J. of Mult.-Valued Logic & Soft Computing, Vol. 22, pp. 267-286 ©2014 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Performance Analysis of Swarm Intelligence
Algorithmsfor the 3D-AB off-lattice Protein
Folding Problem

RAFAEL STUBS PARPINELLIY2, CESAR M.V. BENITEZ?,
JELSON CORDEIRO? AND HEITOR SILVERIO LOPES?

1 Applied Cognitive Computing Group, Santa Catarina State University, Brazil
E-mail: parpinelli@joinville.udesc.br
2Bioinformatics Laboratory, Federal Technological University of Parana, Brazil
E-mail: cesarvargasbh@gmail.com, jelsoncordeiro@gmail.com, hslopes@utfpr.edu.br

Received: April 15, 2013. Accepted: July 8, 2013.

This paper compares the performance of four swarm intelligence algo-
rithms for the optimization of a hard bioinformatic problem: the protein
structure prediction problem (PSP). The PSP envolved the protein fold-
ing that is the process by which polypeptide chains are transformed into
compact structures that perform biological functions. In this work, we
tested the standard versions of the following algorithms: Particle Swarm
Optimization (PSO), Artificial Bee Colony (ABC), Gravitational Search
Algorithm (GSA), and the Bat Algorithm (BA). The algorithms were
evaluated using two criteria: quality of solutions and the processing
time. The results show that the PSO algorithm presented the overall
best balance between these two criteria. Also, both PSO and GSA dis-
played potential to evolve even better solutions, if more iterations were
given.

Keywords: Swarm intelligence; 3D-AB model; protein folding problem; parti-
cle swarm optimization; artificial bee colony; gravitational search algorithm; bat
algorithm

1 INTRODUCTION
Many Bioinformatics problems are featured mainly to be non-linear and

strongly constrained. This is the case of the protein structure prediction prob-
lem approached in this paper. Due to the lack of exact methods for solving

267

268 RAFAEL STUBS PARPINELLI et al.

such a class of problems, the need for robust heuristic methods arises. Along
decades, Evolutionary Computation (EC) and Swarm Intelligence (SI) have
provided a large range of flexible and robust optimization methods, capable
of dealing successfully with complex optimization problems. Both EC and
S| are population-based methods in which each individual of a population
represents a tentative solution to the problem to be solved. In recent years
several other Sl algorithms have appeared inspired, for instance, by fireflies
bioluminescence, slime molds life cycle, cockroaches infestation, mosquitoes
host-seeking, bats echolocation, bees mating, bees foraging, and bacterial for-
aging [28].

In this paper, the optimization performance of four Sl algorithms were
tested for a hard bioinformatic problem. The empirically selected swarm-
based algorithms were: Particle Swarm Optimization (PSO), Artificial Bee
Colony (ABC), Gravitational Search algorithm (GSA), and the Bat Algo-
rithm (BA). All these approaches are global optimization metaheuristics and
they have been used as general problem-solving methods for hard problems.
However, unbiased and comprehensive comparisons between such methods
for specific problems are not frequently found in the literature.

The algorithms were evaluated using two criteria: quality of solutions and
the processing time.

The objective of this paper is not to propose new versions or modifi-
cations to the above-mentioned algorithms, but to verify the differences in
exploitation and exploration balance for all algorithms performing an unbi-
ased comparison over a real problem. Hence, we used the canonical versions
of the algorithms set up with standard control parameters. The bioinformatic
optimization problem addressed here is the protein folding problem that is
strongly constrained.

2 PROTEIN STRUCTURE PREDICTION

Proteins are the basic structures of all living beings [16] and they are com-
posed by a chain of amino acids that are linked together by means of peptide
bonds. Each amino acid is characterized by a central carbon atom (referred
as Cu), to which a hydrogen atom, an amine group (NH,), a carboxyl group
(COOH) and a side-chain (also known as radical R) are attached. All amino
acids have the same backbone and they differ from each other by the side-
chain, which can range from just a hydrogen atom (in glycine) to a complex
heterocyclic group (in tryptophan). Two amino acids are linked together by
the carboxyl group of one amino acid to the amino group of another [26]. Sev-
eral amino acids exist in nature, but only 20 are proteinogenic and they can be

3D-AB OFF-LATTICE PROTEIN FOLDING 269

classified according to their affinity to water (hydrophobicity): hydrophobic
and hydrophilic (also known as polar) amino acids.

Proteins are synthesized in the ribosome of cells following a template
given by the messenger RNA (mRNA). During the synthesis, the protein
folds into a unique three-dimensional structure. This process is called pro-
tein folding.

The protein folding is the process by which polypeptide chains are trans-
formed into compact structures that perform biological functions. These
functions include control and regulation of essential chemical processes for
the living organisms. Under physiological conditions, the most stable three-
dimensional structure is called the native conformation and actually allows
a protein to perform its function, which, in turn, is a function of its primary
structure (its linear sequence of amino acids). However, failure to fold into the
intended 3-dimensional shape usually leads to proteins with different prop-
erties that simply become inactive. In the worst case, such misfolded (incor-
rectly folded) proteins can be harmful to the organism. For instance, several
diseases such as Alzheimer’s disease, cystic fibrosis and some types of can-
cer, are believed to result from the accumulation of misfolded proteins. That
is why it is so important to study how proteins fold.

One of the most important and challenging problems in Molecular Biol-
ogy with applications, such as drug design, is to obtain a better understanding
of the protein folding process. In contemporary Computational Biology, there
are two protein folding problems. The first problem is to predict the protein
structure (conformation) from sequence (primary structure), and the second
one is to predict protein folding pathways, which consists in determining the
folding sequence of events which lead from the primary structure of a protein
(its linear sequence of amino acids) to its native structure.

The Protein Structure Prediction (PSP) also has great practical importance
in this era of genomic sequencing. Thanks to the several genome sequencing
projects being conducted in the world, a large number of new proteins have
been discovered. However, only a small amount of such proteins have their
three-dimensional structure known. For instance, the UniProtKB/TrEMBL
repository of protein sequences has currently around 23 million records (as
in july/2011), and the Protein Data Bank — PDB [7] has the structure of only
83,627 proteins. This fact is due to the cost and difficulty of unveiling the
structure of proteins, from the biochemical point of view.

Both Physics and Computer science have an important role here, propos-
ing models for studying the PSP problem [24]. Ideally, both the protein and
the solvent should be represented at atomistic level because this approach
is the closest to experiments [29]. However, the simulation of computa-
tional models that take into account all the atoms of a protein is frequently

270 RAFAEL STUBS PARPINELLI et al.

unfeasible due to the multidimensionality of the system (> 10* degrees of
freedom) [23], even with the most powerful computational resources. Con-
sequently, several simplified models that abstract the protein structure have
been proposed. The simplest computational model for the PSP problem is
known as Hydrophobic-Polar (HP) model, both in two (2D-HP) and three
(3D-HP) dimensions [13]. Although simple, the computational approach for
searching a solution for the PSP using the HP models was proved to be
N P-complete [2, 6, 10]. Other models are the three-dimensional HP Side-
Chain model (3DHP-SC) [5], and the AB off-lattice model addressed in
this work. [17, 33] and [35] employed neural networks, Monte Carlo search
and biologically inspired methods using the 2D-AB off-lattice model. An
extended three-dimensional version of the 2D-AB was presented by [15].
Recently, [39] introduced an improved implementation of tabu search with
the 3D-AB off-lattice model, obtaining good performance.

2.1 The AB Off-lattice M odel

The AB off-lattice model was introduced by [32] to represent protein struc-
tures. In this model each residue is represented by a single interaction site
located at the Co position. These sites are linked by rigid unit-length bonds
(bi) to form the protein structure. The three-dimensional structure of an N-
length protein is specified by the N — 1 bond vectors b;, N — 2 bond angles
7i and N — 3 torsional angles «;, as shown in Figure 1. These angles are
defined in the range [—180°, 180°].

The 20 proteinogenic amino acids are classified into two classes, accord-
ing to their affinity to water (hydrophobicity): ‘A’ (hydrophobic) and ‘B’
(hydrophilic or polar). This model do not describe the solvent molecules.
However, solvent effects such as the formation of the hydrophobic core are
taken into account through interactions between residues, according to their
hydrophobicity (species-dependent global interactions).

(@ (b)

FIGURE 1

Example of a hypothetic protein structure (a) and Definition of b;, 7; and o; (b, Adapted from
[17]). White balls represent the polar residues and black balls represent the hydrophobic residues.
The backbone and the connections between elements are shown in black lines.

3D-AB OFF-LATTICE PROTEIN FOLDING 271

When a protein is folded into its native conformation, the hydrophobic
amino acids tend to pack inside the protein, in such a way to get protected
from the solvent by an aggregation of polar amino acids that are positioned
outwards. Interactions between amino acids take place and the energy of the
conformation tends to decrease. Conversely, the conformation tends to con-
verge to its native state, in accordance with the Anfinsen’s thermodynamic
hypothesis [1].

The energy function of a folding is given by [17]:

E(Bi;o') = Eangles + Etorsion + EL3 =

N-2 N-3
—k1 E bi - biy1 —ka E bi - b2
i=1 i=1

N-2 N
+3° 3 deor o2 - 1

i=1 j=i+2

1)

where
rij represents the distance between ith and jth residues; o = oy, ..., oy form
a binary string that represents the protein sequence.

E angtes and Etorsion are the energies from bond angles and torsional forces,
respectively; and are given, respectively, by Equations 2 and 3.

N-2

EAngIes = _kl Z l:;i . bizrl (2)
i=1
N-3 . .

Etorsion = —k2 Z bi ' bi-+—2 (3)

i=1

bi represents the ith bond that joins the (i — 1)th and the ith residues, and it
is represented by the vector bi =F —fi_q,and k1l = —1; k2 = +1/2.

The species-dependent global interactions are given by the Lennard-Jones
potencial (E| ;); for pairs of ith and jth residues separated by a distance of
lij.

N-2 N
ELi=Y_ Y 4e(oi.op)(r;;? — 1} (4)

i=1 j=i+2

272 RAFAEL STUBS PARPINELLI et al.

Where ¢(oj, oj) is chosen to favor the formation of the hydrophobic core
(‘A residues). Thus, e(oi, oj) is 1 for AA interactions and 1/2 for BB/AB
interactions.

3 SWARM INTELLIGENCE ALGORITHMS

Swarm-based algorithms are inspired by the behavior of some social living
beings, such as ants, bees, birds, and fishes. Self-organization and decentral-
ized control are remarkable features of swarm-based systems that, such as in
nature, leads to an emergent behavior. Emergent behavior is a property that
emerges through local interactions among system components that is not pos-
sible to be achieved by any of the components of the system acting alone [14].
In this work we compared the performance of four swarm-intelligence algo-
rithms. These algorithms are briefly presented in the following.

3.1 Particle Swarm Optimization

The Particle Swarm Optimization algorithm (PSO) is motivated by the coor-
dinate movement of fish schools and bird flocks [20]. The PSO is com-
pounded by a swarm of particles that interacts each other in a continuous
search space. The position of each particle represents a potential solution to
the problem being solved and and it is represented as an n-dimensional vec-
tor. In PSO, particles “fly” through the hyperdimensional search space, and
changes to their positions are based on the socio-cognitive tendency of par-
ticles to emulate the success achieved by other particles. Each particle of the
swarm has its own life experience and is able to evaluate the quality of own
experience. As social individuals, they also have knowledge about how well
their neighbors have behaved. These two kind of information corresponds to
the cognitive component (individual learning) and the social component (cul-
tural transmission), respectively. Hence, decisions of an individual are take
into account both the cognitive and the social components, thus leading the
population (swarm) to an emergent behavior [8,11,31]. The PSO is shown in
Algorithm 1.

3.2 Artificial Bee Colony Algorithm

The Artificial Bee Colony Algorithm (ABC) is inspired in the foraging
behavior of honey bees. ABC was first proposed by [19] for solving multi-
dimensional and multi-modal optimization problems. The bees aim at dis-
covering places of food sources (that is, regions in the search space) with
high amount of nectar (good fitness values, meaning good solutions for the
problem). There are three types of bees: scout bees that randomly fly in the
search space without guidance, employed bees that exploit the neighborhood

3D-AB OFF-LATTICE PROTEIN FOLDING 273

Algorithm 1 Canonical PSO
1: Set parameters: n, ¢p, @q
2. fori =1tondo
3. Initialize the positions X; and velocities v; randomly

4. Evaluate fitness f (X;)

5. Initialize the particle’s best known position to its initial position: p; =
Xi

6: if f(p;) is better than f(g) then

7: Update the swarm’s best known position: § = p;

g endif

9: end for

10: while stop condition not met do
1: fori=1tondo

12: Update particles” velocity: @i = i 4+ @p * Ip * (Pi — Xi) + @g *
rg * (G — Xi)

13; Update particles’ position: X; = X; + v

14; if f(X;) is better than f(p;) then

15: ﬁi =)_{i

16: if f(;) is better than f(g) then

1 g = pi

18 end if

19 end if

20: end for

21: end while
22: Postprocess results and visualization

of their locations selecting a random solution to be perturbed, and onlooker
bees that use the population fitness to select probabilistically a guiding solu-
tion to exploit its neighborhood. If the amount of nectar of a new source is
higher than that of the previous one in their memory, they update the new
position and forget the previous one (this is a greedy selection method). If a
solution is not improved by a predetermined number of trials the food source
is abandoned by the corresponding employed bee and it becomes a scout bee.
The ABC algorithm attempts to balance exploration and exploitation by using
the employed and onlooker bees to perform local search, and the scout bees to
perform global search, respectively [36]. The ABC is shown in Algorithm 2.

3.3 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) was created based on the law of
gravity and the notion of mass interactions [9, 30]. The GSA algorithm uses
the theory of Newtonian physics and its searcher agents are the collection

274 RAFAEL STUBS PARPINELLI et al.

Algorithm 2 Canonical ABC
1: Set parameters: n, limit

2. Initialize the food sources X; randomly

3: Evaluate fitness f (X;) of the population

4: countj =0

5: while stop condition not met do

6. fori =1ton/2do{Employed phase}

7 Select k, j and r at random such that k € {1,2,....,n}, j €
{1,2,...,d},

8: r €[0,1]

9: T):Xij—i-l’-(Xij—ij)

10: Evaluate solutions v and X;

11 if f(v) is better than f(X) then

12: Greedy selection

13: else

14: countj = count; +1

15: end if

16: end for

17: fori =n/2+ 1tondo{Onlooker phase}

18: Calculate selection probability

19: P (%) = 3%

20: Select a bee using the selection probability

21 Produce a new solution v from the selected bee

22: Evaluate solutions v and X;

23: if f(9) is better than f(X) then

24: Greedy selection

25: else

26: countj = count; + 1

21 end if

28: end for

29: fori =1ton do{Scout phase}

30: if count; > limit then

31 Xi = random

32: counti =0

33: end if

34: end for

35: Memorize the best solution achieved so far
36: end while
37: Postprocess results and visualization

3D-AB OFF-LATTICE PROTEIN FOLDING 275

Algorithm 3 Canonical GSA
1: Set parameters: n, «, Go
2. fori =1tondo
3. Initialize the positions X; randomly
4 Initialize velocities v; and acceleration &; to zero
5. end for
6: while stop condition not met do
7
8
9

Evaluate the fitness of each agent
Update G, best and worst of the population
. Calculate mass (M) and acceleration (3;)
10: Update velocity ; and position X;
11: end while
12: Postprocess results and visualization

of masses. In GSA, there is an isolated system of masses. Using the grav-
itational force, every mass in the system can detect the situation of other
masses. The gravitational force is therefore a way of transferring information
between different masses. In GSA, agents are considered as objects and their
performance is measured by their masses. All these objects attract each other
by a gravity force, and this force causes a movement of all objects globally
towards the objects with heavier masses. The heavy masses correspond to
good solutions of the problem. The position of the agent corresponds to a
solution of the problem, and its mass is determined using a fitness function.
The ABC is shown in Algorithm 3.

3.4 Bat Algorithm

The Bat Algorithm (BA) was first presented by [37,38] and it is inspired by
the echolocation capacity of the bats. The basic idea behind the Bat Algo-
rithm is that a population of bats (possible solutions) use echolocation for
distance sensing and fly randomly through a search space updating their posi-
tions and velocities. When hunting for a prey, the rate of pulse emission can
be speeded up when they fly near their prey. Also, the loudness varies from
the loudest, when searching for prey, to the quietest, when homing towards
the prey. Each solution is evaluated by a fitness function and the bats’ flight
aims at finding food/prey (best solutions). Two important parameters are the
loudness decay factor («) that works similarly as the cooling schedule in the
traditional simulated annealing optimization method, and the pulse increase
factor (y) that regulates the pulse frequency. The properly update for the
pulse rate (rj) and the loudness (A;) balances the exploitation and exploration
behavior of each bat, respectively. Since the loudness usually decrease once a
bat has found its prey/solution (in order to not lose the prey), the rate of pulse

276 RAFAEL STUBS PARPINELLI et al.

Algorithm 4 Bat Algorithm (BA)
1: Parameters: n, «, y

2 Initialize the bats population X; and v; randomly
3. Define pulse frequency f; at X;

4 fori =1tondo

5. Initialize pulse rates r; and loudness A;

6: end for

7. Compute f(X;)

8: Find the current best X,

9: while stop condition not met do

10 fori=1tondo

11 Generate new solutions by adjusting:

12: Frequency: fi = fmin + (fmax — fmin)B, B € [0, 1]
13: Velocity: B! = 9% + (Xt — %,) f;

14 Location: X! = %!~ 4 ot

15: if rand > rj then

16: Select a solution among the best solutions
17: Generate a local solution around the selected best solution
18: end if

19: Generate a new solution by flying randomly
20: ifrand < A; & f(Xj) < f(X,) then

21 Accept the new solutions

22: Increase ri: ri™™ = r0[1 — exp(—yt)]

23: Decrease A: Al = oA

24: end if

25: end for

26: Find the current best x,
27 end while
28: Postprocess results and visualization

emission increases in order to raise the attack accuracy. The BA is shown in
Algorithm 4.

3.5 Encoding of Candidate Solutions

An important issue when using swarm intelligence approaches for a given
problem is the encoding of the candidate solutions. The encoding has a strong
influence not only in the size of the search space, but also in the complexity of
the problem, due to the presence of unknown epistasis between variables that
form the individuals (solution vectors). In this work, a given conformation of
the protein is represented as a set of bond rotation and torsion angles over
a three-dimensional space, as shown in Section 2.1. Considering the folding

3D-AB OFF-LATTICE PROTEIN FOLDING 277

of a protein with n amino acids, an individual will represent the set of bond
rotation and torsion angles. An individual has (2n — 5) variables, such that
positions P; to P,_, represent the bond rotation angles, and P,_; t0 Py,_s
represent the torsion angles.

To represent the position of the amino acids, three-dimensional Cartesian
coordinates are defined by a vector (xi, Vi, zi). The first and second amino
acids of the primary structure are set at the origin and point (0, 1, 0), respec-
tively. Next amino acids are positioned at Cartesian coordinates relative to
their predecessors and obtained by 3D geometrical transformations.

4 COMPUTATIONAL EXPERIMENTS

In this section we report the experiments done for comparing the above-
mentioned algorithms. All experiments were done using the same type of
desktop computers with core-2 Quad processor running at 2.8 GHz, 2 GBytes
of RAM, under a minimal installation of Arch Linux. All algorithms were
implemented in ANSI-C programming language.

4.1 Benchmark sequences
In the experiments reported below, a total of 4 synthetic protein sequences
were used. These sequences have been previously used by other researchers
(for instance, [15, 18]) and they were based on the Fibonacci sequence. In
Table 1, N is the number of monomers of the sequences (13, 21, 34 and 55
amino acids-long sequences).

4.2 Control Parameters

Due to the stochastic nature of the algorithms compared in this work, for
each algorithm mentioned in Section 3, 20 independent runs were done with
different initial random seeds. For each run, an upper-bound for the num-
ber of fitness function evaluations was established to 5, 000, 000. For each
algorithm, the values chosen to the control parameters are standard values
commonly used in the literature.

N Sequence

13 ABBABBABABBAB

21 BABABBABABBABBABABBAB

34 ABBABBABABBABBABABBABABBABBABABBAB
55 BABABBABABBABBABABBABABBABBABABBAB

BABABBABABBABBABABBAB

TABLE 1
Benchmark sequences for the 3D-AB off-lattice model

278 RAFAEL STUBS PARPINELLI et al.

PSO

The parameters used by the PSO algorithm are the population size (n = 100),
the relative influence of the cognitive component (¢, = 2.05), and the rela-
tive influence of the social component (¢g = 2.05).

ABC

ABC uses as parameters the population size (n = 100), the number of food
sources (Food Number = 50) and the number of iterations without improve-
ment before it replaces a scout bee (limit = 100).

GSA
The parameters used in the GSA algorithm are the population size (n = 100),
the gravitational decay (« = 20) and the gravitational initial value (G =
100).

BA
The parameters used in the BA algorithm are the population size (n = 100),
the loudness decay factor (¢ = 0.9), and the pulse increase factor (y = 0.9).

5 RESULTSAND ANALYSIS

In this section the results of our experiments are presented, as well as a
comparison of performance among all approaches. The performance of each
approach takes into account the average best solution found over all runs
and the average processing time. Results are shown in Table 2. In this table,

ABC PSO
N Eavg (avgtstdev) Epest tp(s) Eavg (avgtstdev) Epest tp(s)
13 -24.286 4 0.34 -24.821 94.55 -23.102 4 0.93 -24.888 157.15
21 -40.649 4 1.55 -43.982 225.05 -43.047 4+ 2.34 -46.611 372.10
34 -58.730 & 2.22 -64.072 550.05 -70.866 + 5.95 -80.409 908.75
55 -80.812 4+ 3.93 -89.402 1373.6 -87.7154+19.27 -115.758 1908.85
GSA BA
N Eavg (avgtstdev) Ebest tp(s) Eavg (avgtstdev) Epest tp(s)
13 -19.213 4 4.87 -24.492 942.70 -21.233 +£2.19 -24.874 279.10
21 -36.937 4+ 7.01 -45.965 1758.80 -31.035 + 4.60 -38.627 697.60
34 -44.427 4+20.16 -75.483 32625 42,771 £ 4.71 -53.364 1737.7
55 -42.735+26.68 -86.856 6203.50 -47.698 £+ 5.70 -53.7314 4380.80

TABLE 2
Results for the 3D AB off-lattice model.

3D-AB OFF-LATTICE PROTEIN FOLDING 279

6000 = 4
/A
4000
- W ABC
-1 +PSO
£ ¥ GSA
F 2000 A BA
‘/
0 T T
13 21 24 55
FIGURE 2

Graph showing the tp(s) of all approaches for all sequences.

columns “Eaug”, “Epest” and “t,” identify the average value of the best solu-
tions obtained in 20 runs, the best-ever solution and the average processing
time, respectively.

Concerning the computational effort, Figure 2 shows that the process-
ing time grows exponentially as the number of amino acids of the sequence
increases (particularly for the GSA and BA algorithms). This fact, by itself,
strongly suggests the need for highly parallel approaches for dealing with the
PSP.

Figure 3 shows the results for the average value of the best solutions
obtained (Ea,q) by all approaches for all sequences.

For the smallest sequence (13 amino-acids) all algorithms achieved almost
the same performance; although the ABC performed slightly better and the

13 21 24 55

0 % % E [— = [—
0 = = N E B asc
2 = = — g Pso
2 = = " = L] gesa

= = CBA

-60 — =

-90
FIGURE 3

Bar graph showing the Ea,q of all approaches for all sequences.

280 RAFAEL STUBS PARPINELLI et al.

7000
6000 k| ¥ 13
A 21
5000
34
4 >
- 4000 <4 55
T e 3 1 ABC
L 2 PSO
2000 |4 ;2 3 GSA
1 > A
1000 < 2 v 4 BA
» 1 K . v
> 1
0 T T T T i‘\ “'l
-90 -80 -70 -60 -50 -40 -30 -20 -10
Energy
FIGURE 4
Pareto graph.

GSA performed slightly worse. For the other tree sequences (21, 24 and
55 amino-acids) the PSO and the ABC algorithms outperformed GSA and
BA algorithms, with an increasing advantage towards the PSO proportion-
ally to the sequence size. On the other hand, the GSA results outperformed
the BA results for the 21 amino-acids-long sequence; both the GSA and the
BA obtained almost the same results for the 24 amino-acids-long sequence;
and the BA results outperformed the GSA results for the 55 amino-acids-
long sequence. Overall, concerning quality of solution, the PSO algorithm
obtained the best results, except for the smallest sequence.

A joint analysis of quality of solutions and computational effort was done
by using the the concept of Pareto optimality [12]. A plot is constructed in
such a way to represent the behavior of the two criteria to be minimized:
the smaller the free energy, the better; and the smaller the processing time,
the better. In other words, in this case, for each sequence the non-dominated
Pareto set is located at the bottom-left corner of the Cartesian plane. In Fig-
ure 4, each point in the plot represents an amino-acids sequence, identified by
different symbols and labels. For the 13 amino-acids-long sequence the non-
dominated solution is achieved by the ABC algorithm. For all other amino-
acids sequences, the non-dominated set includes both the PSO and ABC solu-
tions. Analyzing all points in the plot, the non-dominated Pareto set has seven
solutions (three from the PSO algorithm, and four from the ABC algorithm).

For comparisons purpose, Table 3 shows the best results currently found
in the literature for the 3D AB model (“ground values™), and the percent
difference between them and those obtained by the algorithms compared
in this work. It is observed that our results are slightly worse than the best
known results for the 13 and 21 amino-acids-long sequences. Notice that the

3D-AB OFF-LATTICE PROTEIN FOLDING 281

diff (%)
N Ebest [reference] ABC PSO GSA BA
13 —26.507 [22] 6.568 6.299 7.901 6.354
21 —52.917 [3] 18.440 12.672 14.060 31.219
34 —97.7321 [21] 41.605 19.447 25.689 58.7272
55 —173.9803 [21] 64.225 40.188 66.803 105.614

TABLE 3
Comparison of results with the best values in the literature.

processing time needed to achieve the ground values are unknown. Taking
into account that this work uses the standard versions of the algorithms, it
is probable that even better results can be obtained by adjusting the control
parameters of the algorithms.

Figures 5 to 8 show the convergence plot of the algorithms for all amino-
acids tested. In this figure, the x-axis shows the number of iterations and the
y-axis represents the best-ever value averaged over the same iteration of all
runs. Analyzing these plots we can observe that for 13 and 21 amino-acids-
long sequences all algorithms converged to a stagnation point. However, for
24 and 55 amino-acids-long sequences both PSO and GSA algorithms clearly
could evolve to even better results if more iterations were allowed.

ABC —a—
PSO —w—
0 GSA —a—

BAT ——

} -
5k 4
(O]
>
()
o
0 -10 E
(]
m
O i
E 15
_20 a
S S— h e e e A A A
_25 L i
1 1 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration
FIGURE 5

Convergence plot for the 13 amino-acids-long sequence.

282 RAFAEL STUBS PARPINELLI et al.

ABC
PSO
GSA
BAT

it

Avg Bestever

-50 1 1 1 1 1 1

0 5000 10000 15000 20000 25000 30000 35000 40000

Iteration

FIGURE 6
Convergence plot for the 21 amino-acids-long sequence.

45000 50000

ol ABC —a— |

——
— S—

S

(O]

>

(O]

)

(7]

(¢D)

m

(@)

>

<

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration
FIGURE 7

Convergence plot for the 34 amino-acids-long sequence.

3D-AB OFF-LATTICE PROTEIN FOLDING 283

0 j " ABC —a— |
PSO —w—

Avg Bestever

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration

FIGURE 8
Convergence plot for the 55 amino-acids-long sequence.

6 CONCLUSIONS

The performance of four different Swarm Intelligence algorithms was ana-
lyzed in this paper, under the task of minimizing the energy function of a
Protein Structure Prediction problem, featuring the off-lattice 3D-AB model.
An unbiased comparison of the standard versions of the algorithms was done,
taking into account not only the quality of solutions, but also, the computa-
tional effort (regarding processing time).

Significant differences were noticed, thanks to the distinctive exploita-
tion/exploration balance of each algorithm. The obtained results pointed out
the PSO algorithm as the overall best approach, especially when the com-
plexity of the problem increases. Also, giving more iterations, both PSO and
GSA algorithms could evolve to better results.

Aiming a fair comparison, we did not make any effort to tune the con-
trol parameters for the optimization algorithms. However, this is a key issue
for future research in order to improve the results. Also, based on the results
presented, we consider some combinations between algorithms as an alter-
native to solve this and other real problems more efficiently. Recent litera-
ture has indicated that the use of hybrid evolutionary systems working in a
cooperative way can perform better than using single algorithms (see, for
instance, [4, 25, 27] and [34]). Possible approaches for this is to form a
pipeline, passing the results from one algorithm to another, or in parallel,

284

RAFAEL STUBS PARPINELLI et al.

choosing the best result from concurrent runs of several algorithms or by
having communication between the algorithms to each other favoring the co-
evolution of populations.

ACKNOWLEDGMENTS

Authors would like to thank the Brazilian National Research Council (CNPQ)
for the research grant to H.S. Lopes; as well as to FUMDES program for
the research grant to R.S. Parpinelli; and CAPES-DS scholarship to C.M.V.
Benitez.

REFERENCES

[1]

[2]
[3]

[4]

[5]

[6]
[71
(8]

(9]

(10]
(11]

(12]

C. B. Anfinsen, E. Haber, M. Sela, and F. H. White. (September 1961). The kinetics of for-
mation of native ribonuclease during oxidation of the reduced polypeptide chain. Proceed-
ings of the National Academy of Sciences of the United States of America, 47:1309-1314.
J. Atkins and W.E. Hart. (1999). On the intractability of protein folding with a finite alpha-
bet. Algorithmica, 25(2-3):279-294.

M. Bachmann, H. Arkm, and W. Janke. (2005). Multicanonical study of coarse-grained
off-lattice models for folding heteropolymers. Physical Review E, 71:1-11.

C. M. V. Benitez, R. S. Parpinelli, and H. S. Lopes. (2011). Parallelism, hybridism and
coevolution in a multi-level ABC-GA approach for the protein structure prediction prob-
lem. Concurrency and Computation: Practice and Experience.

C.M.V. Benitez and H.S. Lopes. (2010). Hierarchical parallel genetic algorithm applied to
the three-dimensional HP side-chain protein folding problem. In Proc. of IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pages 2669-2676. IEEE Computer
Society.

B. Berger and F.T. Leighton. (1998). Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. Journal of Computational Biology, 5(1):27-40.

H.M. Berman, J. Westbrook, Z. Feng, and G. Gilliland et al. (2000). UniProt archive.
Nucleic Acids Research, 28(1):235-242.

X. Cali, Z. Cui, J. Zeng, and Y. Tan. (2008). Dispersed particle swarm optimization. Infor-
mation Processing Letters, 105(6):231-235.

A. Chatterjee, S.P. Ghoshal, and V. Mukherjee. (2012). A maiden application of gravita-
tional search algorithm with wavelet mutation for the solution of economic load dispatch
problems. International Journal of Bio-Inspired Computation, 4(1):33-46.

P. Crescenzi, D. Goldman, C. Papadimitrou, A. Piccolboni, and M. Yannakakis. (1998).
On the complexity of protein folding. Journal of Computational Biolology, 5:423-446.

Z. Cui and X. Cai. (2009). Integral particle swarm optimization with dispersed accelerator
information. Fundamenta Informaticae, 95(4):427-447.

K. Deb. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, Chichester, UK.

[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

3D-AB OFF-LATTICE PROTEIN FOLDING 285

K.A. Dill, S. Bromberg, K. Yue, and K.M. Fiebig et al. (1995). Principles of protein folding
- a perspective from simple exact models. Protein Science, 4(4):561-602.

S. Garnier, J. Gautrais, and G. Theraulaz. (2007). The biological principles of swarm intel-
ligence. Swarm Intelligence, 1(1):3-31.

H.P. Hsu, V. Mehra, and P. Grassberger. (2003). Structure optimization in an off-lattice
protein model. Physical Review E, 68(3):id. 037703.

L. Hunter. (1993). Artificial Intelligence and Molecular Biology. AAAI Press, Boston,
USA, 1 edition.

A. Irback, C. Peterson, and F. Potthast. (1997). Identification of amino acid sequences with
good folding properties in an off-lattice model. Physical Review E, 55(1):860-867.

D. Kalegari and H.S. Lopes. (2010). A differential evolution approach for protein structure
optimisation using a 2D off-lattice model. International Journal of Bio-Inspired Computa-
tion, 2(3/4):242-250.

Dervis Karaboga and Bahriye Basturk. (2008). On the performance of artificial bee colony
(ABC) algorithm. Applied Soft Computing, 8(1):687-697.

J. Kennedy and R.C. Eberhart. (1995). Particle swarm optimization. In Proc. of the IEEE
Int. Conf. on Neural Networks, pages 1942-1948, Piscataway, USA. IEEE Press.

S.Y. Kim, S.B. Lee, and J. Lee. (2005). Structure optimization by conformational space
annealing in an off-lattice protein model. Physical Review E, 72:1-6.

F. Liang. (2004). Annealing contour monte carlo algorithm for structure optimization in an
off-lattice protein model. Chemical Physics, 120:6756-6763.

A. Liwo, M. Khalili, and H. A. Scheraga. (2005). Ab initio simulations of protein-folding
pathways by molecular dynamics with the united-residue model of polypeptide chains.
Proceedings of the National Academy of Sciences, 102(7):2362-2367.

H.S. Lopes. (2008). Evolutionary algorithms for the protein folding problem: A review and
current trends. In T.G. Smolinski, M.M. Milanova, and A-E Hassanien, editors, Computa-
tional Intelligence in Biomedicine and Bioinformatics, volume |, pages 297-315. Springer-
Verlag, Heidelberg, Germany.

A. D. Masegosa, D. A. Pelta, I. G. del Amo, and J. L. Verdegay. (2009). On the perfor-
mance of homogeneous and heterogeneous cooperative search strategies. In N. Krasno-
gor, B. Melian-Batista, J. A. Moreno-Pérez, J. M. Moreno-Vega, and D. A. Pelta, editors,
Nature Inspired Cooperative Strategies for Optimization, volume 236 of Studies in Com-
putational Intelligence, pages 287-300. Springer.

D.L. Nelson and M.M. Cox. (2008). Lehninger Principles of Biochemistry. W.H. Freeman,
5th edition.

R. S. Parpinelli and H. S. Lopes. (2011). An eco-inspired evolutionary algorithm applied
to numerical optimization. In Proceedings of the Third World Congress on Nature and
Biologically Inspired Computing, pages 473-478, Salamanca, Spain.

R.S. Parpinelli and H.S. Lopes. (2011). New inspirations in swarm intelligence: a survey.
International Journal of Bio-Inspired Computation, 3(1).

Day R. and Daggett V. (2003). All-atom simulations of protein folding and unfolding.
Advances in Protein Chemistry, 66:373-403.

Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi. (2009). GSA: A gravita-
tional search algorithm. Information Sciences, 179(13):2232-2248.

Tapas Si and Nanda Dulal Jana. (2012). Particle swarm optimisation with differential muta-
tion. International Journal of Bio-Inspired Computation, 11(3):212-251.

286
[32]
[33]

(34]

(39]

(36]

(37]
(38]

[39]

RAFAEL STUBS PARPINELLI et al.

F.H. Stillinger and T. Head-Gordon. (1995). Collective aspects of protein folding illustrated
by a toy model. Physical Review E, 52(3):2872-2877.

F.H. Stillinger, T. Head-Gordon, and C. Hirshfeld. (1993). Toy model for protein folding.
Physical Review E, 48(2):1469-1477.

Liang Sun, Shinichi Yoshida, Xiaochun Cheng, and Yanchun Liang. (2012). A cooperative
particle swarm optimizer with statistical variable interdependence learning. Information
Sciences, 186:20-39.

A. Torcini, R. Livi, and A. Politi. (2001). A dynamical approach to protein folding. Journal
of Biological Physics, 27(2-3):181-203.

R. Xiao and Z. Huang. (June 2012). An intelligent approach to the irregular polygon lay-

out problem based on adaptive artificial bee colony algorithm. International Journal of
Computer Applications in Technology, 43(4):295-303.

Xin-She Yang. (2010). Firefly algorithm, stochastic test functions and design optimisation.
1JBIC, 2(2):78-84.

Xin-She Yang and Xingshi He. (2013). Bat algorithm: literature review and applications.
International Journal of Bio-Inspired Computation, 5(3):141-149.

X. Zhang and W. Cheng. (2008). An improved tabu search algorithm for 3D protein folding
problem. Lecture Notes in Computer Science, 5351:1104-11009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [504.000 720.000]
>> setpagedevice

