
Differential Evolution Variants and MILP for the
Pipeline Network Schedule Optimization Problem

Jonas Krause, Edson Luiz Sieczka Jr., Heitor Silvério Lopes
Federal University of Technology Paraná – UTFPR

Curitiba, Paraná, Brazil
jonaskrause@hotmail.com, sieczka@gmail.com, hslopes@utfpr.edu.br

Abstract—This paper presents two variants of the Differential
Evolution (DE) algorithm, with binary and continuous encoding,
for the pipeline network schedule problem. A binary mathemat-
ical model is proposed to represent the flow of oil products in a
48 hours horizon period. Although computationally expensive, a
Mixed Integer Linear Programming (MILP) approach was also
used to obtain optimal solutions so as to compare results with
the other methods. In this paper, we introduced a benchmark
of scheduling problems for testing the algorithms with a fixed
network topology, but with different number of products and
demands by final clients. MILP results determined optimal
solutions for six of the proposed benchmarks, but it required far
more computational effort than the DE-variants. Even though
it is a real-parameter algorithm, the DE presented itself as a
good heuristic alternative for the discrete problem approached
here. The overall comparison of results between the proposed
DE-variants and MILP supports the efficiency, robustness and
convergence speed of DE algorithm.

I. INTRODUCTION

One of the major problems of the petroleum industry is
the distribution of oil products by polyducts. Transportation of
crude oil to refineries and refined products to depots through
pipelines comprise a distribution network. The schedule of
each of the refined products (gasoline, kerosene, diesel, gas
fuel, etc.) into the polyducts is crucial. Decision tools based on
operations research can be used to determine the best sequence
of batches to optimize the distribution. The operations of these
networks are highly complex to satisfy all the constraints
related to production, demand, storage and transportation time.
A fast and efficient decision making system is required to
maximize these networks and reduce the transportation costs.
Heuristic methods, such as Genetic Algorithm [1], [2] and
Differential Evolution [3], [4], have been used in schedule
problems to provide satisfactory and fast solutions with rea-
sonable computation efforts.

A pipeline network includes a number of refineries, de-
pots and distribution centers. The ducts connecting each one
of these nodes compose the network structure. These ducts
usually transport different products along time and can be bidi-
rectional. Products are transported in batches, i.e., a product is
loaded into the pipeline pushing the previous product batched.
These batches can be fractionated and frequently fill the entire
duct. In these cases, the complexity of the network increases
due the number of possible operations on each node.

The optimization of the network consists in delivering
products to different demand points with minimum operational
costs [5], [6], and recent studies have been focused on the

time delivery [7]. In this case, the objective is to deliver
each product as fast as possible and the operational costs are
represented as constraints. The proposed mathematical model
follows uses a time window method and an objective function
is minimized. Demand and costs are handled as constraints.
Therefore, this model may be applied to different network
structures with several products.

Mathematical programming and heuristic methods have
been used to determine the best solution for such sort of
scheduling problems. Depending on the network structure, the
number of possible solutions is intractable with mathematical
programming methods, since the processing time becomes
unacceptable. In these cases, heuristic methods, such as Differ-
ential Evolution, can be successfully used as alternative method
to provide faster solutions, but without guaranteeing optimality.

In this work, two variants of the DE are compared with
MILP for specific pipeline network schedule optimization
problems. The DE-variants results support the efficiency of
this real-parameter algorithm in continuous search spaces. The
binary encoded DE also presented satisfactory results requiring
less time processing. MILP results determined optimal solu-
tions for six of the proposed benchmarks, but it required more
computational effort for the remaining ones. Even though it is
a real-parameter algorithm, the DE presented itself as a good
heuristic alternative for discrete problems.

II. PROBLEM DESCRIPTION

The schedule problem consists in distributing N products
from R refineries through D depots to C distribution centers.
Polyducts connect each one of these nodes and they are
represented by the letter P . A simplified version of the network
structure, introduced by [2], is presented in Fig. 1, and it has
been the focus of other recent studies [1], [8].

The network has nine polyducts represented by ten arrows
(ducts). The bidirectional duct connecting the two depots is
represented by two arrows, P5 representing the flow from D1

to D2 and P6 vice-verse. During the schedule planning these
ducts are not allowed to be used at the same time, otherwise
it would have a collision. The same flow rate is considered for
all products. To reduce product fragmentation and setup costs,
each batch has to fill the entire duct up to be fully transported.
Storage tanks on each node receive all types of products with
aggregate tankage. The length of each duct is given by the
number of time units needed for a batch to traverse it. Table I
presents these time units (P1,...,10) corresponding to Fig. 1.

978-1-4673-8418-6/15/$31.00 ©2015 IEEE

Fig. 1. Example of a distribution network [2].

TABLE I. UNITS OF TIME NEEDED FOR ONE BATCH TRAVERSE EACH
DUCT [8].

Polyduct P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Time 1 3 3 2 3 3 4 2 3 2

Products may be refined in different places. To reflect this
feature, the model considers that R1 refines products N1 and
N2, and R2 refines N4 and N5 Given a planning horizon of 48
hours, this scheduling problem consists of determining which
product may be batched from the refineries, through the depots,
and finally to the distribution centers.

A. Mathematical Model Formulation

The proposed mathematical model uses X binary variables
to represent the presence or not (1 or 0) of each product, on
each duct during a specific time period. Equation 1 represents
these variables.

Xn,p,k =

{
1

0
∀n, p, k (1)

Considering H the number of hours of the time hori-
zon and N the number of products, the following indexes
can be established: n = {1, . . . , N}, p = {1, . . . , P} and
t = {0, . . . , H − 1}. Index k represents the time period and
depends on the time units needed to traverse each polyduct.
Equation 2 shows how k represents each time period.

k = Pp × t k < H (2)

The objective function Z, shown in Equation 3, represents
the minimization of the sum of the X binary variables.

Z = min

(
N∑

n=1

P∑
p=1

H−1∑
k=0

(Pp × (k + 1))×Xn,p,k

)
(3)

Each binary variable X is weighted by each polyduct time
units and their position k on the schedule plan. Index k is
increased by one to take into consideration the initial position.

The model constraints seek to represent the linear re-
strictions of a real network. The constraints are created to
ensure the uniqueness of each product in each pipeline, no
collision on the bidirectional polyduct, the batches order and
supply/delivery demands, as follows:

• Products uniqueness: To ensure that only one product
is transported by each duct in each period of time.

• Bidirectional duct: To ensure that ducts P5 and P6

are not used at the same time.

• Batches order: To ensure that the products arriving
on distribution centers (C) were stored in depots (D)
and provided by refineries (R).

• Supply and delivery demands: To ensure that the
correct demand is delivered and the origin of all
products is one of the refineries.

These constraints, defined as linear equations, restrict the
search space of the problem. DE-variants and MILP are applied
using these binary mathematical model to determine the best
schedule for this pipeline network.

III. DIFFERENTIAL EVOLUTION (DE)

The DE algorithm was introduced by [9] and devised
for optimization in continuous spaces. It arose as a simple
and efficient real-parameter algorithm for global optimization.
DE is a stochastic population based algorithm and has dif-
ferent strategies. The most used and successful strategy is
the DE/rand/1/bin [10]. This strategy consists in randomly
selecting an individual to be mutated, one difference vectors to
perturb the selected individual and a binomial crossover. The
mutation and crossover processes are applied in a trial popu-
lation, each individual fitness is calculated and the new pop-
ulation is evaluated. Using continuous variables, DE searches
the best quality individual evolved in a predetermined number
of generations.

The formulation of the DE/rand/1/bin strategy is presented
by Equation 4:

v(g, i, j) = x(g, r3, j) + F × [x(g, r1, j)− x(g, r2, j)] (4)

This equation represents the trial vector v receiving the
random vector x plus a random difference variation. The
DE/rand/1/bin represents the random individual x to be mu-
tated. Parameter F is the weighting factor used to control the
amplification of the differential variation. This strategy may
vary depending on the individual selected. Elitism can be used
to select the individual with the highest fitness value for the
mutation process, and this strategy is known as DE/best/1/bin.
The best individual can also be added on the differential varia-
tion, in this case the strategy is called DE/rand-to-best/1/bin.
Other strategies consist in using two differential variations,
represented by DE/rand/2/bin, DE/best/2/bin and DE/rand-to-
best/2/bin. The last element is the crossover process and it
can be set to DE/rand/1/bin and DE/rand/1/exp, representing
the binomial and exponential crossovers, respectively. The
exponential crossover process can also be selected in all
described DE strategies, creating a list of ten possible strategies
that can be used on DE algorithm [11]. Both proposed methods
in this paper use the classical DE/rand/1/bin strategy.

A. Binary Differential Evolution (BDE)

This DE variant was proposed by [12] and it is adapted
for binary spaces only. The adaptation of the original DE
starts in the initialization of the population, such that random
binary values are used to create individuals instead of random
continuous values. The original mutation process of DE is
replaced by a random bit inversion. This adaptation of the DE
mutation process is inspired on the mutation process of the
Genetic Algorithm [13]. A new parameter (Perturbation Rate)
is inserted to establish how many individuals of the population
will undergo the mutation and crossover processes. This new
parameter also ensures that at least one individual will be
mutated. The DE crossover process is kept as the original since
all individuals will continue to be binary after it. Algorithm 1
presents the pseudocode of the BDE algorithm.

Algorithm 1 Binary Differential Evolution
Parameters: range, NP , PM , PR
Initial Population x⃗i (i = 1, . . . , range)
Evaluate fitness f(x⃗i) of each individual
WHILE {not done} DO

FOR {i = 1 TO NP}
IF {rndreal(0, 1) < PR OR j = jrand}

IF {rndreal(0, 1) < PM}
InvertBit (y⃗j)

END IF
Crossover (y⃗j)

END IF
END FOR
Calculate fitness f (y⃗)
IF {f (y⃗) > f (x⃗i)}

x⃗i ⇐= y⃗
END IF
Evaluate x⃗*

END WHILE

The BDE algorithm starts by setting parameters. The first
parameter is the individual dimension or range. NP is the
number of individuals of the population. PM and PR are
the mutation and perturbation rates, respectively. A random
population x⃗i is created and the fitness of each individual,
f(x⃗i), is calculated. Each individual is randomly selected
by the perturbation rate and it is submitted to the mutation
and crossover processes. The new individual y⃗ has its fitness
calculated f (y⃗). If the new fitness of the trial individual is
better (higher for maximization and lower for minimization)
than the previous individual fitness f (x⃗i), the trial solution y⃗
will be part of the new population.

B. Discretized Differential Evolution (DDE)

This DE-variant was proposed by [14] and it evolves the
possible solutions in a continuous search space and, later,
discretize them to the binary space after the mutation and
crossover processes. The individual to be evolved by the DDE
is a n dimensional vector and each dimension is populated with
a random float number between −1 and 1. With a normalized
entry for each individual of the initial population, the DDE
proceeds with the DE/rand/1/bin strategy of mutation and
crossover through the generations. The new population is a
group of vectors of continuous variables and these individuals

are discretized to get their fitness evaluated. This discretization
method uses a sigmoid function that allows each dimension to
evolve gradually and individually [15].

Let F be the float number in each i dimension, the solution
vector is discretized using the result of the sigmoid function
of F . If this result is greater than zero the i-th dimension is
set to 1, otherwise, it is set to 0. This discretization process is
represented by Equation 5.

Xi =

{
1, if 2

1+exp (−2.Fi)
− 1 > 0,

0, otherwise
(5)

Using this strategy, the evolved dimensions do not jump
from 0 to 1 in the binary. They evolve gradually around
zero using weighted values to search for the best continuous
combination. This feature may be the key to efficiently apply
continuous algorithms to discrete problems.

Algorithm 2 presents the pseudocode of the DDE algo-
rithm.

Algorithm 2 Discretized Differential Evolution
Function f (x) = DE (range, NP , CR, F)
x ⇐ random (range, NP)
fitx ⇐ f (x)
WHILE {not done} DO

FOR {i = 1 to NP}
vi,G+1 ⇐ mutation (xi,G, F)
ui,G+1 ⇐ crossover (xi,G, vi,G+1, CR)

END FOR
IF {sigmoid (ui,G+1) > 0}
ui,G+1 ⇐ 1

ELSE
ui,G+1 ⇐ 0

END IF
fitu ⇐ f (u)
FOR {i = 1 to NP}

IF {fitu(i) > fitx(i)}
xi,G+1 ⇐ ui,G+1

ELSE
xi,G+1 ⇐ xi,G

END IF
END FOR

END WHILE

The DDE algorithm is initialized with the parameters NP ,
CR, F and range. The NP states for the total number
of individuals in the population. The CR and F are the
crossover and mutation rates, respectively. Parameter range is
the dimension of each individual. An initial random population
is created with NP individuals and their initial fitness is
calculated. Through the number of generations previously set,
a trial population is created using the mutation and crossover
processes. This new population is discretized by the sigmoid
function which assigns values 1 or 0, depending whether the
continuous value for each dimension of the individual. The
fitness of the trial and discretized population is calculated and
if the trial individual fitness is greater than the previous one,
the new individual is included to the new population.

This strategy is widely used when adapting continuous
devised algorithms to binary problems. It can also be used
to convert continuous values into integer and, consequently,
apply the DE to discrete problems. Hence, this version of the
DE may be called discretized and can be adapted to other
combinatorial problems.

IV. MIXED INTEGER LINEAR PROGRAMMING (MILP)

The Mathematical Programming consists in formulating a
real-world model, variables and procedures using mathematical
symbols to represent their relations. These models included
three main elements [16]: decision variables and parameters;
restrictions; and the objective function. The decision variables
are the unknown values to be determined by each method,
while parameters refer to the fixed input data. The constraints
are a set of equations or inequalities that limit the possible
values of variables. Finally, the objective function is a math-
ematical function that evaluates a solution and expresses the
intention to maximize or minimize the model output.

Mathematical programming is frequently used in decision-
making processes in large engineering systems. This technique
allows the definition of inter-relationships between variables
that would be difficult to find intuitively [17]. MILP involves
models that can provide continuous, integer and/or binary
variables, all related by linear constraints. Binary variables
usually represent decisions to be taken that mean yes or no,
on or off, true or false, and allow the programmer to specify
logical conditions of the model. Integer variables are used to
represent quantities considered indivisible, as the number of
vehicles or number of people.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

For the MILP implementations, the LPSolve 5.5.2.0 was
used. This is a free solver for linear programming based on
SIMPLEX and Branch-and-Bound methods. The DE-variants
were based on DE 3.6 1 implemented in ANSI C language.
Tests used a cluster with 40 processing cores with Intel(R)
Core(TM) i7 (3.5GHz), 8GB RAM and Ubuntu Server 12.04
operational system.

The objective of testing the proposed mathematical model
and the DE-variants led to the creation of benchmarks with
different levels of complexity. The simulated scenarios vary
according to the number of products and the demand of each
final client. Table II presents the proposed benchmarks.

TABLE II. PROPOSED BENCHMARKS

Instance N R1 R2 C1 C2 C3 Optimal solution
J01 2 1 3 12 12 12 658
J02 2 1 3 12 24 12 1100
J03 2 1 3 12 24 18 1450
J04 3 1,2 3 8 8 8 803
J05 3 1,2 3 12 12 12 1654
J06 3 1,2 3 12 18 12 2288
J07* 4 1,2 3,4 8 8 8 1245
J08* 4 1,2 3,4 8 16 8 2024
J09* 4 1,2 3,4 12 18 10 3206

Consider N = {2, 3, 4} the number of products trans-
ported, R1 = {1, 2} and R2 = {3, 4} the products refined in
each refinery and C1, C2 and C3 the demand of each product

1http://http.icsi.berkeley.edu/˜ storn/

in each distribution center. MILP experiments used a time
window of 7 days to complete processing and find the optimal
solution. Benchmarks J01, J02 and J03 used a time window
of 5 hours to complete processing, and benchmarks J04, J05
and J06 required 6 days. Benchmarks J07, J08 and J09 did
not complete the processing and presented only sub-optimal
solutions.

Fig. 2 presents the optimal graphic solution for benchmark
J03 (products 1 and 4) and the sub-optimal solution achieved
for benchmark J08 (products 1, 2, 3 and 4).

Fig. 2. Graphic solutions for benchmarks J03 (optimal) and J08 (sub-optimal)

The running parameters used in the DE-variants, such
as number of individuals in the population and number of
iterations, were mostly set according to the literature [18]. Mu-
tation (MP), perturbation (PP) and crossover (CR) parameters
were tested with a ± 5% variation. The base value for these
parameters were presented in [12] and [14]. Table III shows the
parameters of the with which the best solutions were found.

After 100 runs, each result of DE-variants achieved a
feasible solution. Table IV shows all results and compares
them with the optimal and sub-optimal solutions. It presents
the best fitness solution achieved by each DE-variant (Best),
the average and standard deviation of the 100 runs (Avg ± SD)

TABLE III. BDE AND DDE PARAMETERS

Parameter BDE DDE
Population 300 300
Generations 20,000 20,000

MP 15% 10%
PP 50% -
CR – 80%

and the achieved percentage (%) of the optimal or sub-optimal
found by MILP.

TABLE IV. RESULTS OBTAINED BY BDE AND DDE ALGORITHMS.

BDE DDE
Bench Best Avg ± SD % Best Avg ± SD %

J01 658 664.40 ± 11.04 0.00% 658 720.20 ± 36.59 0.00%
J02 1100 1128.33 ± 14.98 0.00% 1100 1198.55 ± 46.74 0.00%
J03 1450 1458.55 ± 24.58 0.00% 1450 1541.90 ± 57.43 0.00%
J04 857 866.30 ± 15.03 6.72% 803 867.62 ± 46.32 0.00%
J05 1747 1752.68 ± 17.89 5.62% 1654 1739.40 ± 51.56 0.00%
J06 2446 2460.84 ± 24.59 6.91% 2358 2479.30 ± 76.73 3.06%
J07 1345 1370.03 ± 33.49 8.03% 1303 1396.79 ± 59.88 4.66%
J08 2177 2213.92 ± 37.98 7.56% 2136 2331.53 ± 74.49 5.53%
J09 3517 3564.02 ± 73.66 9.70% 3438 3625.86 ± 98.89 7.24%

Results in bold (J01, J02 and J03 for BDE and J01,
J02, J03, J04 and J05 to DDE) indicate that the DE-variants
achieved the optimal solution for these benchmarks. The pro-
cessing time for BDE and DDE, for J01, J02 and J03, was less
than 1 hour. The DE-variants required different time windows
to process the other benchmarks: BDE used 5 hours for J04,
J05 and J06, and 12 hours for J07, J08 and J09. DDE required
6 hours for J04, J05 and J06, and 16 hours for J07, J08 and
J09. The average time for both DE-variants are considerably
lower than the time required for MILP processing.

Statistical hypothesis tests were executed to compare the
results obtained by each method. The statistical analysis of the
average results was done with box plots. Significant differences
in most benchmarks tested were found. Fig. 3 presents the box
plots from benchmarks J03 and J08.

Fig. 3. Box plot of BDE and DDE results for J03 and J08 benchmarks.

Benchmarks J01, J02, J09, J10, J11 , J13 and J15 presented
a similar behavior. As presented in Fig. 3, intervals between the
first and third quartiles do not overlap themselves, indicating
that results are statistically significant by both DE variants.

Benchmarks J04, J05, J06, J07 and J12 presented an
overlap on the quartiles ranges of their box plots. This fact
indicates that the difference between these results may not

be significant. For these cases, statistical normality and non-
parametric tests were used to determine the significance of
the results. The Shapiro-Wilk test was performed with 95% of
confidence to determine whether the data followed a normal
distribution or not. All the five tested benchmarks reject the
test hypothesis since data deviate from the normal distribution.
Consequently, the non-parametric Wilcoxon Signed-Rank test
was used to compare these results. For J04, J05 and J12, there
was no significant difference, but with similar results. For J06
and J07, the statistical test showed a significant difference
(98% and 99% respectively) between the results.

VI. CONCLUSIONS

This article compared three methods for binary optimiza-
tion of a real-world problem. The binary model allows the
study of different network topologies, with different structures,
products and time horizons. However, it leads to a complex
combinatorial problem and requires a large computational
effort to solve it, even for moderate instances of the problem.

Optimization of oil distribution networks is essential to
reduce the cost linked to the transportation and to the correct
delivery of each product to end customers. To illustrate the
applicability of the proposed model, the simplified network
described in Section II is solved by MILP and two Differential
Evolution variants, BDE and DDE. These meta-heuristics were
recently proposed in the literature and, basically, the main
difference between them is how solutions are encoded for
binary problems.

The proposed benchmarks present a set of rules and
restrictions that simulate a real-world situation. A more de-
tailed representation of real situations brings the possibility
to create new case studies. The difficulty of representing all
the constraints of the problem leads to simplifications in the
benchmarks. Real world problems may require the addition
of new restrictions and changes in the mathematical model.
Notwithstanding, the proposed benchmarks can be very useful
for testing the performance of exact of heuristic optimization
algorithms.

Experiments sought to test the proposed binary model and
reached the main goal of finding feasible solutions to the
problem. MILP was successfully applied in this model and
provide optimal and sub-optimal solutions. Only for bench-
marks J01, J02, J03, J04, J05 and J06 the optimal values
were found. For the other benchmarks (J07 ,J08 and J09)
sub-optimal values were achieved. Overall results found by
the DE-variants can be considered very good. EDB achieved
the optimal values for three instances and EDD for five ones.
As expected, the performance of the meta-heuristic methods
degraded as the complexity of the search space increased.
However, considering the processing time needed by DE-
variants when compared with MILP, they are good alternative
methods with low computational effort.

Results of the BDE and DDE also show the behavior
of each algorithm. Average and standard deviation results of
DDE suggest this algorithm as an effective method for global
optimization. When DDE is compared to the BDE, it presents
different (better and worse) solutions to the proposed problem.
Numerical results obtained by DDE suggest that algorithms
designed for continuous spaces can be efficiently applied to

some discrete problems. The use of the sigmoid function in
the discretization process allows the application of the DDE
algorithm to other binary and integer combinatorial problems.

The high complexity of the scheduling optimization prob-
lem is one of the main motivations for this work. The new
modeling presented here aims at adapting this real world
problem to binary spaces. With a large number of variables
and several constraints, heuristic algorithms require a good
balance between its global and local search. This equilibrium
is essential to achieve good feasible solutions with less com-
putational effort. Although the application of DE-variants here
can be considered successful, future work will focus on self-
adaptation of parameters, that was proved to lead to better
results than fixed-parameters’ algorithms [19].

Another contribution of this work is the set of benchmark
instances for the simplified pipeline model. These benchmarks
may be useful for other researchers to test other optimization
methods. The possibility of creating new and more complex
benchmarks also provides a wide range of case studies.

As future work, the optimal solutions of benchmarks J07,
J08 and J09 can be achieved with more processing effort. The
mathematical model presented here also allows the creation
of new benchmarks with different time horizons, product
types and delivered quantities. The variation of the number of
refineries, storage tanks and final customers suggests further
case studies with different network topologies. Other heuristic
algorithms such as Genetic Algorithm, Particle Swarm Opti-
mization, Artificial Bee Colony and hybrid methods can be
implemented using the same proposed model. The usage of
DDE to solve other discrete problems is also a future goal.
Other versions of this method, with different discretization
process (see [15]), can be applied to a vast range of problems.

ACKNOWLEDGMENT

The authors would like to thank Dr. Rafael S. Parpinelli
(UDESC) for his contributions and the National Council for
the Improvement of Higher Education (CAPES) for the schol-
arship to J. Krause. This work was also partially supported by
a research grant from the CNPq to H.S. Lopes.

REFERENCES

[1] T. C. N. de Souza, E. F. G. Goldbarg, and M. C. Goldbarg, “Transgenetic
algorithm for the biobjective oil derivatives distribution problem,” in
IEEE Congress on Evolutionary Computation. Piscataway, USA: IEEE
Press, 2010, pp. 1–8.

[2] J. M. C. Garcia, J. L. R. Martin, A. H. Gonzales, and P. F. Blanco, “Hy-
brid heuristic and mathematical programming in oil pipelines networks,”
in Proc. Congress on Evolutionary Computation, vol. 2. Piscataway,
NJ, USA: IEEE Press, 2004, pp. 1479–1486.

[3] G. Onwubolu and D. Davendra, “Scheduling flow shops using differen-
tial evolution algorithm,” European Journal of Operational Research,
vol. 171, no. 2, pp. 674–692, 2006.

[4] “A comparative study of differential evolution and genetic algorithms
for optimizing the design of water distribution systems,” Journal of
Zhejiang University - SCIENCE A, vol. 13, no. 9, 2012.

[5] L. Magatão, L. V. R. Arruda, and F. Neves Jr., “A mixed integer
programming approach for scheduling commodities in a pipeline,”
Computers & Chemical Engineering, vol. 28, no. 1-2, pp. 171–185,
2004.

[6] D. C. Cafaro and J. Cerdá, “Optimal scheduling of multiproduct
pipeline systems using a non-discrete MILP formulation,” Computers
& Chemical Engineering, vol. 28, no. 10, pp. 2053–2068, 2004.

[7] L. Yongtu, L. Ming, and Z. Ni, “A study on optimizing delivering
scheduling for a multiproduct pipeline,” Computers & Chemical En-
gineering, vol. 44, no. 9, pp. 127–140, 2012.

[8] H. Westphal, F. Neves Jr., and L. V. R. de Arruda, “Algoritmo
micro-genético aplicado ao scheduling de uma rede de distribuição de
derivados de petróleo,” in Computação Evolucionária em Problemas de
Engenharia, H. S. Lopes and R. H. C. Takahashi, Eds. Curitiba (PR):
Omnipax, 2011, pp. 331–354, (in portuguese).

[9] R. Storn and K. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,” In-
ternational Computer Science Institute, Berkeley University, Berkeley,
CA, USA, Technical Report TR-95-012, 1995.

[10] P. G. C. B. V. Babu and J. H. S. Mubeen, “Multiobjective differen-
tial evolution (MODE) for optimization of adiabatic styrene reactor,”
Chemical Engineering Science, vol. 60, no. 17, pp. 4822–4837, 2005.

[11] J. Adeyemo, F. Bux, and F. Otieno, “Differential evolution algorithm
for crop planning: Single and multi-objective optimization model,”
International Journal of the Physical Sciences, vol. 5, no. 10, pp. 1592–
1599, 2010.

[12] J. Krause and H. S. Lopes, “Proposta de um algoritmo inspirado
em evolução diferencial aplicado ao problema multidimensional da
mochila,” in Anais do Encontro Nacional de Inteligência Artificial.
Curitiba, PR: SBC, oct 2012, (in portuguese).

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Boston, MA, USA: Addison-Wesley, 1989.

[14] J. Krause, R. S. Parpinelli, and H. S. Lopes, “A comparison of differ-
ential evolution algorithm with binary and continuous encoding for the
MKP,” in Proc. of BRICS Congress on Computational Intelligence and
11th Brazilian Congress on Computational Intelligence. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 381–387.

[15] J. Krause, J. A. Cordeiro, R. S. Parpinelli, and H. S. Lopes, “A survey of
swarm algorithms applied to discrete optimization problems,” in Swarm
Intelligence and Bio-Inspired Computation: Theory and Applications,
X.-S. Yang, Z. Cui, R. Xiao, A. H. Gandomi, and M. Karamanoglu, Eds.
Amsterdam, The Netherlands: Elsevier Science, 2013, pp. 169–192.

[16] M. Bazaraa, J. J., and H. Sherali, Linear Programming and Network
Flows. New York, USA: J. Wiley & Sons, 1990.

[17] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Mineola, NY, USA: Dover Books, 1998.

[18] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization, ser. Natural Computing. Heidelberg,
Germany: Springer, 2005.

[19] M. H. Maruo, H. S. Lopes, and M. R. B. S. Delgado, “Self-adapting
evolutionary parameters: encoding aspects for combinatorial optimiza-
tion problems,” in Proc. 5th European Conference on Evolutionary
Computation in Combinatorial Optimization, ser. Lecture Notes in
Computer Science, G. R. Raidl and J. Gottlieb, Eds. Heidelberg,
Germany: Springer-Verlag, 2005, vol. 3448, pp. 154 – 165.

