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Marcia Muller and José Luı́s Fabris
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Abstract—This paper shows the application of the Differential
Evolution algorithm to the recovery of the deformation profile
applied to a fiber Bragg grating sensor (FBG). The method uses
only the sensor reflectivity, without the need of phase information,
and has been shown to be highly parallelizable. The method was
specially implemented to run the complex computations required
by the fitness function using a Graphical Processing Unit (GPU).
This provided an enhancement of 3 orders of magnitude in the
computation time when compared to similar methods shown
in literature. Three experiments were performed to evaluate
the computational performance of the DE algorithm, and its
convergence of the solution to the target deformation profile.
Overall, the method is very promising and it can be applied
to problems that require a fast response, such as the online
monitoring of FBG sensors.

I. INTRODUCTION

A fiber Bragg grating (FBG) is a device produced in
the core of an optical fiber that reflects light at a particu-
lar wavelength band. FBGs are widely known and used in
sensing applications due to its immunity to external electro-
magnetic fields, natural wavelength multiplexing capabilities,
convenience for transmitting data over long distances and
high sensitivity to mechanical deformations and temperature
changes.

FBG sensors are interrogated by illuminating them with a
broadband light source and detecting the spectral position of
the reflected band which is related to the measurand. Changes
in the measurand are then determined by traditional meth-
ods [1] used to detect spectral shifts in the central wavelength
of the reflected band. These methods are highly efficient when
the external parameters affects uniformly the whole device.
Nevertheless, such methods are useless when the FBG sensor
is subjected to non uniform perturbations along its length. To
solve this drawback, some methods were already proposed
in the literature. However, all they have own advantages and
limitations, such as requiring the use of phase information of
the signal [2]–[6] and using two sensors simultaneously while
having a processing time in the order of hours [7].

To circumvent these issues, a method based on the Dif-
ferential Evolution (DE) algorithm [8], [9] was proposed by
Negri et al [10], enabling the recovery of the mechanical
deformation profile applied to the FBG. For its application,
the method requires only information about the magnitude of
the band reflected by the FBG sensor. Although this method

has reduced the processing time from hours to tens of seconds,
its processing time remained the limitation for applications that
require higher acquisition rates or that is aimed at continuous
monitoring of the FBG sensor.

This paper proposes important improvements to the DE
method previously developed. To take the advantage of the
parallel processing capabilities commonly found in Graphical
Processing Units (GPUs), the DE method was re-implemented
as a parallel procedure. When compared to the earlier method,
a significant reduction in the processing time (from tens of
seconds to tenths of seconds) was observed.

II. METHODOLOGY

The DE algorithm is used to determine mechanical de-
formation profile applied to an FBG sensor. The profile
determination is performed by using the magnitude of the
FBG reflection spectrum that can be easily obtained with
interrogation methods [1]. This experimentally obtained light
spectrum (magnitude only, no phase information) is referenced
here as target spectrum, and contains enough information
about the perturbation in the sensor structure.

The proposed method maintains a population of candidate
solutions, where each individual of this population corresponds
to one deformation profile. This population is iteratively im-
proved by using DE until a suitable deformation profile is
found, whose reflection spectrum matches the target spectrum.
This evolutionary process is guided by the fitness evaluation
of each individual, that is computed as the error between
the target spectrum and the one simulated from the candidate
solution. The transfer matrix method was used to simulate the
reflection spectrum of each individual.

Among the steps of the proposed evolutionary process,
the fitness evaluation is the one which takes more time due
to the computational cost of the transfer matrix method.
Computing the reflectance of an FBG from its parameters by
using the transfer matrix method requires, for each evaluated
wavelength, a series of matrix multiplications and, eventually,
solving algebraic equations to produce the simulation param-
eters. To reduce the required computation time, a GPU with
capacity of running multiple parallel processes was employed.
In this way, fitness evaluation of each individual can occur in
parallel taking advantage of the easy parallelization feature of
the DE method. Further, the reflectance spectrum computed
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with the transfer matrix can be itself parallelized, as the
computations for each evaluated wavelength is independent
and can occur simultaneously, allowing for a finer granularity
in the parallelization.

A. Transfer Matrix Method

A way to compute the reflection spectrum of a FBG is by
using the matrix transfer method. Starting from the structural
information of a FBG, the transfer matrix method allows
the analysis of the propagation of electromagnetic waves for
a given wavelength in the grating, resulting in the relation
between the incident and the reflected power by the FBG. This
relationship can be represented by a 2× 2 matrix.

For the FBG section under analysis, l is considered as the
section length and n the mean value of the core refractive
index. The modulation ∆n0 of the core refractive index is
assumed sinusoidal with period (pitch) Λ (in nm). Therefore,
the transfer matrix corresponding to the analyzed section is
given by Equation 1, that describes the relationship between
the propagating and counter propagating modes at the extrem-
ities of the section [11]:[

a(0)
b(0)

]
=

[
T11 T12

T21 T22

] [
a(l)
b(l)

]
, (1)

where T11 and T22 are given by Equation 2, T12 and T21 are
given by Equation 3, k = π∆n0/λ, s = (|k|2 − ∆β2)1/2

and ∆β = 2nπ/λ − π/λ, where λ is the free-space
wavelength (in nm) [11].

T11 = T22∗ =
∆β sinh(sl) + is cosh(sl)

is
exp(−iβ0l) (2)

T12 = T21∗ =
k sinh(sl)

is
exp(iβ0l) (3)

A schematic representation of an FBG section is shown in
Figure 1, where b(0) is the input signal, b(l) is the transmitted
signal, a(0) is the reflected signal, and a(l) is the input signal
from the other extremity of the fiber. The values of a(0)
and b(0) can be computed by using Equation 1, by assuming
a(l) = 0 and b(l) = 1 (arbitrary, non-null value). The
reflectance R can be computed from a(0) and b(0) by using
Equation 4:

R =

∣∣∣∣a(0)

b(0)

∣∣∣∣2 . (4)

A FBG subject to a deformation gradient will have its
structure changed according to the deformation. Structural
changes are associated with the photoelastic effect [11] and the
longitudinal dilation which modifies the fiber refractive index
and the grating periodicity. If the deformation is uniform along
the grating length, the reflected spectrum will be simply the
wavelength shifted. Nevertheless, if the deformation has a non
uniform profile, the FBG reflected spectrum is dependent on
the force distribution along the grating length.

a(0)

b(0)

a(l)

b(l)

0 l

Fig. 1. Schematic representation of an FBG, where the a(0) and a(l)
signals are related to the counter-propagating mode, and b(0) and b(l) to
the propagating mode.

Gratings with non-uniform structures (apodized or chirped)
or subjected to non-uniform deformations profiles can also be
modeled by the transfer matrix method by considering the
grating as composed of a series of uniform gratings [11].
These uniform gratings can be individually analyzed and the
overall FBG response can be obtained by multiplying the
resulting transfer matrices. Here, the non uniform FBGs were
decomposed in 20 uniform sections as a compromise between
accuracy and computational performance. Each section is a
FBG with its own structural parameters and subject to an
uniform strain ε and the new Λ′ is then given by Equation 5
and the new mean refractive index value n′ is given by
Equation 6, where p11 and p12 are the respective photoelastic
tensor coefficients of the optical fiber, and ν is the Poisson
coefficient.

Λ′ = Λ + Λε (5)

n′ = n− 0.5n3(p12 − ν(p11 + p12))ε. (6)

For chirped FBG presenting a linear chirp, Equation 7 can
be used to calculate the value of Λ as function of the position
z and pitch factor δΛ. For apodized FBG with Gaussian
apodization profile, Equation 8 can be used to determine
the amplitude of the refractive index modulation envelope in
function of the control parameter α, where noc is the maximum
amplitude corresponding to the central point of the Gaussian
envelope.

Λ(z) = Λ0 + (δΛ/Λ0)z (7)

∆n0(z) = ∆noc exp

[
−α

(
z − l/2

l

)2
]

(8)

Figure 2 shows examples of reflection spectra for FBG
that are not subject to mechanical deformations, computed by
using the transfer matrix method with l = 1 cm, Λ = 517 nm,
n = 1.5 e ∆n = 2.5 × 10−4, showing the differences in the
resulting spectra caused by apodization (a) and chirp (b).

Considering a FBG without chirp, subject to a given
deformation profile along its length, if the deformation profile
is mirrored along the grating length axis, the magnitude of the
spectral response will also be mirrored around the wavelength
axis [7], [11]. This mirroring can be verified by the transfer
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Fig. 2. Examples of FBG reflection spectra simulated by the transfer matrix method, for gratings with l = 1 cm, Λ = 517 nm, n = 1.5 e ∆n = 2.5× 10−4.
(a) Spectrum for gratings with uniform Λ, without index apodization and with Gaussian apodization (α = 5). (b) Spectrum for gratings with chirp (δΛ = 0.65
nm/cm), without apodization and with Gaussian apodization (α = 5).
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Fig. 3. Two distinct strain profiles applied to the same FBG, resulting in the same reflected signals, in magnitude. (a) Strain profiles. (b) Reflected signals.

matrix method, showing that a FBG with a symmetrical reflec-
tion spectrum is insensitive to the mirroring of the deformation
profile. This implies that distinct deformation applied to the
same FBG will result in the same reflection spectrum if
no phase information is available. An example is shown in
Figure 3, where two deformation profiles are applied to the
same uniform FBG, resulting in similar magnitude responses.

B. Differential Evolution

The DE algorithm was first proposed by [8] and soon
gained wide acceptance in the scientific community due to
its simplicity and efficiency. Since then, DE has been used
successfully in many engineering optimization problems [12],
[13]. In this work, for the application of the DE algorithm, a
population of 96 individuals (also called vectors) is maintained.
Each individual represents a single deformation profile dis-
cretized in 20 points. Initially, all individuals are created by a
pseudo-random number generator, and then they are iteratively
enhanced by the evolution process.

At each iteration of the method, a new trial population is
built. Each new individual of the trial population is generated
by using an individual from the current population as base,
which is modified by means of the crossover and mutation
operators. The new individuals are evaluated by the fitness
function that measures the similarity between the target spec-
trum and the spectrum simulated from the individual. These
new individuals from the trial population substitute those that
served as base for them if the trial individual presents a better
fitness evaluation than the current individual. This iterative
process continues for 2, 000 iterations, when the individual
with the highest fitness value is chosen as the outcome of the
method. An overview of the DE algorithm is shown in the
fluxogram of Figure 4.

In more details, a DE/rand/1/bin [9] scheme was employed,
with a crossover rate CR = 0.95 and mutation factor F = 0.7.
To construct the trial population, the mutation and crossover
operators are applied to each individual in the base population
(referenced here as base-individual). For each base-individual,
the mutation operator chooses another three distinct individuals
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Fig. 4. Flowchart representing the main operations in the differential evolution
method employed in this paper.

from the base population and combines them, generating a new
mutant individual. With the crossover operator, this mutant
individual is recombined with the base-individual, generating
a new individual in the trial population. This trial population
is evaluated and the individuals from this population take
the place of the respective base-individual if there is an
improvement in the individual’s fitnesses.

The evaluation of an individual consists in simulating
the reflection spectrum of the analyzed FBG assuming the
application of the the deformation profile represented by the
individual. The Mean Squared Error (MSE) between the sim-
ulated reflectance and the target spectrum is computed, where
the fitness value is inversely proportional to the MSE. Hence,
the algorithm searches for a deformation profile that minimizes
the MSE.

As shown in Section II-A, distinct deformation profiles can
result in a similar reflectance. This ambiguity can be solved by
using a FBG with linear chirp, assuring that the situation seen
in Figure 3 does not occur, since the FBG reflection spectrum
will not be symmetrical anymore. Assuming that there are
no abrupt changes in the deformation profile, a smoothness
restriction can be added to force the convergence to smooth
solutions. Here, a penalty was added to the solutions when a
section showed a strain differing more than 0.2 mε from the
strain in the previous section (in an arbitrary orientation). This
penalty was added to the fitness evaluation of the individuals,
where the excess difference (excess from the 0.2 mε tolerance)
between the strain of each section was multiplied by 10 and
divided by the total number of sections. The tolerance and
weight were chosen arbitrarily and can be changed according
to the desired application.

C. Parallel Computation using GPU

In the proposed method, the evaluation of the candidate
solutions (individuals) is the most expensive procedure. To
evaluate an individual, its reflection spectrum for a given
wavelength band must be computed. Each wavelength requires
the calculation of the respective transfer matrices, that are
then multiplied to compose the grating response. The fitness
evaluation of an individual is performed in multiple paral-
lel processes, as the computation of the reflectance at each
wavelength is an independent task. The difference between the
resulting reflectance and the target spectrum is computed point
by point by each process / wavelength, and the total error for
an individual is computed by using a parallel reduce operator.
This possibility of dividing the fitness evaluation in parallel
tasks shows that the method can take advantage of a hardware
capable of executing parallel processes.

Modern GPUs are developed for the execution of parallel
tasks, having multiple parallel processing cores and perform-
ing the Single Instruction on Multiple Data (SIMD) points
simultaneously. This capabilities makes GPU very suitable
for the problem in hand. The CUDA R©(Compute Unified
Device Architecture) platform was used in this work with a
compatible GPU board. Here, the different steps of the DE
method were implemented serially for execution on a CPU,
with the exception of the fitness evaluation step which was
implemented as a kernel for parallel execution in a GPU.

The fitness evaluation kernel is executed in a GPU with a
total of 96 process blocks, each block corresponding to one
individual. Each block is composed by 64 processes, where
each process simulates the FBG response at a given wavelength
by using the transfer matrix method. Each process performs the
necessary matrix multiplications, computing the error between
the computed response and the target spectrum. When all
processes finish their execution, those errors computed at each
wavelength are summed up by using a parallel reduce operator
so as to compute the MSE. The kernel creates a total of
96× 64 = 6, 144 processes at each iteration, and the number
of actual parallel processes is dependent of GPU hardware
used. To reduce the global memory usage in the GPU, each
process block shares the information about the individual
analyzed, with the FBG parameters stored in static read-only
global memory. The number of individuals was determined
empirically, with the number 96 being favored since it is a
multiple of 16, what corresponds to a warp or half process
block. The proposed methodology allows taking advantage of
the available GPU architecture: the resolution can be increased
(the number of wavelengths evaluated per individual) in GPUs
that accepts a higher number of parallel processes without
resulting in a significant performance loss.

D. Experiments

Three experiments (E1, E2 e E3) were performed to
evaluate the computational performance of the DE algorithm,
and its convergence of the solution to the target deformation
profile. Each experiment employed a different target deforma-
tion profile, shown in Figure 5. Experiment E1 used a linear
gradient, while experiment E2 used a mirroring of the E1
profile, so as to verify the ability of the method to overcome
the ambiguity problem mentioned in Section II-A. Experiment
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Fig. 5. Deformation profiles employed in experiments E1, E2 e E3. The
profile from E1 is the mirrored profile from E2. The profile for E3 is a
symmetric trapezoid.

E3 used a trapezoidal deformation profile. All experiments
were performed using a NVIDIA GeForce R©GTX480 GPU in
a desktop with an Intel R©CoreTM2 Quad Processor Q9550 and
8 GBytes of RAM.

During the fitness evaluation, the FBG reflection spectra
were simulated with a total of 64 points, distributed in the
wavelength range from 1552 nm to 1555 nm, corresponding
to the spectral response band of the analyzed FBGs. The
parameters employed in the simulations are shown in Table I:

TABLE I. PARAMETERS USED TO SIMULATE THE SPECTRAL RESPONSE
OF THE FBGS.

Parameter Value
p11 0.113

p12 0.252

vf 0.17

l 1 cm
Λ 532.4 nm
n 1.457

∆n 2.5× 10−4

δΛ 5× 10−8

α 5

The mean absolute error (MAE) between the resulting
deformation profile and the target deformation profile was
used as error metric. Equation 9 was used to compute the
MAE, where ns is the number of segments of the FBG,
targeti is the target strain in the i-th segment and resulti
is the resulting strain in the i-th segment. Considering that the
proposed method is stochastic, each experiment was repeated
1, 000 times to obtain a mean and standard deviation of the
results.

MAE =

ns∑
s=1

|targeti − resulti| (9)

III. RESULTS

Figure 6 shows an example of how the best individual
evolves during the evolutionary method, having the deforma-
tion profile from E3 as target.
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Fig. 6. Example of the evolutionary optimization, showing the evolution of
the best individual during the process. This example employed the deformation
profile from E3 as target.

TABLE II. RESULTS OF 1, 000 REPETITIONS OF EXPERIMENTS E1, E2
AND E3.

Experiment MAE [mε]
E1 0.006937± 0.078082
E2 0.009022± 0.050273
E3 0.003254± 0.040156

A summarization of the experiments is shown in Table II,
while the complete results (MAE computed for every repetition
of all experiments) are shown in Figure 7. Each repetition took
approximately 0.67 s to be executed.

IV. DISCUSSION

As shown in Table II, the mean value of the resulting MAE,
for all experiments, is in the order of µε. Results from Table II
also showed a standard deviation higher than the mean value,
stating that some repetitions did not converge to the global
optimum. This fact can also be observed by analyzing the
results shown in Figure 7, where a relatively small number
of repetitions differs in orders of magnitude from the others,
also indicating convergence to some local optimum that are
distant from the global optimum.

Results shown in Table II and Figure 7 also showed that, for
most repetitions, the proposed method converges to solutions
close to the target deformation profile. This is achieved without
using an additional FBG.

As shown in Section III, the proposed method demands
less than 1 second for its execution using a GPU for the
evaluation of the fitness. Comparing to the execution time
of 10 hours seen in the literature for a method that also
does not demand phase information [7], an enhancement of
3 orders of magnitude was achieved. Comparing to the results
of a previous implementation of the method (see [10]), it is
observed that the GPU implementation can reduce the required
computational time by a factor of 19. The new computational
cost allows the use of the method in applications that require a
response time up to seconds instead of hours, such is the case
of online monitoring.
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V. CONCLUSION

Results showed that the proposed method decreased the
computation time in orders of magnitude in respect to the
methods previously found in the literature [7], [10]. This
improvement was obtained with an efficient implementation
of the DE method in GPU. This fact enables the use of
the proposed the method to many applications that require
reduced processing times. Moreover, the results highlighted the
parallelization features of evolutionary optimization methods,
showing that it is possible to take advantage of the parallel
architecture of GPUs to enhance their computational perfor-
mance.

Overall, the method is very promising and can be easily
adapted for dealing with similar tasks by adjusting the fitness
function. Examples of similar tasks include the determination
of temperature gradients and its application in the design of
FBGs with arbitrary responses.
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