifically, it is aimed to extract descriptors from images
that represent color, texture and shape attributes of the images
and, then, reduce the search space of possible combinations
by means of an ortogonal transformation of variables using
PCA. After, GP is used to evolve a classification rule so as to
discriminate efficiently objects in images.

II. BACKGROUND AND RELATED WORKS

An Image can be defined as a set of non-structured pixels
that usually represent low level features and the first step to
understand the semantic of images is to extract the main visual
features from them. Features extracted from images are repre-
sented as numeric vectors called descriptors that should take
into account the dimensionality of the data, emphasizing the
image aspects that can help the human comprehension. When
descriptor vectors are generated, new features are created
from the original image, and it will represent the information
contained in the images hopefully better than the original
pixels [2]. Typically, image descriptors are divided into three
categories: color, texture and shape.

Color attribute descriptors are used to identify color distri-
bution in an image. The most popular method for extracting
such descriptors are the color histograms. Such descriptors
describe the image distribution of colors in different bins such
that in each bin it is the corresponding pixels’ frequency
[3]. These descriptors are robust to translation and rotation
changes. However, they do not preserve the spatial information
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of pixels. On the other hand, different images can have a
similar histogram, allowing ambiguity in the representation
of different images. Besides the histograms, other methods
to describe colors were proposed in literature such as Color
Moment [4].

Texture descriptors are other important attribute of images
and they are based in the analysis of a set of pixels. Textures
are characterized by repetitive patterns that occur by change
of image intensity and they represents specific local properties
of the object that the image is representing. The texture
analysis intends to find possible neighborhood relationships
among pixels that can explain these properties considering
their variance [5]. In order to compute texture descriptors,
traditional methods were proposed in the literature including
Local Binary Patterns (LBP) [6].

Shapes are important features that humans use to recognize
and identify objects in the real world. They can be used in
several applications to retrieve information from images. An
important issue in the recognition of objects is to identify
their position, size and orientation. Shape descriptors based on
invariant moments that are usual [7] and they can be described
by calculating geometric moments of object. This approach
is composed by seven moments, such that, the first six ones
represent the invariant shape to translation, scale and rotation.
The seventh moment describes the invariance of inclination
and allows to distinguish mirrored images [8].

Related to our proposed approach, Histogram Oriented to
Gradient (HOG) was proposed by Dalal and Bill [9] and it is
a method to identify objects in an image using the analysis
of the local intensity gradients. This method is performed by
partitioning the image in subsets named cells, for which the
gradient direction histograms are computed. Next, normal-
ization is done considering the histograms of adjacent cells
values that are called as blocks. The main goal of HOG is
to find invariance in the luminosity of an image such that it
can characterize the objects. HOG is performed in 64 × 128
pixels windows, which are partitioned in cells of 8× 8 pixels,
aggregated in 2 × 2 blocks. Additionally, the HOG vector of
descriptors is composed by 3780 components.

Frequently feature selection is preceded by dimensionality
reduction, where the less important attributes are eliminated,
considering some specific criteria. The high dimensionality
of the data can represent noise since redundant information
increases the complexity and difficulty to discriminate classes.
Many approaches to reduce dimensionality are available in the
literature including the above-mentioned PCA. This method
is, possibly, the most known and widely used for dimensio-
nality reduction problems [10]. PCA performs an orthogonal
transformation of a set of possibly correlated variables into
set of linearly uncorrelated variables. This is accomplished by
projecting the Principal Components (PC’s) that represent the
largest possible variance, and calculating the eigenvalues and
eigenvector of the covariance matrix [11].

Several Evolutionary Computing approaches for data and
image classification have been proposed in the literature in-
cluding. In [12] an approach using Gaussian distribution with

GP was proposed to solve multi-class classification problems.
This approach builds a classification rule using the class prob-
ability from Gaussians distributions, instead of using multiple
predefined bins to define the GP output in different labels.
Two fitness measures were tested in this work to find the
classification rule that best classifies objects: the overlapping
area and the weighted distribution distance. This approach was
tested in a multi-class problem composed by three types of
classes and it was compared with the classical GP approach.

In [13], authors used a GP-based system to help the diag-
nosis of diabetes. Here, GP was used to create new features
capable of identifying diabetes starting from combinations of
known features. Unlike the previous work, the classification
was done without previous knowledge of the distribution prob-
ability. This method was composed by three steps: selection
and sorting of attributes by order of importance, generation of
new features by combining selected attributes in the previous
step, and comparison of approach proposed to other classifi-
cation methods. Authors used the Fisher criterion as fitness
function.

III. METHODOLOGY

A. Overview

In this work we propose a supervised approach to classify
objects in images using PCA+GP. First, color, texture and
shape features of the images are extracted. After, the features
will have their dimensionality reduced by PCA in order to
reduce the search space for GP and select the more represen-
tative transformed components.

For describing the color, texture and shape attributes, we
used, respectively, color histogram (HST), Local Binary Pat-
terns histogram (LBP), and Moment Invariant (MOM). The
descriptors extracted from the images are normalized in the
interval [0..1], for each independent dimension, in order to
fix possible discrepancies in values and to prevent significant
differences of scales for all the descriptors.

Once obtained a large vector of descriptors, its dimensiona-
lity is reduced by means of PCA, so that GP can later use this
reduced set as input for creating classification rules. In this
approach, the eigenvalues’ coefficients are used to compute
the accumulated variance that represents the variability of the
input vectors. Then, a cut-point is defined such that the first
N PC’s are selected until the accumulated variance reaches
this limit.

GP here is used to induce a classifier, represented as a tree
and composed by elements drawn from a set of functions (op-
erators) and terminals. The functions set is defined as the four
arithmetic operators, sigmoid function and the terminals set as
the set of descriptors previously selected as PC’s. The fitness
function of GP evaluates the quality of the classification rule
and induces rules with small number of nodes. Assuming that
best program in the population is used, the probability Probc
of a given input image belong of class c can be calculated
using a normal probability density function (PDF). The PDF
considers that the GP outcomes are a normal distribution and
it is performed by P (µi,c, σi,c), where µi,c is the mean and



σi,c is the standard deviation of the outputs of program i for
class c. The final output of GP is a full classification rule
represented as a tree.

The validation of the proposed classification model is ac-
complished by using the well-known 2-fold for all experiments
(80% of instances for training and 20% for testing). This
procedure guarantees a more realistic evaluation of the clas-
sification performance. Each experiment is repeated 10 times
with different initial random seeds so as to achieve statistical
significance. Average and standard deviation are reported.

To compare the performance of the proposed approach,
three other well-known classifiers were tested using the same
data and the same of 2-fold partitions: SVM, Naïve Bayes and
C4.5.

Figure 1 shows a block diagram of the system and the flow
of information. The classifier block is given by either GP, or
SVM, Naïve Bayes or C4.5.

Figure 1. Block diagram of the proposed model.

B. Image Database

To evaluate the performance of the methods we used a set
of images divided into 5 classes. Each class has significantly
different objects and has a different number of images. This
dataset is known as Caltech101 [14] and, originally, it has
9144 images in 101 classes of objects. For this work we
selected the top 5 classes of highest object frequency: Air-
planes, Motorbikes, Background_Google, Faces and Watch.
These classes have, respectively, 800, 798, 467, 435 and 239
images. Therefore, a total of 2739 images were used in the
experiments. The classes have images of different types of
airplanes, motorcycles, image from google, faces from several
people and watchs, taken in several positions and scales. Since
that the classes in Caltech101 are unbalanced we decided to
use only the first five classes. Recently, another dataset named
Caltech-256[15] was available, however this dataset presents
less instances for classes then Caltech-101. Thus, we decided
for Caltech101.

After preparing the images dataset as mentioned before,
images were normalized in size (128×128 pixels), and sets of
color, texture and shape descriptors were extracted using color
histogram (HST), Local Binary Patterns histogram (LBP), and
Moment Invariant (MOM), respectively. The resulting feature
vector comprises 2396 features including 768 from HST, 256
from LBP and 1372 from MOM. This last descriptor can have
a variable length depending on the geometric form of the
objects in the images. For the set of images used this descriptor
achieved the cited length. Descriptors from HST and LBP have
predefined lengths. After transforming the input images to

descriptor vectors, the training/testing datasets comprised 2739
instances with 2397 attributes, including the class attribute.

Next, PCA was applied to the dataset aiming at transform-
ing the original attributes into uncorrelated PC’s. These, in
turn, will be selected according to the accumulated variance,
based on a cut-point over the eigenvalues. We observed that,
after using PCA, the first 103, 260 and 376 PC’s represent,
respectively, 70%, 90% and 95% of the variance of the original
dataset.

PCA was applied to HST+LBP+MOM comprised features
vector, in such a way that the resulting number of PC’s for
color, texture and shape can be different each other and they
will not have mutual influence. The number of PC’s for these
atributes, considering three cut-points for the accumulated
variance (0.3, 0.5 and 0.7), are 7, 27 and 87, respectively.
All these PC’s compose the terminals set used in for training
the GP-based classifier. It is possible to verify that only 0.29%
of PC’s represent 30% of the variance of the input data, 1.12%
represent 50% and 3.63% represent 70%. Therefore three
different training/testing datasets were constructed, each one
based on different number of attributes, derived from different
cut-points (0.3, 0.5 and 0.7).

C. Genetic Programming

As mentioned before, the elements that undergo evolution in
GP are composed by a set of terminals and a set of functions
(operators). The terminals are the PC´s previously presented
in Section III-B that are 7, 27 and 87 for the accumulated
variance 0.3, 0.5 and 0.7. The functions set are the sigmoid
function and four arithmetic operators: sum, subtraction, mul-
tiplication and protected division (avoids division by zero). We
used a sigmoid function as shown in Equation 1, where e−x

is the exponential of the input value.

Sx =

(
1

1 + e−x

)
(1)

These operators use as inputs the results from other op-
erations as well the raw terminals. Both sets, terminals and
functions must follow the closure and sufficiency properties
of GP [1]. The first states that any function should accept as
input any possible value and type resulting from any other
operation or combination of input terminals. The latter states
that both sets must have all elements necessary for building
a solution for the problem, and so the user is responsible for
this.

The objective function that measures the quality of a
solution is shown in Equation 2 where the first term is
the sensitivity (or true positive rate) and the second is the
specificity (or true negative rate).

Qualx =

(
TP

TP + FN

)
×

(
TN

TN + FP

)
(2)

Sensitivity and specificity are performance measures com-
monly used in the area of Machine Learning and Data Mining
to measure the quality of a classifier. Sensitivity measures the
proportion of the positive cases that are correctly classified.



On the other hand, specificity measures the proportion of
the negative cases that are correctly classified as negative.
Considering a two-class problem, the outcome of a classifier
can be four fold: True Positive (TP) – the amount of positive
cases that were classified as positive; True Negative (TN) –
the amount of negative cases that were classified as negative;
False Positive (FP) – the amount of negative cases that were
classified as positive; and False Negative (FN) – the amount
of positive cases that were classified as negative.

The outcome of GP is a real-valued number spanning
between −∞ and +∞ and this value is used to perform the
PDF P (x) and approximate each x to the final class based
on a normal distribution. To do so, we calculate P (µc, σc, x),
where µc and σc are mean and standard deviation for the c
class calculated from all outcomes of GP ri (output result
for program i) to every classes using the previously known
information about each instance in the training step. After, we
use µc and σc to perform P (µc, σc, x) using the Equation 3
[16], [12], where x is the outcome of GP and c is the class
that will be estimated.

P (µc, σc, x) =
exp

(
−(x−µc)

2

2σ2
c

)
σc
√
2π

(3)

Therefore, the probability of the pattern belong to each class
can be calculated using Equation 3. The class with the largest
probability is used as the class of the pattern.

As the generations passes by, GP tends to evolve better,
although large solutions. The trees that represent a solution
grow both in number of nodes and in depth. Consequently,
the complexity grows as well along generations. However,
such growth does not represent necessarily an increase in the
quality of solutions, mainly due to the proliferation of introns.
Introns are combinations of functions and terminals that are
useless and do not have a significant improvement in the
quality of solution. Also, the higher complexity of a solution
(that is, the size of the tree), the more incomprehensible it is
for humans. To simplify the size of trees and, at the same
time, preserve the quality of solutions along the evolution
process, an interesting strategy was proposed by [17]. This
strategy considers a penalty term shown in Equation 4, where
maxNodes is the maximum number of nodes (functions and
terminals) allowed in a solution and nodes is the current
number of nodes in a tree. This function return values in the
range [0.5..1.0] and, for this work, we define empirically a
limit of 150 nodes. Therefore, the lower limit is reached when
the tree is as large as that value, and the upper limit is reached
when the solution is so simple as a single node.

Penx =
maxNodes− 0.5× nodesx − 0.5

maxNodes− 1
(4)

The final fitness function used by GP to evolve solutions
considers, at the same time, the predictive power of the tree
used as a classifier and the comprehensibility of such solution.
The fitness function is shown in Equation 5, as the product of
Equations 2 and 4.

Fitnessx = Qualx × Penx (5)

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS

The development of this work was fully based on public-
domain softwares so as to allow its reproducibility elsewhere.
The GP algorithm was adapted from LilGP [18], version 1.1.
For the feature extraction algorithms we used the OpenCV
library [19], version 2.4.8. Also, for comparing with other
methods (described below), we used the suite Weka 3.7.2 [20].
All experiments reported below were run in a cluster of quad-
core computers under Linux.

GP is a stochastic method and, therefore, several runs are
usually necessary so as to obtain reasonable statistical confi-
dence. All experiments were done with 10 independent runs,
using different initial random seeds. The control parameters of
GP are shown in Table I. These values show that six different
combinations were used. However, it is important to stress that
it is not the objective of this work to find the optimal values
for GP, and no serious effort was done in this direction.

Table I
CONTROL PARAMETERS OF GP. MOST PARAMETERS WERE TO THE

DEFAULT PROPOSED BY [1].

Parameter Value
Population size 500, 1000, 10000
Number of generations 50+1, 100+1
Initialization method ramped half and half
Initial depth of the trees [4..8]
Maximum depth of the evolved trees 15
Maximum number of nodes 150
Crossover probability 0.9
Reprodution probability 0.1
Selection method for both operators fitness

A. GP Training

The GP training was done using the three datasets described
in Section III-B. For each dataset, 10 independent runs were
done with the combination of parameters shown before, thus
yielding a total of 18 different experiments. The results of
the best runs for each one of the three datasets are shown
in Table II. In column “Dataset” it is shown the datasets
constructed with accumulated variance (acc.var) and described
in Section III-B. Column “Accuracy” shows the best results
found by the evolved classifier, where the percent of correct
classifications is shown, considering TP and TN. Mean and
standard deviation are presented for “Accuracy”. The best
result was obtained with an accumulated variance of 0.3,
reaching an accuracy of 70.20%.

Table II
RESULTS OF THE TOP THREE RUNS DURING TRAINING OF GP.

Accuracy in %
Average for 10 runs Bestacc.var avg±std.dev

0.3 65.90±1.99 70.20
0.5 63.49±1.86 65.44
0.7 60,82±2.90 64,71



The best solutions found by GP were found when population
was set to 10.000 and population to 100+ 1 (100 generations
plus the initial population).

Thanks to the penalization term of the fitness function (see
Equation 4), the best solution found amongst 10 independent
runs is humanly interpretable. This tree is represented in
Figure 2. This tree is as a function that takes the values of
only 7 PC’s and outcomes the class of the object in the image.

Figure 2. Tree representing the best solution found by GP.

B. Comparison with other approaches
Aiming at verifying the efficiency of the proposed approach

for classifying objects in images, some comparisons with other
well-known classification methods were done. Three methods
were used, as follows: SVM (Support Vector Machine) with
linear kernel; Naïve Bayes (NB) and C4.5. Comparisons are
divided into two groups, explained below.

Statistical tests were performed to compare the overall
performance of the accumulated variances. In all groups of
comparisons the Shapiro-Wilk test was applied to verify the
null hypothesis that the results obtained came from a normally
distributed population. For all cases this null hypothesis was
rejected with a level of significance of 0.05%. Additionally, we
compared the outcomes of all algorithms, paired each other,
to discover if there is statistical significance in their average
performance. For this purpose, we used the Student t-test to
paired samples and we plotted boxplot graph.

In the first group of comparisons, SVM, NB and C4.5
were compared with PCA+GP, all of them using the features
directly extracted from the image datasets. Results for these
experiments are in Table III, where the best accuracy are
shown. To compare the proposed approach with other methods,
we selected the best classifier generated by the PCA+GP
approach, shown in Figure 3. Comparing the average perfor-
mance for all accumulated variances, the boxplots of Figure
3 revealed no differences between the classifiers for levels
0.3 and 0.5, and significant difference from them for level
0.7. Therefore, for the following comparisons we choose the
PCA+GP classifier generated by level 0.3.

Table III
BEST RESULTS FOR THE FIRST GROUP OF COMPARISONS.

Methods Accuracy

PCA + GP 70.20
SVM 47.70

Naïve Bayes 56.93
C4.5 69,52

In this table we observe that PCA+GP performed better
than all other methods. Naïve Bayes and SVM have worse
results and C4.5 had similar results with our approach. In
special, C4.5 obtained a classification tree with 329 nodes
and considered 165 features as leaves. This shows that this
popular classifier, although efficient, does not create human-
comprehensible classifiers.

Figure 3. Comparison of the average performance of PCA+GP for three
accumulated variance levels.

The second group of experiments was done using the same
methods mentioned before, but now using the PC’s generated
by PCA, not the raw features vector as before. Results are
shown in Table IV for the three different values of accumulated
variance (0.3, 0.5 and 0.7).

Table IV
BEST RESULTS FOR THE SECOND GROUP OF COMPARISONS

Methods Accumulated variance
0.3 0.5 0.7

PCA + GP 70.20 65.44 64.71
PCA + SVM 74,40 74,40 52.46

PCA + Naïve Bayes 74,58 67,64 61.42
PCA + C4.5 68.92 68.07 68,92

In table IV, we observe that PCA+SVM and PCA+Naïve
Bayes obtained results slightly better than PCA+GP. In partic-
ular, it seems that PCA+SVM is a very good method for multi-
class classification problems. However, again, this method
gives a result that is not comprehensible by humans while our
approach produces more human-comprehensible results. C4.5
obtained similar results with PCA+SVM, however it obtained a
classification tree with 449 nodes and considered 225 features
as leaves.

We perform experiments using only the first three classes
too. In this case our approach obtained results slightly better



than SVM, C4.5 and Naïve Bayes. For three classes PCA+PG
obtained 77.72% accuracy while SVM, C4.5 and Naïve Bayes
obtained 70.70%, 76.27% and 72.88%, respectively. Now
using the PC’s generated by PCA and not the raw features
vector, our approach results were slightly better than other
mentioned methods. In Table V it is shown three different
values of accumulated variance (0.3, 0.5 and 0.7).

Table V
BEST RESULTS FOR THREE CLASSES COMPARISONS

Methods Accumulated variance
0.3 0.5 0.7

PCA + GP 76.75 72.63 77.96
PCA +SVM 77,24 74,09 75.54

PCA + Naïve Bayes 77,24 72,63 74.09
PCA + C4.5 74.57 77.23 76,02

In this table, we observe that all approaches obtained
similar results and the experiments indicate that the PCA+GP
approach has good performance for this multi-class problem.

V. CONCLUSION

The classification of objects in images is an important
issue in computer vision and pattern recognition due to the
large range of real-world applications in which it is present.
Although there are specialized methods for data classification
tasks, there are no general methods for multi-class classifi-
cation of objects in images. Therefore, it can be useful to
investigate the applicability of general-purpose methods, such
as Genetic Programming, in this context.

The results found in our experiments indicate that the
PCA+GP approach has good performance for this multi-class
problem, achieving classification rates above 70% for five
classes. Although such results are, for some cases, slightly
lower than those obtained by SVM and Naïve Bayes, it has
the great advantage of human-comprehensibility. It should be
highlighted that GP was capable of finding a simple tree with 5
mathematical operators and 7 variables that can classify input
images into expressive classes.

It is known that the performance of GP is influenced by the
size of the terminals set, in our case the number of features.
By using the PCA transformation, a huge reduction of the ter-
minals set was accomplished (from 96.37% to 99.71%), and,
possibly, this is the main reason for the improved performance
of the PCA+PG approach.

Results suggest that PCA+GP can be a competitive al-
ternative to the traditional SVM and C4.5 approaches, with
the great advantage of comprehensibility. Also, is should be
taken into account that the smaller the classifier, the faster its
processing. This fact strongly suggests the applicability of the
proposed method for applications that require real-time multi-
class classification of objects in images.

Future work will include the investigation of alternative
fitness functions that enable a faster evolution of the algorithm,
and a more powerful version of GP, namely Gene Expression
Programming, which was shown to be very efficient for
complex tasks [21]. Finally, more experiments will be done
using more datasets with more classes.
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