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a b s t r a c t

In spite of the fact thatmany simplifiedmodel variants of protein structure prediction have
beenwidely studied in the past years, few attention has been given to discretemodels with
side chains, for which there is no specific benchmark. In this paper, we propose an integer
programming model for the 3D-HP side chain protein structure prediction problem. The
model accounts for the energy resulting from all types of interactions, between pairs of
backbone elements, hydrophilic side chains and hydrophobic side chains. Three sets of in-
stances, modified from the literature, were used in the experiments, and the maximum
number of non-local hydrophobic contact was found using the ILOG CPLEX optimization
package. We offer the optimal solution found for several instances of the benchmark. It
is expected that the mathematical model allow further studies of the protein structure
prediction with side chains and may, for some cases, provide new optimal values or new
bounds that would rekindle the interest to this fascinating problem domain.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Proteins consist of chains of amino acids (also called residues) andperform several vital functions in living organisms. Pro-
teins are primarily formed in the ribosome. Amino acids are sequentially added to the chain by chemical bonds, called pep-
tide bonds. During the assembling of a protein, it continuously folds over itself, achieving a final specific three-dimensional
structure known as native conformation. This process is known as protein folding. Considering that many diseases are asso-
ciated with failures in the folding process of proteins, it is generally conjectured that a better understanding of this process
may, eventually, contribute to the development of new drugs to treat such diseases [2].

In a protein, each amino acid or residue is represented by a backbone and an associated side chain. A side chain can
be either hydrophobic or hydrophilic, depending on its affinity or not to water molecules. The Protein Structure Predic-
tion problem considered in this work, aims at finding the native protein conformation, such that the interactions between
hydrophobic side chains are maximized, as explained below.

The Protein Structure prediction problem is one of the most challenging problems in computational Biology [7,15,16].
Considering the complexity of a real protein (analytical model), several discrete and continuousmodels have been proposed
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in order to simplify the computational and mathematical treatment of the folding process. Among these models there are:
Hydrophobic–Polar (HP) Model [13], Lattice Polymer Embedding [26], Charged Graph Embedding [9], Perturbed Homopoly-
mer [19], Helicoidal–HP Model [23], and AB Toy Model [21]. Despite these simplifications, the exhaustive search of the
conformational space of a protein using the simplest model (HP in two dimensions—2D) leads to a problem which com-
plexity was proved to be NP-hard [9,26]. Consequently, many heuristic methods have been proposed for solving instances
of 2D and 3D discrete models [15,22,24,27], as well as for continuous models [20,21,33,18]. However, there are few studies
in the literature involving methods to solve the protein folding problem considering models with side chains, such as those
suggested by Bromberg and Dill [6] and Hart and Istrail [11]. Some methods can be cited, such as Monte Carlo variants [14],
Parallel Genetic Algorithms [3,4], Parallel Artificial Bee Colony Algorithm [5], and Greedy Algorithm [10].

Similarly, only few studies in the literature deal with the above mentioned problem by means of mathematical pro-
gramming. Mandal and Jana [17] worked in two dimensions and limited the size of the lattice depending on the amount of
amino acids. Türkay et al. [25] used integer linear programming to classify proteins according to their secondary structure.
Both Carr et al. [7] and Yanev et al. [28,29] proposed similar integer programming methods applied to the HP model. Our
work was inspired by those models, but with a quite different approach and applied to the 3D-HP-SC model. Yoon [30] pre-
sented two integer programming approaches and five constraint programming (CP)models. His research focuses on ab-initio
mathematical models to find provably optimal solutions to the 2D-HP protein folding model. Ahn and Park [1] suggested
a mathematical formulation of the HP model using a 2D square lattice and provided an upper bound on the optimal value
using LP relaxation. It is important to recall that none of the above-mentioned works considered proteins using side chains
in their mathematical models. Kingsford et al. [12] presented an integer linear programming formulation to position side
chains in a fixed backbone (side-chain positioning problem). They relaxed the integrality constraints to give a polynomial-
time linear programming heuristic. They still applied linear programming to position side chains on native and homologous
backbones and to choose side chains for protein design.

In this paper, an integer programming model is proposed to deal with the protein folding problem. We used a three-
dimensional representation of proteins, based on the Hydrophobic–Polar (HP) model, but using side chains. The use of side
chains in protein models is found very sparsely in the literature, possibly due to the complexity involved. However, this
feature aggregates a higher level of realism to the simulations. We also propose in this paper a set of benchmarks, derived
from other models, so that researchers can further test their algorithms and compare results.

2. The 3D-HP-SC integer programming formulation

Proteins are composed by chain of amino acids. Using simple discrete models, each amino acid can represented by two
elements: a backbone and a side chain. All, but the amino acids at the extreme of the chain, are connected to two other
amino acids (its predecessor and antecessor) through the backbone. For real-world amino acids, the side chain is the main
responsible for defining their chemical and physical features. In this work, the main feature represented by the model is its
hydropathicity, that is, its affinity to water. Therefore, amino acids can be either hydrophobic (repel water) or hydrophilic
(interact with water). The last one is more usually known as polar.

The simplest discrete model for representing a protein chain was proposed by Dill [8], and it is known as 2D-HP (Hy-
drophobic–Polar in two dimensions). Amino acids are embedded in a square lattice, such that a self-avoiding path represents
a folding. Despite of being far away from reality, this is, possibly, one of the most studied models for this purpose. In this
model, the quality of a folding is measured by means of a free energy function that takes into account the number of hy-
drophobic ‘‘contacts’’ between amino acids. A contact is defined as the unit distance between two non-successive amino
acids of the chain. When a protein is folded to its native state, the number of contacts is maximal and the free energy is
minimal. Therefore, the protein folding problem can be understood as an optimization problem [16].

The 3D-HP model that we consider assumes that each amino acid of a protein is represented by a backbone and a side-
chain. All elements (either backbone or side chain) are embedded in a cubic lattice such that they occupy only one lattice
point. In the immediate neighborhood of each backbone element, its respective side chain is positioned. Successive back-
bones are represented in successive neighborhood points of the lattice to maintain the sequence.

The objective is to define the position of each backbone and its side chain in the lattice, in such a way to maximize the
number of hydrophobic interactions (contacts), i.e., tomaximize the number of hydrophobic side chains positioned at neigh-
boring vertices of the lattice. The free-energy of a given 3D conformation is inversely proportional to the number of nonlocal
hydrophobic side chain contacts, according to Thachuk et al. [22]. Consequently, an algorithm that maximizes the number
of contacts, conversely, minimizes the free-energy.

Fig. 1 shows an example with 10 elements, where the backbones are represented by black dots, hydrophobic side chains
by red dots and hydrophilic side chains by blue dots. The numbers inside the dots are used just to indicate the position of
each backbone and its side chain in the sequence. The specific conformation shown in this figure displays three nonlocal
hydrophobic side chain contacts, namely, between side chains 2–3, 3–10 and 5–6.

2.1. Mathematical notation

Let S be a string with n positions where each element belong to set S = {0, 1}. Each element in this string indicates
the hydrophobicity of the side chain associated with the corresponding backbone element. Each hydrophobic side chain is
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Fig. 1. An example of a conformation with 10 elements, where the backbones are represented by black dots, the hydrophobic side chains by red dots and
hydrophilic side chains by blue dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. The nodes of the lattice are numerated so that the neighborhood of an odd node in the lattice is formed only by even nodes and vice-versa.

represented by 1, while 0 represents hydrophilic side chains. We need to assign these amino acids in a 3D square lattice
where each vertex can receive one backbone or one side chain. The vertices of this lattice are numerated from 1 tom, where
m must to be appropriately chosen to bear all the elements.

Let I be the set of indices in S, i.e. I = {1, . . . , n}, and L be the set of indices in the lattice, i.e. L = {1, . . . ,m}. We break
down I in the subsets, as follows: Ie as the set of even indices in I and Io as the set of odd indices in I , such that I = Ie ∪ Io.
We can also break down I in the following four subsets: He as the set of indices of hydrophobic side chain (ones) in the even
positions in I; Ho as the set of indices of hydrophobic side chains (1s) in the odd positions in I; Pe as the set of indices of
hydrophilic side chains (0s) in the even positions in I; and Po as the set of indices of hydrophilic side chains (0s) in the odd
positions in I . Thus, I = He ∪ Ho ∪ Pe ∪ Po. We break down L as follows: Le as the set of even elements in L, and Lo as the set
of odd elements in L. Thus, L = Le ∪ Lo.

Let N(v) represent the set of adjacent vertices to v in the lattice (neighborhood of v). So, N(v) = {t ∈ L|d(v, t) = 1},
where d(v, t) is the Euclidean Distance between v and t . The vertices of the lattice are numerated so that the neighborhood
of an odd vertex is formed only by even vertices and the neighborhood of an even vertex is formed only by odd ones. For
example, consider the lattice shown in Fig. 2. The neighborhood of the vertex 14 is the set formed by the vertices 11, 17, 13,
15, 5 and 23. Likewise, the neighborhood of the vertex 2 is the set formed by the vertices 1, 3, 5 and 11. We call the set of
feasible edges (v, w) in the lattice by E, such that v ∈ Lo and w ∈ Le, w ∈ N(v). The set of feasible edges in the lattice can
still be represented by F , which is the set of (v, w) such that v ∈ Le and w ∈ Lo, w ∈ N(v).

We consider the following types of interactions: interactions between backbones, interactions between side chains
(hydrophobic or hydrophilic) and interactions between backbones and side chains (hydrophobic or hydrophilic). Each type
of interaction has an associated value, given by the Energymatrix shown in (1), where h represents a hydrophobic side chain,
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p a hydrophilic side chain and b a backbone. Therefore, εhh is the energy of an interaction between two hydrophobic side
chains, εhp is the energy associated with an interaction between a hydrophobic side chain and a hydrophilic side chain, and
so on.

Energy =


εhh εhp εhb
εph εpp εpb
εbh εbp εbb


. (1)

It is possible to consider which type of interaction to take into account and the respective weight by choosing appropri-
ated values to the matrix (1). If there is no interest to consider some types of interactions, just set zeros in the respective
components of the matrix.

It is important to note that there are only non-local interactions (no peptide bonds) between backbone elements and side
chains if they are of the same parity, i.e., between an even backbone and an even side chain or between an odd backbone
and an odd side chain. However, the interactions between backbone elements or between side chains occur only between
elements of different parities.

2.2. Variables for the proposed model

We consider that even backbones are placed only on even lattice vertices, and, similarly, odd backbones are placed only
on odd lattice nodes. Side chains associated to even backbones are placed only on odd lattice vertices, while side chains
associated to odd backbones are only placed on even lattice nodes (see Fig. 1).

Variables xiv are defined for i ∈ Io and v ∈ Lo or i ∈ Ie and v ∈ Le, indicating whether or not the backbone element i is
placed at lattice node v. So, xiv is 1 if the backbone i is placed at lattice point v or 0, otherwise.

Similarly, variables yiv are defined for i ∈ Io and v ∈ Le or i ∈ Ie and v ∈ Lo, indicating whether or not the side chain i,
associated to the backbone element i, is placed at lattice node v. So, yiv is 1 if the side chain i is placed at lattice node v, and
0 otherwise.

Variables bb(iv)(jw) are defined for i ∈ Io, j ∈ Ie − {i − 1, i + 1}, (v, w) ∈ E, indicating whether or not there is a contact
between backbone elements i and j on edge (v, w). Therefore, bb(iv)(jw) is 1 if there is a contact, and 0, otherwise. Notice that
j ∈ Ie − {i − 1, i + 1} is to consider only interactions between non-consecutive backbone elements in the chain.

Variables hh(iv)(jw) are defined for i ∈ He, j ∈ Ho, (v, w) ∈ E, indicating whether or not there is a contact between
hydrophobic sides chain element i and j on edge (v, w). Therefore, hh(iv)(jw) is 1 if there is a contact, and 0, otherwise.

Variables pp(iv)(jw) are defined for i ∈ Pe, j ∈ Po, (v, w) ∈ E, indicating whether or not there is a contact between
hydrophilic side chain elements i and j on edge (v, w). Therefore, pp(iv)(jw) is 1 if there is a contact, and 0, otherwise.

Variables hp(iv)(jw) are defined for i ∈ He, j ∈ Po, (v, w) ∈ E, or i ∈ Ho, j ∈ Pe, (v, w) ∈ F , indicating whether or not
there is a contact between hydrophobic and hydrophilic side chain elements, respectively, i and j, on edge (v, w). Therefore,
hp(iv)(jw) is 1 if there is a contact, and 0, otherwise.

Variables hb(iv)(jw) are defined for i ∈ He, j ∈ Ie − {i}, (v, w) ∈ E, or i ∈ Ho, j ∈ Io − {i}, (v, w) ∈ F , indicating whether or
not there is a contact between hydrophobic side chain element i and backbone j on edge (v, w). Therefore, hb(iv)(jw) is set 1
if there is a contact, and 0 otherwise.

Variables pb(iv)(jw) are defined for i ∈ Pe, j ∈ Ie − {i}, (v, w) ∈ E, or i ∈ Po, j ∈ Io − {i}, (v, w) ∈ F , indicating whether or
not there is a contact between hydrophilic side chain i and backbone j on edge (v, w). Therefore, pb(iv)(jw) is set 1 if there is
a contact, and 0, otherwise.

2.3. The proposed integer programming formulation

The integer programming formulation proposed in this work, described below, is an extension of the models presented
in Carr et al. [7] and Yanev et al. [29]. Themain difference is that we have included variables to represent the side chains (yiv)
and other variables that take into account all possible types of interactions between elements (hh(iv)(jw), pp(iv)(jw), hp(iv)(jw),
hb(iv)(jw) and pb(iv)(jw)).

max f = εbb


(v,w)∈E


i∈Io


j∈Ie−{i−1,i+1}

bb(iv)(jw) + εhh


(v,w)∈E


i∈He


j∈Ho

hh(iv)(jw) + εpp


(v,w)∈E


i∈Pe


j∈Po

pp(iv)(jw)

+ εhp


(v,w)∈E


i∈He


j∈Po

hp(iv)(jw) + εhp


(v,w)∈F


i∈Ho


j∈Pe

hp(iv)(jw)

+ εhb


(v,w)∈E


i∈He


j∈Ie−(i)

hb(iv)(jw) + εhb


(v,w)∈F


i∈Ho


j∈Io−(i)

hb(iv)(jw)

+ εpb


(v,w)∈E


i∈Pe


j∈Ie−(i)

pb(iv)(jw) + εpb


(v,w)∈F


i∈Po


j∈Io−(i)

pb(iv)(jw) (2)
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subject to:


v∈Lo

xiv = 1 ∀i ∈ Io (3)


v∈Le

xiv = 1 ∀i ∈ Ie (4)


v∈Le

yiv = 1 ∀i ∈ Io (5)


v∈Lo

yiv = 1 ∀i ∈ Ie (6)


i∈Io

xiv +


j∈Ie

yjv ≤ 1 ∀v ∈ Lo (7)


i∈Ie

xiv +


j∈Io

yjv ≤ 1 ∀v ∈ Le (8)


w∈N(v)

x(i+1)w ≥ xiv ∀i ∈ Io − {n}, v ∈ Lo (9)


w∈N(v)

x(i+1)w ≥ xiv ∀i ∈ Ie − {n}, v ∈ Le (10)


w∈N(v)

yiw ≥ xiv ∀i ∈ Io, v ∈ Lo (11)


w∈N(v)

yiw ≥ xiv ∀i ∈ Ie, v ∈ Le (12)


j∈Ie−{i−1,i+1}

bb(iv)(jw) ≤ xiv ∀i ∈ Io, (v,w) ∈ E (13)


i∈Io

bb(iv)(jw) ≤ xjw ∀j ∈ Ie − {i − 1, i + 1}, (v,w) ∈ E (14)


j∈Ho

hh(iv)(jw) ≤ yiv ∀i ∈ He, (v,w) ∈ E (15)


i∈He

hh(iv)(jw) ≤ yjw ∀j ∈ Ho, (v,w) ∈ E (16)


j∈Po

pp(iv)(jw) ≤ yiv ∀i ∈ Pe, (v,w) ∈ E (17)


i∈Pe

pp(iv)(jw) ≤ yjw ∀j ∈ Po, (v,w) ∈ E (18)


j∈Po

hp(iv)(jw) ≤ yiv ∀i ∈ He, (v,w) ∈ E (19)


i∈He

hp(iv)(jw) ≤ yjw ∀j ∈ Po, (v,w) ∈ E (20)


j∈Pe

hp(iv)(jw) ≤ yiv ∀i ∈ Ho, (v,w) ∈ F (21)


i∈Ho

hp(iv)(jw) ≤ yjw ∀j ∈ Pe, (v,w) ∈ F (22)


j∈Ie−{i}

hb(iv)(jw) ≤ yiv ∀i ∈ He, (v,w) ∈ E (23)


i∈He

hb(iv)(jw) ≤ xjw ∀j ∈ Ie − {i}, (v,w) ∈ E (24)
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j∈Io−{i}

hb(iv)(jw) ≤ yiv ∀i ∈ Ho, (v,w) ∈ F (25)


i∈Ho

hb(iv)(jw) ≤ xjw ∀j ∈ Io − {i}, (v,w) ∈ F (26)


j∈Ie−{i}

pb(iv)(jw) ≤ yiv ∀i ∈ Pe, (v,w) ∈ E (27)


i∈Pe

pb(iv)(jw) ≤ xjw ∀j ∈ Ie − {i}, (v,w) ∈ E (28)


j∈Io−{i}

pb(iv)(jw) ≤ yiv ∀i ∈ Po, (v,w) ∈ F (29)


i∈Po

pb(iv)(jw) ≤ xjw ∀j ∈ Io − {i}, (v,w) ∈ F (30)

xiv, yiv ∈ {0, 1} (31)
hh(iv)(jw) ∈ {0, 1} (32)

bb(iv)(jw), pp(iv)(jw) ∈ {0, 1} (33)

hp(iv)(jw), hb(iv)(jw), pb(iv)(jw) ∈ {0, 1}. (34)

The objective function (2) represents the energy considering the number of the non-local interactions. It considers the
interactions between non consecutive backbone–backbone, hydrophobic side chain–hydrophobic side chain, hydrophilic
side chain–hydrophilic side chain, hydrophobic side chain–hydrophilic side chain, hydrophobic side chain–backbone and
hydrophilic side chain–backbone.

Constraints (3) and (4) guarantee that each backbone i is assigned to exactly one vertex v in the lattice. Constraints (5)
and (6) guarantee that each side chain i is assigned to exactly one vertex v in the lattice. Constraints (7) and (8) guarantee
that each vertex v in the lattice contains at most one backbone or one side chain. Constraints (9) and (10) are used to force
that consecutive backbones on the string are placed on adjacent lattice points. Constraints (11) and (12) are used to force
that each side chain on the string is placed on a neighbor to its correspondent backbone. Constraints (13) to (30) are used to
force that each element (backbones or side chains) are placed on lattice nodes v and w if there is a contact between these
elements on the edge (v, w). Constraints (31)–(34) enforce that all variables are binary.

The constraints that contain variables related to the interactions which are not considered (those with zero value in
the Energy matrix (1)) should be eliminated from the model. Thus, the model can be significantly reduced, for instance,
when only the interactions between hydrophobic side chains are considered. In this particular case, we have the following
mathematical model where only the non-local interactions between the hydrophobic side chains are considered:

max f = εhh


(v,w)∈E


i∈He


j∈Ho

hh(iv)(jw) (35)

subject to: (3)–(12), (15), (16), (31) and (32).

3. Computational experiments

For the computational experiments done in this work, we used themodel (2) and the above-mentioned constraints. Also,
we used εhh = 1 and all remaining elements of matrix (1) equal to zero, so that the model is reduced to (35).

We have used ILOG CPLEX optimization package,1 version 12.4, to solve the integer programming problem in a high-
performance computing cluster with Dual Xeon 5550 2.67 GHz. In Table 1, 25 benchmark sequences from Yue and Dill [31],
[26] and Yue et al. [32] are presented. These instances were also used in a previous work based on a greedy approach [10].
The instances are divided into three groups. For the first and second groups we have used a cubic lattice with side 5. For the
third group, of larger instances, we have used a cubic lattice with side 7.

In Table 2, the computational results are presented. Column ‘‘NGHPSP’’ shows the results obtained with the greedy algo-
rithm presented in Galvão et al. [10], while column ‘‘CPLEX’’ shows the results obtained using the currentmodel with CPLEX.
In some instances it is shown a percentage number, indicating the duality gap given by CPLEX after 30 days running, when
we decided to stop the process. Notice that, for some hard instances, CPLEX could not find any integer solution for some
instances after processing for that time (represented by ‘‘–’’).

In the first group, where the lengths of the sequences range from 27 to 36 amino acids, in all but one case CPLEXwas able
to find the optimal solution. For the instance Dill.4 the processing was stopped when the dual gap was 68%, after 30 days

1 IBM Corporation, Armonk, NY, USA.
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Table 1
Benchmark instances for the 3D-HP-Side Chain.

Instance N Protein sequence

Dill.1 27 HP4H4P(PH)3H(HP)2PH2P2H
Dill.2 27 HP3H4(PH)2HP3HPH(HP)2P2HP
Dill.3 27 HPH2(PPHH)2H(HPPP)2H3P2H
Dill.4 31 (HHP)3H(HHHHHPP)2H7
Dill.5 36 PH(PPH)11P
Unger273d.1 27 (PH)3H2P2(HP)2P10H2P
Unger273d.2 27 PH2P10H2P2H2P2HP2HPH
Unger273d.3 27 H4P5HP5H3P8H
Unger273d.4 27 H3P2H4P3(HP)2PH2P2HP3H2
Unger273d.5 27 H4P4HPH2P3H2P10
Unger273d.6 27 HP6HPH3P2H2P3HP4HPH
Unger273d.7 27 HP2HPH2P3HP5HPH2(PH)3H
Unger273d.8 27 HP11(HP)2P7HPH2
Unger273d.9 27 P7H3P3HPH2P3HP2HP3
Unger273d.10 27 P5H(HP)5(PHH)2PHP3

S48.1 48 HPH2P2H4PH3P2H2P2HPH3(PH)2HP2H2P3HP8H2
S48.2 48 H4(PHH)2H3(PPH)2HP2HP6(HPP)2PHP2H2P2H3PH
S48.3 48 (PH)2HPH6P2(HP)2(PH)2(HP)3(PPH)2HP2H2P2(HP)2PHP
S48.4 48 (PH)2HP2HPH3P2H2PH2P3H5P2HPH2(PH)2P4HP2(HP)2
S48.5 48 P2HP3HPH4P2H4(PHH)2HP(PH)3P2HP5(PHH)2PH
S48.6 48 H3P3H(HP)2(HHP)3HP7(HP)2PHP3HP2H6PH
S48.7 48 PHP4HPH3(PH)2H3(PHH)2P3(HP)2P2H3(PPHH)2P3H
S48.8 48 (PHH)2HPH4P2H3P6HPH2P2H(HP)2P2H2(PH)3HP3
S48.9 48 (PH)2P4(HP)3(PH)2H5P2H3PHP(PH)2HP(PH)2H2P4H
S48.10 48 PH2P6H2P3H3PHP(PH)2(HPP)3H2P2H7P2H2

Table 2
Comparison of the maximum number of hydrophobic contacts for the benchmarks.

Instance N NGHPSP Time NGHPSP (s) CPLEX Time CPLEX (s) Lattice dimensions

Dill.1 27 21 24 22 57,593 5 × 5 × 5
Dill.2 27 19 23 21 157,157 5 × 5 × 5
Dill.3 27 23 25 23 339,921 5 × 5 × 5
Dill.4 31 43 36 68% a 5 × 5 × 5
Dill.5 36 18 34 20 83,262 5 × 5 × 5
Unger273d.1 27 12 20 13 3,810 5 × 5 × 5
Unger273d.2 27 13 21 13 4,144 5 × 5 × 5
Unger273d.3 27 13 20 13 2,868 5 × 5 × 5
Unger273d.4 27 22 23 22 35,790 5 × 5 × 5
Unger273d.5 27 13 21 13 2,869 5 × 5 × 5
Unger273d.6 27 15 21 15 32,227 5 × 5 × 5
Unger273d.7 27 16 22 18 578,700 5 × 5 × 5
Unger273d.8 27 6 19 6 995 5 × 5 × 5
Unger273d.9 27 10 20 10 2,138 5 × 5 × 5
Unger273d.10 27 14 22 15 3,701 5 × 5 × 5
S48.1 48 36 64 – a 7 × 7 × 7
S48.2 48 36 64 242% a 7 × 7 × 7
S48.3 48 35 64 272% a 7 × 7 × 7
S48.4 48 36 63 414% a 7 × 7 × 7
S48.5 48 35 63 262% a 7 × 7 × 7
S48.6 48 35 63 461% a 7 × 7 × 7
S48.7 48 34 62 – a 7 × 7 × 7
S48.8 48 34 63 – a 7 × 7 × 7
S48.9 48 36 64 – a 7 × 7 × 7
S48.10 48 36 64 671% a 7 × 7 × 7
a indicates 30 days of processing after which the process was stopped. The optimal values found are shown in boldface.

running. In other cases the computational time ranged between 57,593 and 339,921 s. In the second group, the lengths of
all sequences are 27 amino acids and, in all cases, the optimal solution was achieved. The processing time varied between
995 and 578,700 s (approximately 6.7 days). In the third group, the lengths of all sequences are 48 amino acids. For these
instances, no optimal solution has been found and, again, processingwas stopped after 30 days running. In six cases the gaps
varied between 242% and 671%. In four cases no integer solution was found. It is important to note that, for all instances,
the optimal solutions refer to the search space used, that is, the lattice dimensions. Larger or smaller lattices may lead to
different results.

Fig. 3 shows the result obtained for a particular instance, Dill.1. As expected, in the native state, the formation of the
hydrophobic core is evidenced. The hydrophobic amino acids (whose side chains are represented by red dots) are grouped
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Fig. 3. Best folding obtained for sequence Dill.1. Backbones, hydrophobic and hydrophilic side chains are represented, respectively, by black, red and blue
dots. Non-local hydrophobic interactions are indicated by dotted lines. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Best folding found for some of the benchmarks shown in Table 1.

Instance N Best folding found

Dill.1 27 sNdWdUwSwSeSeDeDeNwNuEsEeSsEsUwSwUwUuWwUsWsNdEdNeDnDs
Dill.2 27 wUsUeSeWnWnDnEnDeWnWuNuNeNdUnUsEsEnDsWsDdEsEnSeUnUwNn
Dill.3 27 nWwDeDeWuNnEeUeNwNdEsDsEsUsEnUuWnSwSsEuSuDwDwNwNnUuSw
Dill.5 36 eNnEuDeWnDeWsUnSeUuNnUeNeNdNeDeDsEeDeWsDeSeSuSsEsNuEeNeUwEsUuWwSeUuNwUe
Unger273d.1 27 eDdSwEnSwDnWnDnEsDeNuWsNuWwSwSuSsUuEdUuEsEuNdNdNwDwDs
Unger273d.2 27 uDsEsEeUwEuSsUsUwNuWwDwSwDwSwSwDnWnWnSwUwNnWuNuNeNuDs
Unger273d.3 27 wDwNwUwNeDeDdWuWdSuWsNdUeUeUeSdEdSdWdSsEsEeDwSuWwDwNn
Unger273d.4 27 wUwSwSuDnWnWnUnUnWwUuNwNeDwDeNnUnEsEsEnSuSwUsUsNnWdSd
Unger273d.5 27 eUeSeDeDnSuEdNdEnSeUnUnEuNuDeNwUwEuSuSuDwDdSwUsUuSwUw
Unger273d.6 27 wNwDeWwDeWwSwEuSeSuWuNuWsUnUeSeUeNnEnEdSuEsNeDeDwSdUw
Unger273d.7 27 dEuNeDsDwEsUsEuSuSeDwDeNuEuNuWuWsWwSuSeWnUuSsEnEsUnWn
Unger273d.8 27 dNwNuWuWuDsEsEsEdUuSuDsDsWnWsDnSsEnSsEnUuSdWwNnUsWnUn
Unger273d.9 27 nWuDeNnEnEsUsUuNuWsWsNnUuSeUeSeDeSuEdEeUnEeNeNwNeNwEd
Unger273d.10 27 nSsWsWsNeWdSdWsDnSeDnDdNnDnEuEsUsUwNwNuWuWsDnEsNdEdUw

in the inner part of the molecule, while the hydrophilic amino acids (side chains in blue) are in the outer part. Dotted lines
indicate the 22 non-local interactions between hydrophobic side chains.

Using the mathematical model proposed in this paper, Table 3 shows the best solution found for the benchmarks of
Table 2.

To describe a folding, we used an alphabet composed by twelve letters: {N, S, E,W ,U,D, n, s, e, w, u, d}. Capital and
minuscule letters represent, respectively, the movements of the backbones and the side chains. Therefore, movements are
defined in six directions in the space, corresponding to north, south, east, west, up and down. The spatial representation of
possible directions for the folding of the backbone and the side chains are shown on the right side of Fig. 3. Recall that, for
a sequence of N amino acids, there are 2N − 1 letters for representing a complete folding (backbone and side chains), since
the first backbone of the sequence lies, by default, in the origin of the coordinates system.

4. Conclusions

In this paper we proposed a new integer programming model for 3D-HP protein structure prediction considering side
chains. Studies of HP models with side chains are sparsely found in the literature due to its elevated complexity, when
compared with simple HP models.

We use a set of benchmark instances and CPLEX to evaluate the integer programming model. It is important to note that
the results obtained using CPLEX are optimal for the lattices used. If larger lattices were used (with more clearance for posi-
tioning of backbone elements and side chains) better results could, eventually, be found. However, this is unlikely, as there
is a tendency (in the model we used) of hydrophobic side chains being positioned towards the inner part of the folding, thus
protected from the solvent by the hydrophilic side chains. Most of the instances confirmed the consistency of the model,
although, for larger instances the computational power available was not enough.
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The proposed mathematical model is as complete as possible, since it considers all types of interactions between the
elements (backbone, hydrophilic and hydrophobic side chains). For specific studies it can be significantly simplified if few
interaction are considered.

It is important to mention that, in some cases, the results also show the quality of the heuristic previously presented in
Galvão et al. [10], where the optimal results were obtained for several instances and very close of the optimal in others cases.

We believe that, providing here the best solutions we found to date is important to foster further research. Making such
information available, the proposedmodel can be improved and other algorithmsmay comeup aiming at finding even better
solutions, when possible.

Futureworkwill go in some directions. First, the evaluation of possible relaxations of constraints aswell as some strategy
to reduce the number of variables may lead to the simplification of the model and, hopefully, to a faster convergence. Also,
it may be interesting to investigate the theoretical bounds for the protein structure prediction problem with side chains
problem, similarly to what was done by Yanev et al. [28] for regular HP models. Finally, the biological plausibility of the
resulting foldings will be accessed when variants of the model will be experimented, for instance, using different values for
the Energymatrix (1).
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