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Abstract: This work presents a new evolutionary algorithm based on the standard harmony
search strategy, called population-based harmony search (PBHS). Also, this work provides
a parallelisation method for the proposed PBHS by using graphical processing units (GPU),
allowing multiple function evaluations at the same time. Experiments were done using a
benchmark of a hard scientific problem: protein structure prediction with the AB-2D off-lattice
model. The performance and the solution quality were evaluated and compared using four
implementations: two concerning the standard HS, one running in CPU and another running
in GPU, and two implementations concerning the PBHS, also running in CPU and in GPU.
Results show that the quality of solutions and speed-ups achieved by the PBHS is significantly
better than the HS.
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Paraná in 2012. His research interests are evolutionary computation and parallel computing.

Rafael S. Parpinelli graduated in Computer Science by the Maringá State University (1999) and
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has been an Assistant Professor at the Santa Catarina State University in Joinville, Brazil. His
research interests are evolutionary computation and bioinformatics.
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1 Introduction

Many bioinformatics problems are featured mainly to be
non-linear and strongly constrained. This is the case of
the protein structure prediction (PSP) problem approached
in this paper. Due to the limitations of exact methods for
solving such a class of problems, the need for more robust
techniques arises. Along decades, evolutionary computation
(EC) and swarm intelligence (SI) have provided a
large range of flexible and robust optimisation methods,
capable of dealing successfully with complex optimisation
problems. Both EC and SI provide population-based
methods where each individual of a population represents
a tentative solution to the problem to be solved. This is
the case, for instance, of genetic algorithms, differential
evolution (DE), particle swarm optimisation, ant colony
optimisation, artificial bee colony algorithm and many other
nature-inspired methods (Parpinelli and Lopes, 2011).

Algorithm 1 shows the general pseudo-code of a
population-based algorithm. The main loop (between
lines 3–7) represents the generational loop, and line 4
defines the mechanism or criterion for selecting the
best solutions (i.e., survival of the fittest as in EC, or
simply to discard the worst solutions). Two important
characteristics of population-based algorithms, and also
for metaheuristics in general, are intensification and
diversification procedures. In line 5 of the algorithm,
intensification (also called exploitation) intends to search
locally and more intensively around the best solutions
(i.e., by the crossover operator in genetic algorithms (GA),
or a greedy search), while diversification (also called
exploration) leads the algorithm to explore globally the
search space (i.e., by the mutation operator in GA, or a
large-scale randomisation).

Algorithm 1 General pseudo-code of a population-based algorithm
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Source: Parpinelli and Lopes (2011)

This paper presents a new evolutionary algorithm based
on the standard harmony search (HS) strategy, called

population-based harmony search (PBHS). The HS is
inspired by the improvisation process of a musician
searching for the best harmony (Geem et al., 2001).
A harmony represents the solution vector and the
improvisation guides the balance between exploitation
and exploration. The HS algorithm is easy to implement,
and can be adopted without major modifications to solve
different classes of problems.

The main drawback of these population-based
techniques when facing a complex problem is the high
number of function evaluations to be performed at each
iteration or generation (as shown in line 6 of Algorithm 1),
thus leading to a very time-consuming process. At each
iteration all the current candidate solutions have to be
evaluated. Since the evaluation of candidate solutions
repeats the same procedure, the use of parallel processing
at this point may be very useful for reducing the overall
processing time of the algorithm.

In last years, the use of GPUs as platform to run
population-based metaheuristics has become common in
several scientific applications (Bozejko et al., 2009; Tan
and Zhou, 2010; Yu et al., 2005). Graphics processing units
(GPUs) are computer boards that were originally designed
as a graphics-image processing devices. However, in very
recent years, GPUs started to be used for general-purpose
high-performance computing applications. Thanks to its
parallel computing capability and fast float-point operation,
GPUs can achieve impressive computing performance
(Che et al., 2008). Consequently, in recent years, they
have been used in many scientific and engineering
applications – see, for instance, Komatitsch et al. (2010),
Moorkamp et al. (2010), Shams et al. (2010) and Sunarso
et al. (2010).

To foster the use of GPU boards for general-purpose
computing, some platforms have been developed, such
as BrookGPU (Stanford University) (Buck et al., 2004),
and compute unified device architecture (CUDA, NVIDIA
Corporation) (NVIDIA, 2007). These platforms have
greatly simplified the programming tasks on GPU.
However, taking advantage of the parallel processing
capabilities of a GPU is not trivial at all, and, for a given
problem, usually there are many different possibilities of
implementation and memory usage.

In this work, the performance (regarding time
consuming) and the solution quality are evaluated and
compared using four implementations: two concerning
the standard HS, one running in a central processing
units (CPU) and another running in GPU, and two
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implementations concerning the proposed PBHS, also
running in CPU and in GPU.

This paper is organised as follows. In Section 2 a review
of literature is presented, focusing on GPU computing,
the standard HS algorithm, and the PSP problem. Next,
Section 3.2 presents and details the proposed PBHS
algorithm. The experiments are presented in Section 4.
Results and their discussion are shown in Section 5. Finally,
conclusions and future work are presented in Section 6.

2 Literature background

2.1 GPU-based computing

In the last three decades, processors (CPU) of desktop
computers have significantly improved their performance,
thus boosting by orders of magnitude the computational
power of personal computers. However, since the
GPUs appeared, their performance has improved at an
extraordinary rate (Mohanty, 2009). This fact has driven
the attention of many researchers and software developers
for using GPU for general, not graphics, processing. As a
consequence, GPU tends to be one of the most powerful
processing technologies for scientific and engineering
computing (Che et al., 2008; Owens et al., 2007).

Recently, NVIDIA Corporation has developed CUDA,
a platform for developing parallel computing applications
directly onto GPU boards. Using this resource it is possible
to use the power of parallel processing in a simple way,
by using a simple extension of C programming language
(Garland et al., 2008). CUDA was introduced at the
beginning of 2007 as a Software Developers Kit (SDK)
with compilers for Windows and Linux operating systems
(NVIDIA, 2007). The current version is 3.0 meaning that
it has been greatly improved along time. A programme
developed using CUDA can take the advantage of the
multiprocessors of a GPU board, thus increasing speed-up
much faster than the current multicore CPUs (NVIDIA,
2010).

The CUDA architecture is composed, mainly, by the set
of instructions CUDA instruction set architecture (ISA) and
by the parallel computing hardware (multiprocessors) of the
GPU board.

The execution of a task in GPU is done by function
calls named ‘kernels’ that, in turn, initialise several identical
‘threads’ in the GPU. Each thread is responsible for
processing a part of a large set of data (NVIDIA, 2009).
This sort of parallel processing is known as SIMD – single
instruction, multiple data (Parhami, 2002).

The initialisation of a kernel is accomplished by the
developer and configured as needed. The distribution of
threads in the GPU is also configured in the initialisation
in such a way that they are grouped into ‘blocks’ which,
in turn, are part of a computational ‘grid’. CUDA uses
a matrix-like distribution of the elements in the GPU.
The distribution of blocks in a grid can be done in two
dimensions, and the distribution of threads in a block can
be done in three dimensions. Figure 1 shows an example of

the spatial distribution of a grid, detailing their blocks and
threads in a bi-dimensional way, as well as the access of
the CPU host to the GPU device.

Figure 1 Distribution of threads and blocks in a computational
grid of a GPU (see online version for colours)

Source: Based on Kirk and Hwu (2009a)

Each thread, as well as each block, has a unique index
(threadIdx and blockIdx, respectively) that allows them
to compute the memory index in which their corresponding
data are available for processing. Consequently, the total
number of threads has a direct relationship with the size of
the data to be processed.

Threads of the same block can communicate each
other by using specific shared memory spaces. The
synchronisation of the threads of a block allows the
developer to establish a common checkpoint for them. This
means that only when all threads have reached such point
they can proceed the execution.

The current GPUs are constructed with many
multiprocessors with several cores, named streaming
multiprocessors (SM). The number of threads per block is
currently limited to 512 (NVIDIA, 2010), provided it does
not override the available memory and shared resources
in each SM. There is, also, a physical limit of 768 to
the number of threads per SM. Since each block is fully
allocated in a single SM, its size must be in such way to
maximise the usage of computational resources of a SM
(Kirk and Hwu, 2008).

Each SM creates, manages, schedules and runs the
threads in groups of 32, called ‘warp’. In fact only
the threads in each warp are executed in parallel. All
threads of a warp start the same programme at the
same time, however, they run independently. If a block
have a size larger than 32 it is divided into warps that
are executed sequentially. The execution of a warp is
more efficient when their 32 threads run simultaneously
the same instruction, having the same execution flow.
Conditional branch instructions in the programme operating
over different data can lead to divergences in the execution
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path (that is, different execution flows). In such situation
they are run separately and sequentially by the warp, thus
decreasing significantly the achievable performance of the
system (NVIDIA, 2010).

2.2 Memory usage in CUDA

In the CUDA architecture, there are six different memory
types, represented in Figure 2, each one with their specific
access time, permissions, scope and lifetime (Kirk and
Hwu, 2008; NVIDIA, 2008, 2010):

1 Register memory: it is a fast-access memory in which
primitive data types are stored (i.e., int, float, char).
Registers have read and write permissions, scope is
restricted to each thread and lifetime is equivalent to
its thread.

2 Local memory: it is the memory in which addressable
variables are stored, such as pointers to variables in
the global memory, and vectors. Primitive data types
are allocated in local memory when the register
memory is full. This memory has the same
permissions and scope of the registers.

3 Shared memory: it allows the information exchange
between threads running in the same block. This
memory has fast access, and read and write
permissions. The lifetime is the same of its block.

4 Global memory: it has read and write permissions and
global scope. It has a slow-access time, and the values
stored in it are not dependent of the execution time of
the kernels. This means that it can store information
to be shared by different kernels or different runs of
the same kernel. This memory is also used to share
data between the host (CPU) and the board (GPU). It
can be allocated and released anytime during the
execution of the programme.

5 Constant memory: it has slow access time,
permissions and scope similar to the global memory.
Once the values are stored they cannot be changed
during the execution of the programme. In current
GPU boards, the constant memory space is limited to
64 Kbytes.

6 Texture memory: it is similar to the constant memory,
except by the fact that it has an automatic caching
mechanism.

In the development of applications with CUDA there are
many different possibilities of using the GPU resources
(blocks, threads and memories). Depending on how these
resources are used, different performances can be achieved
in the execution of a kernel (Kirk and Hwu, 2008). Hence,
the way the parallelism is implemented by adjusting the size
of the blocks and threads affect directly the performance of
kernel execution.

Figure 2 Access and scope of memories (see online version
for colours)

Source: Based on Kirk and Hwu (2009b)

Two other important development features that affect
directly the performance are the number of kernel
calls, and the memory usage. The first feature increases
the communication overhead between CPU and GPU
board proportionally to the the number of kernel calls.
The second feature regards to use the fastest memories
such as local and shared memories always when it is
possible.

2.3 Harmony search

The HS metaheuristic is inspired by musician skills
of composition, memorisation and improvisation. As
musicians use their skills to pursue the perfect composition
with a perfect harmony, the HS algorithm use its search
strategies to pursuit for the optimum solution of an
optimisation problem. Some successful applications of the
HS algorithm can be found in Fesanghary et al. (2008),
Geem et al. (2001), Geem (2009, 2010), Saka (2007) and
Lee and Geem (2004).

The pseudo-code of the HS algorithm is presented
in Algorithm 2 (Geem et al., 2001). The HS algorithm
starts with a harmony memory (HM) of size HMS, in
which each position is occupied by a harmony of size N
(musicians). At each step of improvising a new harmony
is generated from the harmonies already present in the
harmony memory. If the new harmony generated is better
than the worst harmony in the harmony memory, this
is replaced with the new one. The steps to improvise
and update the harmony memory are repeated until the
maximum number of improvisations (MI) is achieved.
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Algorithm 2 Pseudo-code of the HS algorithm
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As shown in Geem et al. (2001) and Mahdavi et al. (2007),
the algorithm can be described by five main steps, detailed
below1:

1 Initialisation of problem and algorithm parameters: In
the first step, as in any optimisation problem, the
problem is defined as an objective function to be
optimised (line 3 of Algorithm 2), which can or
cannot be constrained. Originally, HS was designed
for solving minimisation problems (Geem et al.,
2001).

In this step the parameters of the algorithm are also
defined. The four main parameters are: the harmony
memory size – HMS, the harmony memory
consideration rate – HMCR, the pitch adjusting
rate – PAR, and the maximum number of
improvisations (maximum improvisation – MI).

2 Harmony memory initialisation: The second step is to
initialise the harmony memory (line 4) with a number
of randomly generated harmonies. The HM is the
vector in which the best harmonies found during run
are stored. Each harmony is a vector representing a
possible solution to the problem.

3 Improvise a new harmony: In the third step, a new
harmony is improvised based on the harmonies that
currently exist in HM, and the new harmony is a
combination of several other harmonies (between
lines 8–17). For each variable of the new harmony, a
harmony of the HM is arbitrarily selected by checking
the probability of this value to be or not to be used

(HMCR). If another harmony is used, the value of
this variable will have small adjustments
(Fret width – FW ) according to a probability (PAR).
If it is not used the value of another harmony, a
random value within the range of allowed values is
assigned. Thus, the parameters HMCR and PAR are
responsible for establishing a balance between
exploration and exploitation in the search space. The
higher the HMCR parameter, the more exploitation
is accomplished.

4 Update harmony memory: In the fourth step, each
new harmony just improvised is checked to see if it is
better than the worst harmony from HM
(lines 19–21). If this condition is confirmed, the new
harmony replaces the worst one in the HM.

5 Checking of the stopping criterion: In the fifth step,
the end of each iteration is checked to discover if the
best harmony meets the stopping criterion, usually a
maximum number of improvisations (MI). If so, the
execution is completed. Otherwise, it returns to the
second step until reaching the stopping criterion.

2.4 Protein structure prediction

Proteins are the basic structures of all living beings (Hunter,
1993). They are composed by a chain of amino acids that
are linked together by means of peptide bonds. Each amino
acid is characterised by a central carbon atom (also called
as alpha carbon – Cα) to which are attached a hydrogen
atom, a carboxyl group (COOH), an amino group (NH2)
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and a side-chain. Its known that the side-chain defines the
physical and chemical properties of the amino acid (Cooper,
2000). Peptide bonds are formed from the condensation of
two amino acids, when the carboxyl group of an amino acid
reacts with the amino group of the other. This process is
also called as dehydration because it releases a molecule of
water.

Several amino acids exist in nature, but only 20 are
proteinogenic. They can be classified into two classes,
according to their affinity to water: hydrophilic (or polar)
and hydrophobic. According to this behaviour, one can
conclude that the polarity of the side chain governs the
process of forming protein structures (Lodish et al., 2000).

From the chemical point of view, proteins are
structurally complex and functionally sophisticated
molecules (Alberts et al., 2002). The structural organisation
of proteins is commonly described into four levels of
complexity: primary, secondary, tertiary and quaternary
structures. Its important to know that the upper levels
cover the properties of lower ones. The primary structure
refers to the linear sequence of amino acids, the
secondary represent local conformations of some part
of a three-dimensional structure. The tertiary structure
represents the conformation of a polypeptide chain, i.e.,
the three-dimensional arrangement of the amino acids.
Finally, regular associations of three-dimensional structures
constitutes quaternary structures.

The protein folding is the process by which polypeptide
chains are transformed into compact structures that perform
biological functions. These functions include control
and regulation of essential chemical processes for the
living organisms. Under physiological conditions, the most
stable three-dimensional structure is called the native
conformation and actually allows a protein to perform its
function.

Failure to fold into the intended three-dimensional
conformation usually leads to proteins with different
properties that simply become inactive. In the worst case,
such misfolded (incorrectly folded) proteins can be harmful
to the organism. For instance, several diseases such as
Alzheimer’s disease, cystic fibrosis and some types of
cancer, are believed to result from the accumulation of
misfolded proteins.

Its known that better understanding of the protein
folding process can result in important medical
advancements and development of new drugs. Thanks to
the several genome sequencing projects being conducted
in the world, a large number of new proteins have been
discovered. However, only a small amount of such proteins
have their 3-dimensional structure known. For instance,
as in April/2011, the UniProtKB/TrEMBL repository of
protein sequences has currently around 14 million records2,
and the Protein Data Bank – PDB (Berman et al., 2000)
has the structure of only 72,386 proteins3. This fact is
due to the cost and difficulty in unveiling the structure of
proteins, from the biochemical point of view.

Computer science has an important role here, proposing
models for studying the PSP problem (Lopes, 2008).
Nowadays, the simulation of computational models that

take into account all the atoms of a protein is frequently
unfeasible, even with the most powerful computational
resources. Consequently, several simplified models that
abstract the protein structure have been proposed. Basically,
there are two types of representation of polypeptides, the
analytical and the discrete. The analytical representation
describes all the information about the atoms that
compose the proteins. On the other hand, the discrete
representation describes a protein in a reduced level of
details. Although such discrete models are not realistic,
they use some biochemical properties of amino acids, and
its simulation can show some interesting characteristics of
real proteins. They also allow an extensively exploration
of the conformational space and can be generators of
hypotheses that cannot be obtained by other approaches, but
that may be reproducible experimentally or through refined
simulations (Dill, 1999). This is an important motivation
for developing computational methods for predicting the
structure of proteins. The simplest computational model
for the PSP problem is known as hydrophobic-polar (HP)
model, both in two (2D-HP) and three (3D-HP) dimensions
(Dill et al., 1985). Although simple, the computational
approach for searching a solution for the PSP using the HP
models was proved to be NP -complete (Atkins and Hart,
1999; Berger and Leighton, 1998; Crescenzi et al., 1998).

Many approaches to solve the PSP were proposed, each
addressing the problem by using a computational method to
obtain optimal or, more frequently, quasi-optimal solutions.
From the chemical point of view, the most realistic method
is called molecular dynamics (also known as ab initio)
(Hardin et al., 2002). The main idea of this approach is
to simulate atom movements according to rules of classical
mechanics. On the other hand, algorithms using the simplest
model for the PSP were proved to be NP -complete.
Therefore, this fact has motivated the development of
several metaheuristics to deal with the problem.

For instance, Beńıtez and Lopes (2010) present an
hierarchical parallel genetic slgorithm applied to the
PSP using the three-dimensional HP side-chain model
(3DHP-SC). An ant colony optimisation algorithm (ACO)
for the PSP using both 2D and 3DHP models was presented
by Shmygelska and Hoos (2005). Local search methods
such as Monte Carlo, tabu search and hill-climbing were
used as genetic operators for genetic algorithms by Cox
et al. (2004), Jiang et al. (2003) and Tantar et al. (2007),
respectively.

The DE algorithm was used by both Bitello and Lopes
(2007) and Kalegari and Lopes (2010), for tacking the PSP
using the 2DHP and 2D-AB off-lattice models, respectively.
Possibly, these are the only works published to date using
the DE algorithm for the PSP. Artificial immune systems
(AIS) were applied to the PSP using the 2D and 3DHP
models by Cutello et al. (2005). Also, Almeida et al. (2007)
present an hybrid AIS with tabu search and a inference
fuzzy system. In this work, fuzzy operator decides which
antibodies will be removed from the population after the
selection procedure, and the tabu search is used to define a
mechanism affinity maturation of antibodies.
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Other interesting methods were used to solve the PSP.
For instance, Ostrovsky et al. (2001) describe a cellular
automata for polymer simulation including implications for
protein folding and Yanikoglu and Erman (2002) present
a solution using self-organising networks neural networks
(SOM) with the 2DHP model. Stillinger et al. (1993),
Irback et al. (1997) and Torcini et al. (2001) employed
neural networks, Monte Carlo search and biologically
inspired methods using the 2D-AB off-lattice model. An
extended three-dimensional version of the 2D-AB was
presented by Hsu et al. (2003). Recently, Zhang and Cheng
(2008) introduced an improved implementation of tabu
search with the 3D-AB off-lattice model, obtaining good
performance.

2.4.1 The AB off-lattice model

The AB off-lattice model, introduced by Stillinger and
Head-Gordon (1995), was one of the first models to
represent protein structures. In this model the protein
sequences are composed by only two species of monomers
(ξ): ‘A’ for hydrophobic amino acids and ‘B’ for
hydrophilic (or polar) amino acids. Although it is a very
simplified representation of a real protein structure, this
model is useful to verify some of the properties of proteins
in the real world.

Monomers have an unit length of distance between
them, in such a way that a monomer is connected to the
next one in the chain through a bond that forms an angle
relative to its predecessor.

In the AB model, a protein composed of n-monomers
needs n− 2 angles to be represented. These angles are
defined in the range [−180o..180o]. Figure 3 shows an
example of a hypothetical protein with seven amino acids.

Figure 3 Generic representation of a hypothetic protein
structure

The model defines the energy values for the monomers:
‘A’ has energy 1 and ‘B’ has energy –1. Considering two
generic monomers i and j, and the species ξi and ξj ,
respectively, the interaction between the monomers leads
to different values of potential energy (C). Positive values
represent attraction and negative, repulsion: AA bonds have
energy 1 (the monomers AA tend to attract each other
strongly), BB bonds have energy 1/2 (they tend to attract
each other weakly) and AB or BA bonds have energy
–1/2 (they have a weak repulsion). The energy of the

structure of a protein with n monomers (n-mers) is given
by equation (1):

ϕ(θ, ξ) =

n−1∑
i=1

V1(θi) +

n−2∑
i=1

n∑
j=1+2

V2(dij , ξi, ξj) (1)

Equation (1) postulates two types of intermolecular
potential energies, terms V1 and V2. The former represents
the backbone potentials. It is defined by equation (2) and
depends only on the angle between monomers. The latter,
defined by equation (3), represents the potential energy
present in the non-bonded interactions and it is known as
the Lennard-Jones potential.

V1(θi) =
1

4
.(1− cos(θi)) (2)

V2(dij , ξi, ξj) = 4.
(
d−12
ij − C.(ξi, ξj).d

−6
ij

)
(3)

where

C(ξi, ξj) =
1

8.(1 + ξi + ξj + 5.ξi.ξj)
(4)

Equation (4) is the potential energy due to the interaction
between monomers i and j, and dij is the distance between
these monomers in the chain, such that i < j.

3 Methodology

Section 3.1 describes the development of the HS algorithm
using GPU and Section 3.2 describes the proposed PBHS.

3.1 HS using GPU

In the implementation of HS in GPU, all steps of the
algorithm are executed in the GPU. This allows quick
access to data in the memory, avoiding data transfer
between memories and the host device. In fact, the host
CPU is responsible only for the initialisation of parameters,
allocation of the GPU global memory and control of
iterations. Some data are also copied to the GPU, which
are used during execution of the HS, i.e., upper and lower
bounds, and random number generator configuration. Such
approach takes advantage of the implicit parallel nature of
some steps of the HS algorithm, namely, the treatment of
the variables of a new harmony.

The HM initialisation is performed with one kernel call
to each memory location of HM, producing a new harmony
for each position. Each variable of the new harmony is
independent of the others. In GPU, the HM is allocated in
the global memory and it is represented linearly, for every
N positions there is a different harmony.

Once the HM is loaded with the initial harmonies,
the iterative process of optimisation of the HS algorithm
is started. At each iteration cycle, two kernel calls are
performed. The first performs the improvisation of a new
harmony and the second one updates the HM.

In the improvisation step, the process of selection
of each variable of the new harmony is performed
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independently. In the kernel of improvisation each block,
with only one thread, is responsible for one variable of the
new harmony.

The HM is kept ordered, from the best harmony, at
the first position, to the worst one, at the last position.
Thus, updating the HM is accomplished by inserting a new
harmony in its proper position. The following positions are
shifted, discarding the worst. To find the insertion point,
a sequential scan of the HM is done. Each variable to be
replaced is treated independently.

Once the optimisation process is completed, the data
relating to the best harmony found is transferred from the
device to the host in order to be used and displayed.

3.2 Population-based harmony search

Aiming at improving the performance of execution of
HS using parallel architectures, we developed a PBHS.
Basically, PBHS includes a population of temporary
harmonies, named musical arrangements (MA). In this case,
MA can be considered as an extension of the HM. Such
positions are included in the HM and are renewed at each
cycle of the algorithm.

During the improvisation step, the whole set HM and
MA are considered, in such a way that all these memory
positions can be used to compose new harmonies. At the
end of each cycle, among the harmony found in the MA,
only the best is effectively inserted in the HM.

The implementation of PBHS has some changes that
allow the algorithm to process several new harmonies at the
same time. Algorithm 2 shows the differences between HS
and PBHS highlighting the changes proposed in this work.

In line 4, the memory positions for the MA are jointly
initialised with the HM, so that values assigned to these
positions can be used to generate new valid harmonies.

In Improvisation (between lines 7–19), the population
size is added to the HM size, and the positions of
the population are included in the composition of new
harmonies. Each thread of block of the Improvisation kernel
is responsible for a different new harmony (equivalent to
line 8), thus the number of blocks is equal to the population
size, and each block is responsible for one position on all
new harmonies (equivalent to line 9).

During the improvisation process, new harmonies
are created from harmonies selected using a stochastic
tournament selection procedure (Blickle, 2000) (line 11).
Its important to know that this procedure tends to be less
elitist that other popular selection methods (such as the
roulette wheel method used in genetic algorithms). The new
improvised harmonies are included in the space dedicated
to the MA. Once the new harmonies are created, the
evaluation of all of them are performed simultaneously, i.e.,
in parallel. Finally, the best harmony of the MA is selected
to be used in the updating process.

In the PBHS approach, the population size has a key
role. Improving the diversity of harmonies used to compose
other new harmonies, the speed of convergence tends to

decrease, but, on the other hand, the exploration of the
search space tends to be more efficient.

4 Experiments

All experiments reported in this session were run in a
personal computer with an Intel processor (Core2-Quad
running at 2.8 GHz) and a NVIDIA GeForce GTX
280 graphic card, running Linux. The applications were
developed in the C programming language. To implement
the parallel approaches in GPU, we used CUDA4.

The focus of the experiments was to compare both
GPU implementations, measuring processing time and the
solution quality, identifying the possible improvements that
the use of a population can bring to the original HS
algorithm.

4.1 Benchmark sequences

In the experiments reported below, a total of five synthetic
protein sequences were used. These sequences have been
previously used by other researchers (for instance, Hsu
et al., 2003; Kalegari and Lopes, 2010). In Table 1, N is
the number of monomers of the sequences (13, 21, 34 and
55 amino acids-long sequences).

Table 1 Benchmark sequences for the 2D-AB off-lattice model

N Sequence
13 ABBABBABABBAB
21 BABABBABABBABBABABBAB
34 ABBABBABABBABBABABBABABBABBABABBAB
55 BABABBABABBABBABABBABABBABBABABBAB

BABABBABABBABBABABBAB

4.2 Parameters adjustment

A factorial experiment (see Box et al., 2005 for more
information) was done to adjust all the parameters of
the algorithms, including the basic parameters of HS and
PBHS (harmony memory consideration rate – HMCR
and the pitch adjusting rate – PAR). Parameters were
tested in steps of 5%, in the following range: HMCR =
[75%..95%] and PAR = [5%..35%]. The combination of
possible values for these parameters yields a total of 24
different experiments. Each experiment was run 30 times
with different initial random seeds. The basic parameters
of the HS corresponding to the best experiment are shown
in Table 2. The remaining parameters were configured
based on the literature. For instance, the Harmony Memory
(HM ), the Fret Width (FW ) and the number of fitness
evaluations were empirically set to 20, 15 and 5,000,000
respectively. Its important to point that the FW was
exceptionally set fixed to 30 for the 34-amino acids long
sequence.

Specifically for the PBHS approach, the size of MA was
set to 32. This number was set to take advantage of the
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Table 2 Configuration parameters of HS and PBHS, obtained by
a factorial experiment

N HS PBHS
HMCR PAR HMCR PAR

13 95% 20% 90% 20%
21 90% 5% 90% 10%
34 95% 5% 95% 10%
55 95% 5% 95% 5%

GPU features, enabling the maximum number of threads
of a warp (see Section 2.1). The tournament size of the
selection procedure was set to five harmonies.

The GPU implementation for the PSP uses one
independent block for each aminoacid. This means that for
a sequence of N aminoacids, N cores will be employed for
computation.

Table 3 Comparative quality of solution

N Global minimum
HS PBHS

Avg Best % Global Avg Best % Global
fit. fit. minimum fit. fit. minimum

13 –3.29 –2.31 ± 0.70 –3.19 3.0% –3.00 ± 0.30 –3.28 0.3%
21 –6.19 –3.76 ± 0.47 –5.00 19.2% –4.02 ± 0.61 –5.96 3.7%
34 –10.70 –5.68 ± 0.87 –7.63 28.6% –5.49 ± 0.98 –8.33 22.1%
55 –18.51 –6.74 ± 1.19 –9.01 51.3% –8.18 ± 1.34 –11.51 37.8%

5 Results and analysis

Due to the stochastic nature of the algorithms tested,
for each benchmark sequence, both HS and PBHS were
executed for 30 independent runs using different random
seeds.

Regarding quality, results are shown in Table 3. In this
table, the first column identifies the sizes of amino acids
sequences; the second shows the currently known global
minimum; the third column shows the average and standard
deviation obtained by the standard HS; the fourth column
shows the best value found by HS; the fifth column shows
the relationship of the best solution found by HS regarding
the known global minimum; the sixth, seventh and eighth
columns are equivalent to the third, fourth, fifth columns,
but now for PBHS.

Algorithm 3 Pseudo-code of the PBHS
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It is possible to observe that the PHS approach presented
better solutions for all sequences, considering not only the
averages, but also, the best results.

Analysing now the performance, Figure 4 shows a
plot of the average processing time for HS and PBHS.
A further comparison was done between sequential and
parallel versions of both approaches. In this figure,
HS-CPU, HS-GPU, PBHS-CPU and PBHS-GPU represent
both approaches running in CPU and GPU. The time scale
is shown in logarithmic scale due to its large span.

Figure 4 Comparison of processing time between
implementations of HS and PBHS in CPU and GPU
(see online version for colours)

Overall, the processing time, for any approach, tends to
increase sub-exponentially as the number of amino acids of
the sequence increases. This fact strongly suggests the need
for highly parallel approaches for dealing with the PSP.

For sequences with less than 34 amino acids, the
HS-GPU presented an execution time above the HS-CPU.
For N = 34 both were equivalent, and for N = 55 the
HS-GPU presented a speed-up of 2x.

The PBHS-CPU version presented the worst
performance (i.e., the highest processing time) for the
sequences of 34 and 55 amino acids. Its processing
time was slightly larger than HS-CPU, but very similar
behaviour. This is due to the sequential nature of the
selection procedure used in the improvisation process. The
PBHS-GPU showed the best performance, mainly due
the levels of parallelism in the process of improvisation
and update, and the parallelisation of several function
evaluations concurrently.

For a more comprehensive view of performance,
Figure 5 presents the speed-ups of PBHS-GPU relative to
HS-CPU, HS-GPU and PBHS-CPU, respectively.

Figure 5 Comparison of speed-ups between PBHS-GPU and
the other approaches (see online version for colours)

PBHS-GPU achieved significant speed-ups when compared
to HS-GPU, ranging from 24.5x to 30.5x, depending on
the length of the sequence. The smallest speed-up of
PBHS-GPU was 7.8x, when compared with HS-CPU, for
the sequence of 13 amino acids. The largest speed-up
was 68.4x for the 55 amino acids-long sequence, when
comparing PBHS-CPU and PBHS-GPU.

From Figure 5 we can observe that, as the length of
sequences increases, the speed-up of GPU implementations
regarding the CPU implementations increases exponentially.
However, considering GPU implementations, the speed-up
increases linearly. These facts strongly suggests not only the
utility of GPU (instead of CPU) for scientific applications
of growing complexity, but also, the gain of the parallel
implementation over the original one.

A joint analysis of quality of solutions and performance
was done by using the the concept of Pareto optimality
(Deb, 2001). A plot is constructed in such a way to
represent the behaviour of that two criterion, each of them
to be minimised: the smaller the free energy, the better; and
the smaller the processing time, the larger the performance.
Each point in the plot represents a possible combination
of parameters. In our case, the x axis represents the
average processing time. The y axis is the best solution
found (BestF itness). Each point of the plot (xi, yi) is
classified as dominated, when there is at least another point
(xj , yj) such that (xj < xi)

∧
(yj < yi), or non-dominated,

otherwise. In this analysis, only the non-dominated points
are really interesting, since they represent the best possible
trade-off between the two criterion. Notwithstanding, the
Pareto plot also allows the user to find the most suitable
working point for particular situations.

In Figure 6, it is possible to observe the differences
between the non-dominated points. Each sequence is
identified by different symbols and labels. The PBHS
results are clearly identified as non-dominated having better
processing times and quality of solutions than the other
approaches.
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Figure 6 Pareto plot comparing processing time and solution
quality of all implementations (see online version
for colours)

6 Conclusions and future work

This work presented the implementation of a
Population-based Harmony Search algorithm running in
GPU and in CPU. Experiments were done using the PSP
problem, using the non-lattice 2D-AB model. We compare
the proposed approach with the original (sequential) HS,
taking into account not only the quality of solutions, but
also, the performance (regarding processing time).

Results show that simply running an algorithm in GPU
does not warrant a significant reduction of processing
time, specially when dealing with small instances (that was
evident in the case of HS-GPU). Still considering HS-GPU,
a small gain in speed-up above 1x was achieved only
with lengthiest sequence. This suggests that a sequential
algorithm with small amount of data may be more
efficiently run in CPU than in GPU.

On the other hand, as the implicit parallelism of
an algorithm is exploited, significant speed-ups can be
achieved when running in GPU, thanks to its structure that
allows, for instance, 32 simultaneous function evaluations.
Consequently, as the complexity increases (in this case,
complexity is meant both, the amount of computation and
the amount of data to be processed), the advantages of GPU
processing are much more visible. This is evident when
both implementations in GPU were compared with the
equivalent in CPU, presenting an increment in the speed-up
as the size of sequences increase.

For all test cases, the proposed population-based
approach (PBHS) was significantly better, regarding quality
of solutions, than the original HS. This was due to the
capability of PBHS to maintain diversity longer than HS,
thus avoiding premature convergence. The improvement in
quality of solutions of PBHS over HS is evidenced in the
average and best fitness for all the sequences.

Overall, this work showed that, by using a well-tuned
parallelisation strategy, the GPU really can be useful
for reducing the computational cost of populational
metaheuristics, such as PBHS. For sure, this assertion could

be extrapolated to other evolutionary computing paradigms,
such as genetic algorithms, particle swarm optimisation and
ant colony optimisation, for instance, where the evaluation
of individuals can be done in parallel.

Future work will be towards the improvement of
the PBHS, aiming at improving the quality of solutions,
with the use of enhanced search mechanisms, and
the processing performance, exploring more efficient
parallelisation schemes in GPU. We believe that this
combination is very promising for complex, large-scale
scientific and engineering applications.
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Notes
1 For more information see the HS repository:

http://www.hydroteq.com.

2 See http://www.ebi.ac.uk/uniprot/ for updated information.

3 See http://http://www.pdb.org for updated information.

4 Available at http://www.nvidia.com/object/cuda home new.html.


