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Email: magatao@utfpr.edu.br

Abstract—The assembly line balancing problem (ALBP) con-
sists in finding the best assignment of tasks between several
workstations. An evenly distribution reduces idle time and
therefore results in more efficient production systems. Although
several models have been proposed for ALBP, real lines present
restrictions that usually violate simplifications assumptions. This
paper presents a hybrid genetic algorithm to solve balancing
problems with assignment restrictions. Heuristics are dynamically
used in the encoding process to reduce search space and to focus
the search on promising areas. The hybrid GA is able to obtain
solutions close to the optimal (0.79% in average) for the most
used dataset in the literature. The presented GA can incorporate
equipment or zoning restrictions that might be present in real
assembly lines.

I. INTRODUCTION

The assembly line balancing problem (ALBP) is a classical
problem in Operational Research. Its goal is to find an optimal
distribution of tasks among workstations. Its first mathematical
model was proposed by Salveson [1]. According to Baker [2],
ALBPs are combinatorial NP-Hard problems.

An assembly line balancing problem restricted only by
precedence relations between tasks (tasks that must be per-
formed before other tasks) is called a simple assembly line
balancing problem (SALBP). Precedence relations are often
presented in the form of a precedence diagram such as the
one presented by the Figure 1. The number of each task is
given within each circle, while the numbers on the upper right
corner of each node represent the duration of the task. In this
we assume that the tasks are numbered following a topological
ordering. SALBPs can also be classified into four categories,
according to their goal [3].

SALBP-1 are problems in which a maximum cycle time is
given and the goal is to minimize the number of workstations
required to achieve a cycle time lesser or equal to the given
maximum. SALBP-2 are problems in which the number of
workstations is given and the goal is to minimize cycle time.
When neither the cycle time nor the number of workstations is
given, the problem is a SALBP-E, whose goal is to maximize
the efficiency of the line by minimizing idle times. The last

Fig. 1. Example of a precedence diagram.

variation is named SALBP-F, in which the goal is to reach a
feasible solution for a given cycle time and a given number of
workstations. According to Gamberini et al. [4], re-balancing
problems related to working assembly lines are more frequent
than planning the balancing of new assembly lines. Events such
as a change in the production mix, the introduction of new
product models, the increase or reduction of the production
scale, amongst others, require a re-balancing of an assembly
line [5]. Re-balancing problems usually present additional
constrains, given that the assembly line is already present
and certain alterations might be too expansive or outright
unfeasible.

Many modifications of the ALBP have been proposed for
the diverse particularities found. There are special models for
U-shaped assembly lines [6], models for robotic lines [7],
models for lines with assignment restrictions [8] and [9],
amongst others. One important aspect of real assembly lines
modeling is the capacity to translate features of the assembly
line to the mathematical model. Boysen et al. [3] presents a
survey on the many different features studied and described
by different models.

On this work, a modeling approach employing a genetic
algorithm is presented. The proposed assembly line balancing
problem has as goal the minimization of the cycle time given
a fixed number of stations (ALBP-2). However, in order to
describe physical restrictions of the shop floor, assignment
constrains are proposed. One example of physical restriction
is a drilling task that can be only performed at stations geared
with a drill; such restrictions create gaps of unfeasibility on
the problem’s domain. The problem contains still the time-wise
precedence constrains between tasks, for instance, two pieces
have to be assembled before they are wielded. Thus the search
space is bounded by two types of restrictions.

The paper is organized as it follows: Section II presents the
related works that treat ALBP with assignment restrictions.
Section III describes the genetic algorithm proposed in the
paper. Section IV describes the results obtained by the GA.
The effect of each heuristic strategy is shown as well as a
computational comparison with a highly specialized assembly
line algorithm. The conclusion is presented in Section V.

II. RELATED WORK

Out of SALBP’s four variations, the SALBP-1 is the one
most richly studied on the literature [10]. The algorithms
that solve balancing problems with assignment constrains are
usually designed for this variant of the problem.

Bautista and Pereira [8] introduced a new variation of such
balancing problems: TSALBP (time and space constrained

978-1-4673-8418-6/15/$31.00 ©2015 IEEE



assembly line balancing problem). The author developed an
Ant Colony Optimization Algorithm named ANTS for solving
assembly line balancing problems in which each station was
not only limited by the cycle-time, but also to a given amount
of physical space that each task required. The space constraint
reflects the workstation’s needs for tools, equipment and pieces
required by the tasks if they are to be performed at a given
station.

Scholl et al. [9] introduces ABSALOM to solve ARALBP
(assignment restricted assembly line balancing problem). The
exact algorithm employs a Branch-and-Bound procedure to
find solutions to the problem. On this problem’s variations, not
only time and space, but also any number of resources can be
taken into account. Besides resources, allocations constraints
are considered, such as linked tasks (which must be performed
at the same station), incompatible tasks (which can not be
performed at the same station) and restrictions on task-station
allocation. ABSALOM can also solve TSALBP problems.

Sternatz [11] employs a multi-Hoffmann heuristic to solve
assignment restricted problems. The procedure is capable of
solving to optimality many instances of TSALBP and AR-
ALBP with low processing time.

Akpınar and Bayhan [12] propose a hybrid genetic algo-
rithm (hGA) for mixed model assembly lines with parallel
workstations and zoning constraints. Three heuristics are used
to provide good answers as initial solutions along with random
individuals. The GA search focus on the neighborhoods of the
heuristic solutions. The multiplicity of heuristics along with
random individuals assures genetic variability.

The proposed algorithm differ from Akpınar and Bayan
hGA [12] by using heuristics in the encoding of the genetic
algorithm. The information of the best solutions are used
dynamically to define how the genes are translated into a
solution.

The assignment restrictions treated in our GA represent
every unfeasible allocation of a task in a workstation. These
restrictions can occur due to lack of the necessary equipment,
lack of a skilled worker or other task-station incompatibilities
within an assembly line. This approach suits well the re-
balancing of assembly lines, where the workstations and equip-
ment are already present and therefore imposes restrictions on
the tasks’ allocations.

The presented methods are all designed to solve ALBP-1:
the cycle time is known and the goal is to minimize the number
of stations. For ALBP-2, the majority of the algorithms employ
a type-1 algorithm recursively for many trial cycle times. This
allows a search for the minimum cycle time between a lower-
bound and an upper-bound, that are determined by different
heuristics.

Klein and Scholl [10] presented an algorithm to solve
type-2 simple assembly line balancing problems (SALOME-
2). It combines several heuristics to perform an informed
laser search via branch-and-bound techniques. The authors also
compare the efficiency of this algorithm with the SALBP-
1 version (SALOME-1) employed repeatedly. In this paper,
the algorithm is used as a comparison reference, since it is
available on-line for download at http://www.assembly-line-
balancing.de.

III. GA MODEL

The type-2 SALBP is a cycle time minimization problem.
The problem is highly combinatorial, its variables represent
allocation choices of each task. An assembly line with 50 tasks
and 10 workstations, for instance, presents 1050 allocation
options. Due to the problem’s dimension and its combinatorial
nature, a genetic algorithm is chosen as an appropriate way to
model the problem.

According to a review of SALBP algorithms [13], the
feasible solution generation affects greatly the algorithm’s per-
formance. Feasible solutions can be produced by either using
rules for their generation, correcting solutions or applying
punishments to unfeasible individuals. In the proposed GA,
we use a codification that only allows feasible individuals.

A. Encoding

The most common GA codification strategies for ALBP
are [14]: i) Workstation-oriented representation: there is one
gene for each task. The gene stores the value of the work-
station in which the task is allocated; ii) Sequence-oriented
representation: the chromosome has one gene for each task.
Each gene stores the value of a task. The sequence of the
genes’ value determines the allocations; iii) Partition-oriented
representation: similar to the sequence-oriented representation,
the genes store the sequence of tasks allocations. Besides
that, the partition-oriented representation has genes to define
the beginning and end positions of the allocations for each
workstation. This paper uses an adapted workstation-oriented
representation. Instead of storing the number of a workstation
in a gene for each task, the GA’s gene stores the position
in a list of allocation possibilities. This way, both the physical
allocation restrictions as the precedence restrictions are always
satisfied by any codification. For example, one task can be
allocated in workstations 2, 3 and 4. Thus, station 2 would be
the first option of the list, station 3 would be the second and
station 4 would occupy the third position.

The correspondence between the option codified by the
genes and the workstation decision that it represents has to
respect both precedence and physical allocation restrictions.
Figure 2 illustrates how the precedence relations are used to
update the list of possible allocations in order to allow only
possible assignments. Figure 2 is based on the precedence
graph showed in Figure 1. Before the first task has been
allocated, when one consider only the precedence relations,
any task can be assigned to any station. The algorithm as-
sociates tasks to stations in the order the tasks were given.
In Figure 2.a, Task 1 is free to be allocated in any station
(option 1 to 4). The gene information stores the value of the
position of a list of possibilities. In the example, Task 1 is
assigned to the first station, shown in green. Task 2 has to
be allocated after Task 1. Once Task 1 is associated with the
first workstation, Task 2 can be allocated to any workstation,
including the first. Figure 2.b shows one example where Task
2 is assigned to the second position of the options list. This
choice restricts Tasks 4, 6, 7 and 8 allocations in Workstation 1,
once Task 2 precedes these tasks. The cells in black are used to
illustrate the unfeasible allocations. Figures 2.c-f show the rest
of the association process. The number of allocation options
diminishes during the procedure, once the assignment of tasks



with precedence relation restricts the allocation possibilities of
the next ones.

Physical allocation restrictions are used to model whether
a task cannot be performed in a workstation. These restrictions
do not depend on how the tasks are distributed, but they
depend on the equipment, accessibility and compatibility of
the stations. Figure 3 shows an example of a possibilities list
under such restrictions. The list has to store only the feasible
allocations.

Figure 4 illustrates the tasks association when both restric-
tions are applied simultaneously. The intersection of the two
diagrams is significantly more restricted. The list of possible
allocations is updated after each new allocation due to the
precedence relations. This way, it is not necessary to apply
corrections or punishments to obtain feasible solutions.

B. Variable set reduction

The precedence diagram can be used to restrict tasks alloca-
tion possibilities. For the problem presented by the diagram in
Figure 1, for instance, the sum of the duration time of all tasks
is 29. A task allocation with cycle time of 29 can be obtained
by performing all tasks in one station. Any other allocation
respects the limit of 29 time units. When one consider a cycle
time of 28, not all of the task allocations are feasible. Once
Task 1 have to precede all other tasks, it could not be allocated
in the last station, as illustrated in Table I.

Gokcen and Erel [15] use the cycle time to restrain task
allocations. They define a minimal and maximal station in
which each task can be allocated. These limits are calculated
with Equations (1) and (2). In the equations, t stands for
duration time of Task i, P for the tasks that precede Task

Fig. 2. Example of the allocation of tasks and the effect of precedence
relations in the feasible allocation options.

Fig. 3. Example of a list of possible allocations under physical allocation
restrictions. The black cells represent infeasibilities.

i, S for the tasks that succeed Task i, CT for the cycle time
and NS for the number of stations.

Smini
=

[
ti +

∑
j∈P tj

CT

]+
(1)

Smaxi = NS + 1−
[
ti +

∑
j∈S tj

CT

]+
(2)

Different cycle times imply in different ranges of possible
allocation for the tasks. The smaller the cycle time, the more
restricted is the allocation interval. In the SALBP-1, cycle
time is known, so the equations can be applied only once. In
SALBP-2, the cycle time is the variable one wants to minimize.
Therefore, in order to use equations (1) and (2), one needs
a cycle time upper-bound. The closer this value is from the
optimum value, the better the variable reduction is.

Fig. 4. Example of the allocation of tasks and the effect of precedence
relations and physical restrictions in the feasible allocation options.



TABLE I. MINIMAL AND MAXIMAL STATIONS FOR CYCLE TIMES OF 8,
10, 12 AND 28 TIME UNITS.

Cycle Time Bounds Tasks
1 2 3 4 5 6 7 8

8 lower 1 1 1 2 2 3 4 4
upper 1 2 2 3 3 4 4 4

10 lower 1 1 1 2 2 3 3 3
upper 2 3 3 3 3 4 4 4

12 lower 1 1 1 1 2 2 3 3
upper 2 3 3 4 4 4 4 4

28 lower 1 1 1 1 1 1 1 1
upper 3 4 4 4 4 4 4 4

TABLE II. EXAMPLE OF THE ENCODING OF THE OPTION STORE BY
THE GENE AND THE ASSOCIATED STATION.

Option - Gene 1 2 3 4 5 6 7 8 9 10
Station - Allocation 1 2 3 4 5

In this GA, the best solution found is used as a cycle
time estimative to determinate the minimal and maximal
station for each task. Every time a new better individual is
found, the limits are updated, diminishing the search space
for the individuals of the next generations. The minimal and
maximal stations are used as restrictions to create the possible
allocations list.

C. Search focus

In order to be able to create any possible solution com-
bination, the list of options has to have at least the size of
the number of stations. It is easy to see, however, that some
allocations produce low fitness individuals. For instance, when
a task with many successors is allocated in the end of the
line, all tasks that depend on the first task have also to be
allocated in the last station. If that happens, the workload at
the end of the line would produce a bad quality balancing.
Therefore, there is a natural tendency to allocate tasks sooner
rather than later, for the next tasks would have more freedom
to be allocated.

The GA uses this pattern to focus the search in more
promising regions of the search domain. The option-station
correspondence is not done in a uniform way, more than
one position were used to represent the earlier stations. The
quantity of options used to represent each station obeys an
exponential distribution. The more options of stations an
allocation enables, the more probable the allocation is. Table II
exemplifies an asymmetric option-station correspondence. In
this example, a task can be allocated in 5 stations, while there
are 10 values that could be assumed by the gene. Once tasks
are restricted by precedence relations, it is usually better to
allocate them in the first stations.

The chromosome has a gene for each task. Each gene has a
minimal number of possible values so that it can assume to an
exponential value-station correspondence. Although the search
space increases, using a gene with the number of possible
values equal to ten times the number of stations showed the
most promising results. The extra possibilities are used to fit
the exponential distribution. Equation (3) shows the probability
of each station to be chosen. The probability diminishes as
the number of the latter stations (NS - i) decreases. The
term b controls how focused the search is. When b = 0, the
distribution is uniform, no focus is applied. For large values
of b, the algorithm works almost as a greedy algorithm. Sf is
the set of feasible station allocations.

Pi =
exp[b(NS − i)]∑

j∈Sf
exp[b(NS − j)]

(3)

The probability values have to be transformed into integer
values. In order to not discard any allocation possibility,
small probabilities are increased, so that there is at least one
allocation for each one of the feasible stations. The rest of the
values are determined according to the exponential distribution.
The sum of the possibilities is equal to the range a gene can
assume.

D. Loaded workstation closing

As an additional strategy, the concept of “closing” a
workstation was employed. That is, cycle time is limited
to a maximum value. Only allocations that do not load a
workstation above the limit are considered. This way, the GA
searches for unloaded stations to allocate tasks. The best cycle
time found is used as the limit parameter. Each time a new best
individual is found, the limit value is updated. The stations
that are considered closed cannot receive more tasks. This
restriction is implemented in the creation of the allocation
possibilities list.

E. Implementation

The algorithm implementation is made using the software
Gallops 3.2.2. The goal function of a SALBP-2 is the min-
imization of the cycle time given a number of workstations.
The goal function is obtained by the maximum value of the
sum of tasks’ durations in each of the workstations. The better
the tasks are distributed, the lower the cycle time will be. The
fitness function is defined as the inverse of the cycle time.

The uniform crossover (90%) and the individual bit mu-
tation (5% per bit) are the operators used. The GA uses 200
individuals that evolve during 1000 generations. The selection
method used is the stochastic tourney of size 10. The used
value for the exponential distribution parameter b is 1.4.

IV. RESULTS

The GA is tested with a SALBP-2 dataset. Scholl and Klein
[16] uses a benchmark of 302 instances of SALBP problems
with 29 to 297 tasks. This testbed is used as reference to
compare algorithms. The search space of an ALBP can be
calculated multiplying the amount of allocation options each
task have. The smaller instance of the dataset has 29 tasks that
should be associated to 7 workstations. This represents a total
of 1024 allocation possibilities, while the largest instance has
a search space of the order of 10510.

Table III shows the number of optimum solutions found by
the GA, as well as the average relative and maximum deviation
from optimum. Both the best results and the average are shown
for a series of 15 runs of each of the 302 benchmark instances.
A virtual machine with 2 GB RAM allocated memory and a
2.3 GHz processor was used.

The effect of the different heuristics can be seen in Ta-
ble IV. The three procedures brings advantages compared
to the simple GA. The exponential distribution focus the
search on more prominent areas. This distribution gives to the



TABLE III. SUMMARY OF THE BEST AND AVERAGE RESULTS FOR THE
302 TESTED SALBP-2 INSTANCES

# optimum Relative deviation Maximal deviation
Best allocation 127 0.79% 5.56%

Average 92 1.34% 5.94%

Fig. 5. Processing time versus problem size. Problem size is the number of
station multiplied by the number of tasks.

GA some similarity with a greedy algorithm. The closing of
workstations makes the assignments improve every time a new
incumbent solution is found. It prevents tasks to be allocated in
workstations that are already fully loaded. The lower and upper
bound calculations uses the precedence graph information to
set bounds for the tasks allocations. Once the cycle time is not
known, the best answer is used as a time limit. Every time a
new best solution is found, the bounds are updated. The sum
of the effect of the heuristics results in an algorithm whose
solutions are 0,79% far from optimum.

The average processing time was 25.0 seconds. Figure 5
shows the behavior of the processing time for the different
SALBP problems. Once the same parameters for number of
individuals and generations are used, the amount of time the
algorithm uses is linearly dependent to the number of tasks
and the number of allocation options which task has.

The SALOME algorithm [10] is used as a result compari-
son reference. Table V summarizes the compared results from
the two methods. The results for SALOME are showed for a
run time limit of 60 and 1000 seconds.

V. CONCLUSION

This paper presented a hybrid genetic algorithm to treat
assignment restricted assembly line problems. The paper con-
tributes with the use of heuristics in the encoding of the genetic
algorithm. As indicated in Table IV, the GA worked efficiently

TABLE IV. SUMMARY OF THE RESULTS FOR THE EFFECT OF THE
HEURISTICS.

#optimum Relative deviation Maximal deviation
No heuristics 10 97.60% 479.08%

Exponential distribution 9 16.45% 75.34%
Workstation closing 71 9.87% 90.67%

Lower and upper bounds 78 9.57% 89.38%
Complete GA 127 0.79% 5.56%

TABLE V. METHOD COMPARISON FOR INSTANCES OF SALBP-2.

#optimum Rel. deviation Max. deviation Avg. time
GA 127 0.79% 5.56% 25.0 s

SALOME (60) 263 0.16% 5.88% 9.2 s
SALOME (1000) 273 0.13% 5.88% 123.3 s

only with the use of these heuristics. Without them, with
the same conditions of 1000 generation and 200 individuals,
the relative deviation from optimal was 97.6%. The variable
reduction, the search focus in more promising regions and the
heavy loaded workstation closing process helped to achieve
answers with a relative deviation of 0,79% from the optimal
solution. No convergence or stop criteria was used. So every
instance was run for 1000 generations. Convergence controls
or lower bounds knowledge could be used to decrease the
processing time indicated in Table V.

The GA reached high quality answers on average; in 42%
of the 302 tested instances, the optimum was found. Never-
theless, the GA is still underperforming when comparing to
SALOME for SALBP. The set of heuristics used in SALOME
showed to be superior to the evolution progress of the proposed
GA.

The GA can be improved by using other strategies to
define the task order allocation. For this work, the tasks were
allocated by the numerical order. Most algorithms presented in
Section II, however, uses 2 directions in the search procedure.
Task renumbering procedures can also be used to force earlier
assignments of larger tasks or the ones with more dependents.

The proposed GA can be used to solve both the TSALBP
and the ARALBP cases. The restrictions needed in these
variations can be implemented in the creation of the allocation
possibility list of each task.

ACKNOWLEDGMENT

The authors would like to thanks the corrections and
comments made by anonymous referees. We also would like to
show our appreciation for the financial support from Fundação
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