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Clustering Methods for Detecting 
Communities in Networks

INTRODUCTION

Real-world networks, such as social networks, enter-
prise relationships, and the Internet itself, present large 
amounts of data that can be represented as networks 
and organized according to some criteria. Such criteria 
can be, for instance, a measure of similarity, connec-
tivity or a physical distance. In the last years, many 
efforts have been spent in graph clustering, so as to 
develop and apply efficient computational methods to 
group massive data and find communities in networks 
(Frank, 1996).

As an example we can address social networks. 
Social networks are groups of individuals or entities 
that share one or more types of relationships, these 
relationships can be of various types, common inter-
ests, degrees of kinship, shared services, etc. With the 
popularization of the Internet, there is an increasing 
number of connected devices, and even more people and 
organizations are sharing information. Consequently, 
social networks are becoming ubiquitous (Kumar, 
Novak, & Tomkins, 2010). Popular social networks 
such Twitter, Facebook, Google, etc. are widely known 
by the general public. There is also a large amount 
of other social related data among the Internet and 
other networks forming implicit social networks. For 
instance, citation networks, e-mail traffic, phone users, 
coworkers, classmates, etc.

Social networks can reveal several aspects of the 
social behavior of their users, providing relevant infor-
mation about relationships, identification of influential 
groups, spread of information, political behavior or even 
epidemic diseases. The analysis of complex networks 
has arisen in many areas, such as sociology, com-
munications, computer science, physics and biology.

In this sense, it is relevant to identify clusters, struc-
tural communities where a large number of edges join 
vertices as a cohesive group, a strongly related group 
of members which can be described as an independent 
portion of the network or a subgraph.

Usually, methods for detecting communities in large 
networks are computationally intensive, demanding 
high processing power. To achieve good clustering 
results, efficient methods to discover communities in 
complex networks are needed.

There are several approaches to group the subjects 
in complex networks. e.g.: Graph Degree Linkage 
(Zhang et al., 2012), Hierarchical Clustering Algo-
rithms (Murtagh, 1983), Nearest Neighbor Clustering 
(Ertoz et al., 2002), Partition Algorithms (Fortunato, 
2010), etc. Some clustering methods are mathematically 
formulated to evaluate the connections between vertices 
of a graph, instead of being focused on similarity mea-
sures. The choice of methods depends on which kind 
of information the social network analyst is pursuing.

An example is the Girvan and Newman (2002) 
approach for community detection that focuses on 
betweenness, by removing edges with largest central-
ity (Freeman, 1977). Another example comprises the 
Modularity Optimization Methods (Newman, 2006) 
that uses node degree (how many connections relate to 
a vertex) as part of the procedure to detect communities.

K-means and its variants, on the other hand, is 
focused on vertex characteristics. It is more related 
to data-mining than to community detection, but still 
can be a powerful tool to group clusters of individuals 
with high similarity.

This article presents some of the main properties 
of social networks and complex networks, how the 
communities and clusters are characterized and the 
ways used to identify clusters in networks using the 
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K-means algorithm and its main variants, the fuzzy 
c-means and the weighted K-means.

This article is intended for Social Networks analysts, 
students and researchers in the field of data mining, 
and for those seeking for agile methods of data arrays 
in complex networks. Although the K-means algo-
rithm and its variants do not cover the completeness 
of community detection in complex networks it can 
be a powerful tool for discovering groups with high 
similarity. We also show an extended version that 
weights the data dimensions to be grouped.

BACKGROUND

It is possible to represent a variety of structures by 
means of complex networks and graphs. A graph is 
represented as a set of points (vertices) connected by 
links (edges). More formally, a graph G is an ordered 
pair of vertices G = (V,E) where: V is a set of nodes 
(vertices) and E is a set of links (edges). An example 
of graph is shown in figure 1(a).

Graphs are an abstract mathematical representation 
of a network. Social networks follow the patterns of 
complex networks with similar properties. Evolving 
from purely mathematical models of graphs through 
the Random Graph of Erdos and Renyi (Erdos & Renyi, 

1960) to The Small-World Model of Watts and Strogatz 
(Watts & Sstrogatz, 1998), complex network analysis 
have encompassed graph theory and gone so much 
further to represent real world networks.

A more complex example is shown in the network of 
figure 1(b). It is from a weighted network of face-to-face 
proximity between students and teachers. The dataset 
represents relations of children and teachers from the 
first to the fifth grade, and it is already grouped in ten 
clusters. Each cluster represents a particular class of 
students. This is a good example of how communities 
can be displayed by a network (Stehlé et al., 2011).

To analyze complex networks, it is mandatory 
some knowledge about the basic metrics and attributes 
regarding how the vertices are connected. One of 
those characteristics is the weight. When connections 
(edges) between nodes of a graph have weights, it is 
said a weighted graph. Such weights can represent 
the strength of a connection or its cost. For instance, 
to represent a network of cities, the weights could be 
the distances between them. Both vertices and edges 
can be weighted. There are also non weighted graphs, 
in which all connections or vertices receive the same 
unity value or cost.

Another important property of the connections is 
the direction; edges can be directed or undirected. In 
directed graphs, edges have a specific direction, and 
the relations between pairs of vertices are asymmetric. 

Figure 1. (a) An example of a graph, (b) a complex graph
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In undirected graphs, edges do not have a specific 
direction, and the relations between pairs of vertices 
are symmetric.

There are many other metrics related to networks 
and network components, going deep on mathematical 
properties and the physical representation of complex 
networks. However, such subject falls outside the scope 
of this article and further understanding of the metrics 
for complex networks is provided by the references 
cited in the additional readings section.

Characterization of Clusters 
and Communities

Into the social context we can address a network as 
groups of people who are related to each other in 
some way. In social networks people tend to organize 
themselves according to the same criteria, as in the 
ordinary life. A network can present several distinct 
relationships regarding its structure of individuals and 
the ties between them.

For graph clustering, besides other metrics, to 
measure the similarity of the network elements is very 
important. The term “similarity” should be understood 
as mathematical similarity. These similarity measures 
will denote how near or far each element of the network 
is from the others. The concepts of similarity and dis-
tance are the roots for clustering algorithms grouping 
individuals or network vertices.

The key idea of cluster analysis is grouping similar 
objects. In simple words we can say that a graph cluster 
is a group of individuals (vertices) with a strong rela-
tion (edges) between them and a week relation with 
the remaining. A graph cluster also can be a subgraph, 
which is connected or not to other clusters or to the 
graph itself. In the sense of a complex network, a com-
munity is a group of vertices with similarity between 
the vertices. This measure depends on which attribute 
is used to build the edges of the network.

The goal of clustering is, given a set of objects, as-
sign them to groups based on their mutual similarity. In 
social networks we can address clusters as a collection 
of individuals with dense friendship patterns internally 
and sparse friendships externally. Vertices assigned to 
same cluster should be highly similar. Vertices assigned 
to different clusters should be highly dissimilar.

Network clustering analysis is based on two major 
levels, macroscopic and microscopic. At a macroscopic 

level, there are global properties, such the network 
distance, graph diameter, longest path and shortest 
path. At the microscopic level, there are properties 
related to the nodes, mainly degree distribution and 
clustering coefficient.

Clustering coefficient is a metric used to evaluate 
the degree to which vertices tend to cluster together. 
There are two clustering coefficient metrics: global 
clustering coefficient and local clustering coefficient. 
The former is based on triplets of nodes and measures 
the number of closed triplets or triangles. The latter 
is related to the number of connections to a particular 
vertex. The proportion between the number of con-
nections to a vertex and the total number of possible 
connections between the vertex and his neighbors define 
the clustering coefficient for a particular vertice. It is 
known that real world networks such as social networks 
tend to have a clustering coefficient higher than those 
of random networks (Holland & Leinhardt, 1971).

Community detecting algorithms are strongly 
attached to the theories of graph partitioning and 
hierarchical clustering. Many techniques have been em-
ployed to clustering data, e.g.: Graph Degree Linkage, 
Hierarchical Clustering Algorithms, Nearest Neighbor 
Clustering, Partition Algorithms and many others.

Graph Degree Linkage uses the indegree and out-
degree measures to denote clusters in graphs. (Zhang 
et al., 2012). The vertex degree represents the number 
of connections to a vertex. In Graph Degree Linkage 
with directed edges, indegree and outdegree are used 
to measure the affinity between vertices or between a 
vertex and a cluster. The communities are identified by 
iteratively agglomerating new members to an existing 
cluster based on his similarity with the cluster.

Hierarchical clustering is a method for cluster 
analysis which builds a hierarchy of clusters. Such as 
K-means, hierarchical clustering is a popular cluster-
ing method. Hierarchical clustering generates a binary 
tree in which the original data items are the leaves, and 
internal nodes represent clusters of items (Wills, 1998).

Nearest Neighbor Clustering is another approach 
to find communities in networks. This approach uses 
the same concept of similarity between vertices such 
that the vertices are assigned to a “near” cluster. Also, 
the clusters can “grow,” involving a labeled vertex. 
Similar to K-means, the process will occur iteratively 
until no additional labeling can be done (Jain, Murty, 
& Flynn, 1999).
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Graph partition algorithms can also be used to find 
communities in networks. A partition is a network divi-
sion in clusters, where each vertex belongs to one cluster 
(Fortunato, 2010). A definition for graph partitioning 
is: given a graph, divide the vertices in sets of equal 
size, such that the number of the edges between these 
parts are minimized. This technique is also known as 
edgecut (Bondy & Murty, 1976). K-means is the most 
popular and the simplest graph partition algorithm.

Each technique or algorithm has strengths and 
drawbacks, using one or another depends on several 
factors such as dataset dimension, available hardware, 
required accuracy, and processing time. We choose K-
means due to its simplicity, ease to implement, extensive 
literature, and also because it meets the requirements 
of a n-dimensional data clustering using Euclidean 
multidimensional metrics with the weight variation.

Historical Background 
and Applications

One of most famous social network experiment was 
conducted by the psychologist Stanley Milgram, known 
as small-world experiment which consists in an attempt 
to prove that everyone and everything is six or fewer 
steps away. In this context any ordinary people can reach 
whoever they want in the world if knows the right six 
connections, from famous movie actors, politicians or 
billionaires (Milgram, 1967).

Although Milgram´s experiment is not directly 
related to clustering analysis or to detect communi-
ties in graphs, it drew the attention to social network 
studies and later inspired many other researches. As 
an area with a vast field of applications is easy to 
find related work to social network analysis, such as 
the study of cohesive subgroups of professionals and 
the influence exercised from the group one example, 
addressed by Kenneth Frank (Frank, 1996). Also, (Gir-
van & Newman, 2002) have conducted experiments 
with a collaboration network of scientists at the Santa 
Fe Institute to denote how the members interact and 
how they contribute as a team. They also conducted 
experiments with a food web of marine organisms. 
These are few examples on how community detecting 
can be applied to unveil a wide range of interactions.

Social Network analysis is often used in marketing. 
Statistical studies demonstrate that if a group of people 

has similarities, the overall group shall behavior simi-
larly to a portion of the group. In this sense discovering 
the communities became relevant.

The K-Means Method

The K-Means method is numerical, unsupervised, 
non-deterministic and iterative. In K-means, clusters 
are usually represented as groups of data points with 
similarities around a center, which is called centroid. It 
uses the Euclidean distance between vertices to measure 
their similarity and determine to which cluster a vertex 
must be assigned. K-Means iteratively allocates the 
partitions of a dataset into K clusters, locally minimiz-
ing the distance between the vertices to the centroids. 
(MacQueen, 1967).

The following steps detail the operation of the al-
gorithm, and a flowchart of the algorithm is illustrated 
in Figure 2.

1.  Given a dataset and the K number of desired 
clusters, the algorithm randomly initializes K 
centroids .

2.  Next, the Euclidean distance between each 
vertex to the centroids is computed. Such a 
distance is simply the geometric distance in the 
n-dimensional space. Based on this metric the 
algorithm assigns the vertices to nearest centroid.

3.  In the next iteration the centroids are repositioned 
based on the average distance of all vertices as-
signed to that centroid.

4.  Then, all vertices will be reevaluated again and 
reassigned to the nearest centroid.

5.  Steps 2 to 4 are repeated until the centroids do 
not change anymore.

Usually, the K-means algorithm takes few interac-
tions to discover the position of the K centroids and 
to assign the vertices to each K centroid. To compute 
the K-means centroids, it is also possible to use other 
Minkowiski’s metrics such as the Manhattan distance 
or the Chebychev distance. Equation 1 shows the Eu-
clidean distance formula.

dxy xi yi
i

n

= −
=
∑ ( )2
1

 (1)
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The objective of K-means is to minimize total 
intra-cluster variance, or the squared error function, 
as shown in equation 2, where there are K clusters Si 
such that i = 1, 2, ..., k, and µi is the centroid or mean 
point of all the points xj in Si. Equation 2 shows the 
K-means squared error function.

V xj i
i

k

xj si

= −
= ∈
∑ ∑
1

2
( )µ  (2)

In the K-means algorithm, every graph vertex has 
equal importance in locating the centroid of the clus-
ter, this characteristic makes K-means very sensitive 
to outliers, that is, vertices that have values dramati-
cally far from centroids and tend attract the centroid 
to themselves. The algorithm is also sensitive to the 
initialization of the centroids especially with very 
heterogeneous cluster sizes and noisy data. Aiming 
at improving such drawbacks, some variations of the 
algorithm have been proposed. These variations will 
be detailed in next sections.

Fuzzy C-Means (FCM)

In 1965 Lotfi Zadeh introduced the fuzzy sets, in order 
to model mathematically the imprecision inherent to 
the physical world. Fuzzy logic, derived from fuzzy 
sets, admits ranges of values between the crisp true 
or false Boolean values. Fuzzy clustering methods 

followed the creation of fuzzy sets. Such methods 
allow vertices to be assigned to different clusters in 
different degrees, consisting of partial memberships. 
The proposition is that vertices with a high degree of 
similarity are closer to a cluster, rather than vertices 
with a low or close to zero degree of similarity to that 
cluster. Thus, every vertex in the network belongs to 
all clusters with a distinct degree of membership. De-
grees of membership vary from zero to one (Bezdek, 
Ehrlich, & Full, 1984). When a vertex coincides with 
the center of the cluster, it is assigned to that vertex 
the maximum degree of membership. It is possible to 
blur the boarders of the clusters by using a fuzzyfica-
tion constant. Figure 3 (left) shows a sample of points 
with unclustered data. In the right side of the figure, 
the same data points are clustered using the FCM 
algorithm into three distinct clusters.

Different from the usual K-means that has a single 
parameter K (number of desired clusters), in order to 
use FCM the following parameters must be provided: 
the number of clusters, c, the “fuzziness” exponent, 
M, the termination tolerance, and the norm-inducing 
matrix, A. Also, the fuzzy partition matrix, U, must 
be initialized. The number of clusters, c, similar to 
the crisp K-means, represents the number of desired 
partitions and, usually, it is an empirical value.

FCM algorithm is a powerful unsupervised method 
for the analysis of data and, in several situations, it 
produces better results than the traditional K-means 
approach, avoiding the local minima. FCM is also less 
sensitive to noisy data than the K-means.

Figure 2. Flowchart of the K-means algorithm
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Weighted K-Means

The analysis of data from interactions commonly 
occurs in different dimensions, it is reasonable to as-
sume that in certain cases some dimensions may be 
more relevant (Modha & Spangler, 2003). However, 
even weak correlations still can have significant value 
for data analysis. Thus, it is convenient to have an 
algorithm able to measure attributes under different 
weights (Huang et al., 2005).

Weighted K-means is also called Minkowski 
Weighted K-means (de Amorim & Mirkin, 2012a), 
since it automatically calculates feature weights for 
each cluster using the Minkowski metric. Different 
from the Euclidean distance, Minkowski space also has 
only one time-like dimension. Weighted K-means will 
output the K centroids to a given set of n data points 
considering weights when computing the centroids.

To automate the discovery of weights, differ-
ent characteristics (dimensions) should have clearly 
distinct weights. The weights must be non-negative 
values between zero and one. Thus, the dimensions, 
uniformly distributed across the clusters, will be as-
signed with a small weight, while those agglutinated 
near the centroids will be assigned with a large weight 
(de Amorim & Mirkin, 2012b). These adjustments 
result in a balance between the dimensions of the 

network. This balanced characteristic of weighted K-
means results into more homogeneous divisions, since 
no one of the network dimensions will lead the entire 
network to a specific direction.

We propose a supervised approach to the K-means 
that provides a weight to each dimension of data. With 
different weights assigned to each dimension of data, 
it is possible to change the balance of the equation and 
get an overall modified result. If an attribute has less 
importance we will counterbalance the others assigning 
more importance to them. The modified version of the 
weighted K-means with a Euclidean distance subject 
to weights is shown in equation 3.

D
p q
W

p q
W

pn qn
Wn

=
−

+
−

+ +
−( ) ( )

...
( )1 1 2

1
2 2 2

2

2  

(3)

Equation 4 shows the Euclidean distance submit 
to weights in sigma notation.

D
pk qk
Wkk

n

=
+

=
∑ ( )2

1

 (4)

The weights will only influence the clustering 
results if distinct values have been set to at least two 

Figure 3. Example of unclustered data sample (left), clustered data with three clusters (right)
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dimensions of data, otherwise the algorithm will behave 
as the traditional K-means.

If there is sufficient change in at least one centroid 
to reassign at least one vertex to a different cluster, both 
centroids (which lost the vertex and which receive the 
vertex) will be recalculated. This procedure changes 
centroids’ positions and may cause new changes to other 
vertices. The process is repeated until the centroids are 
mathematically in the center of each cluster.

Therefore, it is possible to balance the dimensions 
without losses. Even the weak relations can be added 
to the network with a small weight.

This approach is a complementary way to find 
communities in graphs with a wide dimensions of 
data, if distinct dimensions has more or less relevance 
to the network. This approach minimizes distortions 
caused by outliers.

As per the previous presented versions the main 
goal of weighted K-means is to identify similarity 
between vertices or vertices to clusters.

We have successfully combined the weighted K-
means procedures shown on this article to obtain parti-
tions of social networks and post process the network 
with Graph Layout algorithms such as Frutchermand 
and Reingold (1991) and Hu (2005). The K-means 
produced satisfactory partitions of the original data and 
the direct graph layout algorithms helped to obtain a 
clear aesthetics network community separation.

Figure 4. shows examples of communities where 
an index of success was created through the weighted 
K-means algorithm. This network shows the success rate 
of companies which have participated on public bids. 
In this case, we have K=3 clusters, which correspond 

to the discretized index of success, in which we have: 
always win, average win, always lose. There are three 
distinct groups to be clustered according to several 
dimensions of data, such as: number of participation 
in public bids, number of victories, financial value 
measured, and so on. The most aesthetic result is the 
Frutchermand and Reingold approach. 

FUTURE RESEARCH DIRECTIONS

The present work is an attempt to present simple but 
yet powerful techniques for clustering data, the major 
intent is to provide a method capable to measure the 
similarity between elements into a complex network. 
As future work we can highlight the addition of new 
metrics to our proposed variation of weighted K-means.

We also intend to do comparison to several other 
clustering methods by means of benchmarks with 
well-known complex networks. Thus, expanding the 
presented work and his results.

CONCLUSION

Network analysis and Sociometrics have received 
growing attention as the networks become larger and 
ubiquitous. Therefore, more and more, software, tech-
niques, algorithms and knowledge about them have 
been developed for its analysis and the extraction of 
useful information.

Figure 4. Random positioned vertices, Fruchterman and Reingold and Yifan Hu layout examples
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In this article we briefly reviewed some known clus-
tering methods for grouping data in complex networks, 
with focus on the K-means and his major variants.

We showed some approaches to find communities in 
graphs and complex networks using distinct algorithms 
with their particular strengths and drawbacks. Com-
bining the ability of the K-means algorithm to group 
objects with high similarity and combining the results 
of the partitions found with algorithms visualization 
of complex networks we can arrive to a satisfactory 
performance for real-world massive data.
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KEY TERMS AND DEFINITIONS

Centroid: The point that inside a geometric shape 
defines its geometric center.

Cluster: A group of equal or similar elements that 
occurring closely or together. A sub network divided 
in groups of nodes with dense connections internally 
and sparser connections between groups.

Community: A group or set of individuals with 
similarities into a network.

Complex Networks: Graphs with nontrivial 
features.

Data Mining: The process of exploring large 
amounts of data in search of consistent patterns.

Discretization: The act of discretizing, turn some-
thing off in several continuous (or discrete) parts.

Fuzzy: An approach based on “intermediate de-
grees” rather than the “true or false” Boolean logic.

Graph: A graph is represented as a set of points 
(vertices) connected by lines (edges).

Indegree: The number of the edges directed into 
a vertex in a directed graph.

K-Means: A clustering algorithm to partition n 
observations into K clusters, which each K cluster has 
a centroid and each observation is assigned to a cluster.

Outdegree: The number of the edges directed out 
a vertex in a directed graph.

Social Networks: A social structure such individu-
als or organizations and the relationship between them.


