
Encyclopedia of
Information Science and
Technology, Third Edition

Mehdi Khosrow-Pour
Information Resources Management Association, USA

A volume in the

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2015 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
			 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.�

Encyclopedia of information science and technology / Mehdi Khosrow-Pour, editor.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-4666-5888-2 (hardcover) -- ISBN 978-1-4666-5889-9 (ebook) -- ISBN 978-1-4666-5891-2 (print &
perpetual access) 1. Information science--Encyclopedias. 2. Information technology--Encyclopedias. I. Khosrow-Pour,
Mehdi, 1951-
 Z1006.E566 2015
 020.3--dc23
 2014017131

Managing Director:
Production Editor:
Development Editor:
Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Jennifer Yoder & Christina Henning
Austin DeMarco & Jan Travers
Kayla Wolfe
Mike Brehm, John Crodian, Lisandro Gonzalez, Deanna Zombro
Jason Mull

Category: Systems and Software Engineering

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

7142

Evolvable Hardware

INTRODUCTION

Evolvable Hardware (EHW) is an intelligent technol-
ogy which belongs to a large area called Evolutionary
Electronics (EEL), which includes applications of
Evolutionary Computation (EC) in the domain of elec-
tronics. EHW combines concepts from Evolutionary
Computation (EC) and Electronic Design (ED), and
it has been an active area of research in the last years.
This article provides an updated review of this area.
First, EEL with focus on EHW is overviewed, point-
ing out the applicability of this technology. A brief
review of two important EC paradigms is provided:
GAs (Genetic Algorithms) and Genetic Programming
(GP), since they are the most used in EHW. On the
other hand, the basic aspects of ED are also shown
with focus on Reconfigurable Computing (RC) and
the Field Programmable Gate Arrays (FPGAs) technol-
ogy. Next, the usual taxonomy found in the literature
is presented: by design type - analog and digital, and
by evolution type: extrinsic, intrinsic and mixtrinsic.
Some relevant applications are presented and discussed.
Finally, future trends are presented.

BACKGROUND

As previously described, this subject merges two areas
of study. A brief background of both areas is presented
here to provide the necessary comprehension.

Evolutionary Computation

Problems considered complex and hard (e.g., multimo-
dality, large search space, large number of constraints)
to be solved using conventional optimization techniques
of Computer Science are being addressed by EC, which

employs a collection of algorithms called Evolutionary
Algorithms (EAs). EAs imitate the nature, specifically
the Darwinian principle of survival of the fittest. In EC,
an individual is the representation of a possible solu-
tion. A set of individuals forms the initial population,
randomly created. The individuals of this population
eventually produce descendants by means of selection,
reproduction and mutation, according to the survival
rule in which the best fitted individuals are those who
will have more chances to reproduce. The descendants
form a new population and the process is repeated for
many generations. When a stopping criterion is met,
the evolution stops, and the best individual ever found
is the solution for the problem being handled.

The main EAs are: Evolutionary Programming (EP),
(Fogel, 1962), (Fogel, Owens & Walsh, 1966), Evolu-
tion Strategies (ES) (Rechenberg, 1965, 1973), Genetic
Algorithms (GAs) (Holland, 1975) (Goldberg, 1989),
and Genetic Programming (GP) (Koza, 1992, 1999).
GAs and GP are the most frequently used in EHW.

Considering P(t) a population of individuals at time
t, based on the concepts previously presented, GAs
and GP can be represented by the algorithm shown
in Figure 1 and described as follows (Bäck, Fogel &
Michalewicz, 2000a), Goldberg (1989):

Representation

Before running the EA, it is necessary to choose the
representation, i.e., how the candidate solutions are
represented in during the execution of an EA. Data
structures are the commonly representations used by
computer programs. Depending on the problem, the data
structure itself can be the real-world solution. But there
are applications in which such a direct representation is
not possible, for instance, a list of tasks, a mechanism,
or an electronic circuit. Binary strings, finite state

André Macário Barros
Universidade Tecnológica Federal do Paraná - UTFPR, Brazil

Heitor Silvério Lopes
Universidade Tecnológica Federal do Paraná - UTFPR, Brazil

DOI: 10.4018/978-1-4666-5888-2.ch703

Evolvable HardwareCategory: Systems and Software Engineering

 S

7143

representations and parse trees are the data structures
processed by the EAs. The term used for this indirect
representation in EC is genotype, usually composed
by one or more chromosomes and the one employed
for the solution in the real-world is phenotype.

First Generation and Evaluation

For algorithm presented on Figure 1, the initial
population of individuals is randomly generated. Each
individual of the population needs to be evaluated to
inform the EA how good the individual is. This is called
fitness evaluation and can be processed in two steps: a)
the genotype to phenotype conversion – in the case of
an indirect representation; and b) the fitness computa-
tion of the phenotype related to that individual. This
computation is a procedure using expressions related
to the problem to produce usually a number, which
will be used as a measurement of quality. An example
is an individual such as a sequence of cities to deliver
a product. This sequence is used in an expression
looking for higher profits. A sequence that provides a
good profit receives a better evaluation than another
individual that provides lower profits. Each individual
of the population enters the while loop of the algorithm
after have being evaluated.

Selection

In this phase, the individuals of the population are
selected for crossover according to their fitness value.
This selection uses probability. So, the selected indi-
viduals can be the ones with higher fitness values, but
there can be too some individuals with lower fitness
values. The most known selection mechanisms are:
proportional (or roulette wheel), tournament, trunca-
tion, linear rank, and exponential rank.

Crossover

This operation consists of the exchange of genetic
information between the selected individuals. They
are called parents. For instance, a crossover between
two parents “111111” and “000000” can produce two
possible offspring such as “001100” and “110011.”
The two bits in their middle portion were changed. This
operation is probabilistic. Crossover types most known
are: one point, two point and uniform. A chromosome
is composed of genetic information (subsets of bits or
numbers) called building blocks. It is desirable that
crossover operations allow the exchange of informa-
tion between parents preserving their building blocks,
promoting the positive evolution, i.e., descendants with
better values of fitness then their ancestors. Crossover
is an operator that performs local search in the search
space of solutions.

Mutation

After crossover, the descendants are probabilistically
submitted to the mutation operator, which consists in
changing the value of a single locus (a locus is a posi-
tion where the symbol is in a chromosome) to another
value. Example: a mutation at locus 0 in the binary
chromosome “111000111,” results in “111000110.”
Mutation provides diversity in the search for the so-
lution, since it performs global search, an attempt to
avoid the AE to be stuck at local maxima.

Genetic Algorithms

GAs (Holland, 1975), (Goldberg, 1989), (Bäck, Fogel,
& Michalewicz, 2000a), are the most popular EAs and
all the features described previously are found in it.

Genetic Programming

GP (Koza, 1992, 1999) is an EA that usually evolves
computer programs. The chromosome is encoded in
a tree structure. The tree is composed by function
nodes and terminal nodes. The function nodes are,
in most cases, arithmetic or mathematical operations
and Boolean or conditional or iteration functions.
The function nodes are responsible for connecting the
terminal nodes, forming the tree, thus generating an
evolved program in a LISP-like form.

Figure 1. An evolutionary algorithm

 S

Category: Systems and Software EngineeringEvolvable Hardware

7144

Lamarckian Evolutionary Algorithms

Lamarckian Evolutionary Algorithms (LEA) are
population based EAs, but they emphasize exchange
of learning between individuals to produce the next
generation. LEA are also referred in the literature as
Memetic Algorithms (MA), Baldwinian EAs, or social
algorithms (Neri, Cotta, & Moscato, 2011).

Considering a pop population with par parameters,
the main LEA operators responsible for exchange of
individual learning information and their evolution
are: cooperation (cooperate), improvement (improve),
and competition (compete). To avoid premature con-
vergence, it is often employed some kind of restart
procedure. Figure 2 shows a basic template of a MA
based on these concepts.

EA Applications

Some areas of application are: Mathematics (optimi-
zation, time-series), Biology (biochemistry, ecology),
Physics (nuclear, optics), Engineering (mechanics,
aerospace, robotics, electronics, signal processing),
Computer Science (data mining, image processing),
fault-tolerant systems (Zebulum, Pacheco, & Vellasco,
2001). More examples can be found at Bäck, Fogel,
Michalewicz (2000). Examples of applications with
LEAs are: Artificial Neural Network training, pattern
recognition, robotic motion planning, medical systems,
and VLSI design.

Electronic Design

ED (Whitaker, 2005), this great area of electronics,
accumulates at least one hundred years of engineer-

ing knowledge of electronic systems development.
This knowledge is based on human efforts, i.e., some
developers created a set of rules to be followed during
a project, all of them based on analog and digital circuit
theory. Electronic systems are conceived through the
observation of these rules. Belonging to this wide area,
the technology of programmable devices is of special
interest for EHW.

FPAA

FPAA (Field Programmable Analog Array) (Pierzchala,
Gulak, Chua, & Rodrigues-Vásquez, 1998) is a pro-
grammable device composed of operational amplifiers
and passive components. It can be programmed by
software and this configuration can be transferred to
them through a computer interface. The configuration
contains an analog circuit created by the designer.

PLD

A PLD (Programmable Logic Device) (Pedroni, 2008)
is a digitally programmable device that can be catego-
rized in SPLDs (Simple PLD) - PLAs, PALs, or GALs,
CPLDs (Complex PLDs), and FPGAs.

The FPGA is composed of thousands of logic ele-
ments called CLBs (Configurable Logic Blocks) or
LABs (Logic Array Blocks), depending of the vendor.
Each of these logic blocks is composed of elementary
units such as Lookup Tables, “D” flip-flops, fast carry
chain, adders, and multiplexers. The configuration
that the FPGA receives corresponds to specific forms
of associate these logic elements in order to build a
specific digital circuit.

It is possible to program a FPGA in two ways.
Using HDL (Hardware Description Language, such
as Verilog and AHDL, or an IEEE standard HDL
called VHDL (Very High Speed Integrated Circuits
HDL). Alternatively, a graphic interface can be used, in
which the designer draws the schematic of the desired
digital circuit.

The design flow (Pedroni, 2010, pp. 3-10) to put
an FPGA to work implemented with some idealized
digital circuit is through an EDA (Electronic Device
Automation) PC tool supplied by the vendor: a) project
designer register his or her specifications; b) schematic
or VHDL code containing the circuit described by the
designer is entered in the EDA tool; c) analysis and

Figure 2. A LEA template

Evolvable HardwareCategory: Systems and Software Engineering

 S

7145

synthesis is processed. This is called code compilation;
d) Fitting the compiled VHDL code into a specific
space (in the PC) related to a specific FPGA device
is processed. This is called place and routing; e) bit-
stream file (the file that contains the configuration) is
generated; and f) download the bitstream file to the
FPGA device. Between steps (b) and (c), (c) and (d),
(d) and (e) it is possible to run simulations to check the
consistency of the digital circuit to be implemented.

This flexibility provided by FPGAs allowed to
grow an area of research called RC (Reconfigurable
Computing) (Zebulum, Pacheco, & Vellasco, p. 241).
Basically, RC runs an application in two parts: a) a
conventional computer running the ordinary parts of
one program; and b) a FPGA implemented with a spe-
cialized circuit running a specific part of the program
providing acceleration.

EVOLVABLE HARDWARE

Zebulum, Pacheco & Vellasco (2001) define EEL as
a research area that covers all the applications involv-
ing EC for electronic design. To design an electronic
circuit using EC it is necessary to model the problem
taking into account the characteristics presented in the
EC section, such as the representation. Considering
the algorithm presented at Figure 1, the population of
individuals here is a population of possible candidate-
circuits (in genotype form, e.g., bit strings) that satis-
fies the necessary requisites of a design specification.

Phenotype-Genotype (Electronic
Circuit-Chromosome) Mapping

The representation (the phenotype to genotype map-
ping) will be demonstrated using a second order
Butterworth low-pass filter presented as an example
in Figure 3.

Four relevant aspects of Figure 3: 1) following this
kind of modeling, the size of the chromosome has a
relationship with the size of the circuit; 2) it is up to
the designer the investigation of the estimated size of
the search space and the respective specification of
the bit widths for of each gene (a gene for EC here is
a sequence of bits or symbols that represent together
something meaningful – in this case ctype, cvalue, term1
and term2); 3) to run the EA it is necessary to build a
full chromosome, with all genes of the circuit-candidate;
and iv) it is possible to conclude that a digital system
can follow this netlist style of modeling at gate level.
A subprogram can do this conversion (chromosome
to netlist file).

With the candidate-solutions mapped, it is now
necessary to establish the evaluation process (see
EC section). In this example a good chromosome is
the one that maps component values that provides
a frequency response acceptably close to the filter
parameters presented at Figure 3. This is done in the
circuit-candidate with a sweep signal for Vin and a cor-
responding observation of Vout. Receiving a netlist file,
a circuit simulator can produce a value useful for this
evaluation process. Observe that it is not necessary to
handle the Butterworth formulas.

Figure 3. Phenotype to genotype mapping for a circuit

 S

Category: Systems and Software EngineeringEvolvable Hardware

7146

This lack of dependency of all formulas involved
in a classical design gives novelty for the solutions.
Consider three sets: 1) A: all the solutions provided by
classic ED; 2) B: all the solutions provided by EEL;
and 3) C: all the possible solutions. Empirical results
demonstrated empirically that A ∈ B (Lohn & Hornby,
2006). But it is not possible to affirm that B = C.

Consider a problem of GP where there is a search
for a VHDL code. An example can be the one presented
in Figure 4, where a digital circuit can be expressed in
a chromosome represented in a tree structure.

The tree structure which represents the chromo-
some is then mapped to the VHDL code (phenotype)
presented at Figure 5.

Figures 4 and 5 show how a chromosome can be
transformed to a real VHDL code. This transforma-
tion is lexically possible because the VHDL code

presents three fixed sections: 1) library declarations
(lines 1 and 2 of Figure 5); 2) pin declarations (lines
3 to 6 of Figure 5); and 3) chip behavior (lines 7 to
10 of Figure 5), i.e., what the chip to be evolved must
process digitally to produce the desired input/output
relationship. For digital combinational circuits this is
almost a direct conversion for GP and GA (in cases of
binary representation). After the code is converted it can
be evaluated in two ways: 1) through logic simulator
software which works with VHDL; or 2) through real
circuit evaluation. In this case the code is synthesized
and transferred to a FPGA (see Electronic Design/
PLD section). The fitness evaluation can be in this
case a measurement of how close the result is from
the truth-table.

Each chromosome of each population at each gen-
eration must pass to this conversion to be calculated a
fitness value. With this measurement the EA algorithm
proceeds with its loop (Figure 1) and the process is
repeated until its termination condition.

Evolvable Hardware Definition

To understand the definition of EHW it is necessary to
explain evolution. In the case of a circuit evolution, it
is possible in EHW to evaluate the candidate-solutions
in software simulation or in a real circuit-on-the-loop.
It is called extrinsic evolution (or offline fitness com-
putation – OFC) when all the EA runs in software
and only the best chromosome of the last generation

Figure 4. Tree-structure representation for GP

Figure 5. VHDL code mapped from GP

Evolvable HardwareCategory: Systems and Software Engineering

 S

7147

is implemented in hardware. It is called intrinsic
evolution when each chromosome of each population
at each generation is evaluated in a real circuit dur-
ing the EA loop. This kind of evolution is also called
real-time evolution, hardware in the loop, or EHW
(online fitness computation – ONL) (Stoica, Zebulum,
& Keymeulen, 2000, p.4). A third kind of evolution
mixes the two previous types in the called mixtrinsic
evolution (Stoica, Zebulum, & Keymeulen, 2000).

Floreano and Mattiussi (2008, p. 58) follow this
concept, but they alert for the fact that EHW has also
been used to cover all the EEL area, for example, in
Torresen (2004).

Fault-tolerance systems has gained so much at-
tention that another concept for EHW has appeared:
according to IEEE Task Force on Evolvable Hardware
(2012): the objective of EHW is to design systems that
can self-adapt as necessary to compensate for changing
operational environments or to survive and recover
from faults using simulated evolution to search for new
hardware configurations.

Professor Adrian Thompson, the pioneer of EHW,
recommends in his home-page that an electronic
search for EEL must be made using the following
keywords: Hardware Evolution, Evolvable Hardware
(EHW, E-Hard), Evolutionary Electronics, EvolWare,
and bio-inspired electronics (Thompson, nd), i.e., it is
possible to use the terms EEL or EHW to express the
same concept.

Pioneer works of EHW are: Louis & Rawlins (1991),
which was the first to introduce the idea of using EAs
to perform structure design; the first to use FPGAs in
structure design (De Garis, 1993); and the first to apply
intrinsic evolution (Thompson, 1996).

EHW Specific Danger

When an application runs intrinsic evolution there is
a dangerous situation. The circuit could be damaged
due to an incorrect connectivity between the compo-
nents. This is fixed with two actions: the generation
of chromosomes that are not capable of produce in-
compatible connections; or to apply penalties during
the EA evaluation phase for individuals that present
such anomalies.

Taxonomy

A taxonomy proposed by Torresen (2004) for EHW
with slight modifications is subdivided in eight fields
and repeated here.

•	 Algorithm (EA): the application can be de-
veloped using one or more of the four EA pre-
viously presented – GA, GP, EP, ES; or com-
bined with other techniques: a HA (Hybrid
Algorithm);

•	 Technology (TE): the system can be analog
(A), digital (D);

•	 Architecture (AR): fixed circuit with param-
eter tuning (CT) or complete circuit design
(CD);

•	 Building Block (BB): analog (ANLG) compo-
nent level (transistor, passive componets), gate
(GATE) level (AND, OR, etc), or function level
(FUNC) level (multiplexes, adders, etc);

•	 Target Hardware (THW): the circuit to be
evolved can be a custom (CST) hardware (e.g.
ASIC), a commercially (COM) available PLD
(e.g. FPGA), or the experiment was completed
only with simulation results (SIM);

•	 Fitness Computation (FC): this category was
previously presented;

•	 Evolution (EV): Off-chip (OFCP) evolution
(the EA is performed on a separate proces-
sor); on-chip (ONCP) evolution (the EA is per-
formed on a separate processor incorporated
into the chip containing the target EHW); and
complete HW (CHWD) evolution (the EA runs
on a special hardware, i.e., not a traditional
processor);

•	 Scope (SC): if the circuit is evolved and, at
end, it is put to work, this is called static (S)
evolution. On the other hand, if each evolved
circuit replaces the circuit in operation, this is
called dynamic (D) evolution.

EHW Applications

Taking the previous taxonomy as a basis, Table 1
presents a sample of the most important contributions
of EHW.

 S

Category: Systems and Software EngineeringEvolvable Hardware

7148

FUTURE RESEARCH DIRECTIONS

One of the great challenges of EHW is to provide
scalability to work with larger circuits. One counter-
measure is to enlarge the size of the chromosome to
be proportional to larger search spaces. An analogous
effect can be obtained through another technique called
VLR (Variable Length Representation) (Zebulum,
Pacheco, & Vellasco, 2001, p. 53). What encourages
this direction is that recent experiments had shown that
only 3% of the available slices in an academic FPGA
were used to fit a modified GA (Balaji & Rao, 2012).

An important contribution is morphogenesis for
EHW (Lee & Sitte, 2004, 2006). With this strategy it
is possible to design hardware considering scalability
as well as novelty that EAs can provide for solutions.

The possibility of an application to self-adapt and
self-repair is a key component for mission-critical
systems that can be damaged by radiation, noise, and
other sources. NASA/DoD Conference on Evolvable
Hardware is a Conference that encourages academic
productivity in this direction.

Some challenges are still present. The design flow
for an application run in a FPGA (ED section) is time-
consuming. Even with more memory or clock in the
computer that runs the EDA tool, it is necessary to
consider a relevant time to implement just one chromo-
some. Considering g as the number of generations, p
the size of a population and ni the number of individu-

als in a population, any intrinsic evolution consume a
total time of approximately g × p × ni. This does not
take account the size of the chromosome that usually
is proportional to the level of the complexity, enlarg-
ing the search space. Therefore, high computational
resources are mandatory for evolving real-world cir-
cuits. These problems are being addressed by machine
parallelism and FPGAs with DPR (Dynamic Partial
Reconfiguration). Works considering this problem are
an open highway.

CONCLUSION

EHW and a brief background necessary to its compre-
hension were presented.

As just a simple sample of the universe of applica-
tions, it is possible to conclude that EHW is continu-
ously presenting advances in the level of complexity
of applications, regarding the parameters considered
in the taxonomy during these 22 years of academic
productivity.

Evolvable Hardware is a fascinating area of research
due to its flexibility for several and distinct applications.

Table 1. Sample of more than 20 years of EEL applications

Application EA TE AR BB THW FC EV SC

Digital Basic functions evolution
Louis & Rawlins (1991), Barros, Lopes & Stelle (2007) GA D CD GATE SIM OFL OFCP S

Amplification and Filter Design
London & Colombano (1999) GA A CD ANLG CST OFL OFCP S

Analog Circuit Synthesis
Koza, Bennett III, Andre, & Keane (1999) GP A CD ANLG CST OFL OFCP S

Robot Navigation
Keymeulen, Durantez, Konaka, Kuniyoshi & Higuchi (1996) GA D CD GATE CST ONL CHWD S

Adaptive Image Compression
Salvador, Vidal, Moreno, Riesgo & Sekanina (2012) ES D CD FUNC COM ONL ONCP D

Spread Spectrum
Balaji & Rao (2012) HA D CT GATE COM ONL ONCP D

Automatic Fault Detection and Self-Repair
Oreifej & DeMara (2012) GA D CD GATE COM ONL ONCP D

Circuit Design
Ong & Keane (2004) HA D CD GATE COM OFL OFCP S

Evolvable HardwareCategory: Systems and Software Engineering

 S

7149

REFERENCES

Anadigm. (n.d.). Anadigm Development Kits. Retrieved
September 12, 2013, from http://www.anadigm.com/
devkits.asp

Bäck, T., Fogel, D. B., & Michalewicz, Z. (Eds.).
(2000a). Evolutionary computation 1: basic algorithms
and operators. Bristol, UK: Institute of Physics Pub-
lishing. doi:10.1887/0750306645

Bäck, T., Fogel, D. B., & Michalewicz, Z. (Eds.).
(2000b). Evolutionary computation 2: advanced algo-
rithms and operators. Bristol, UK: Institute of Physics
Publishing. doi:10.1887/0750306653

Balaji, N., & Rao, K. S. (2012). VLSI-based real-time
signal processing solution employing four-phase codes
for spread-spectrum applications. Journal of the Institu-
tion of Electronics and Telecommunication Engineers,
58(1), 57–64. doi:10.4103/0377-2063.94083

Barros, A. M., Lopes, H. S., & Stelle, A. L. (2007).
Automatic FIR filter design method and tool based
on genetic algorithms. In Proceedings of the 1st IEEE
Symposium on Computational Intelligence in Image
and Signal Processing (pp. 151-156). Piscataway, NJ:
IEEE Computer Society Press.

De Garis, H. (1993). Evolvable hardware: genetic
programming of a Darwin machine. In R. F. Albretch,
C. R. Reeves, & N. C. Steele (Eds.), Artificial Neural
Nets and Genetic Algorithms (pp. 441–449). New York:
Springer-Verlag. doi:10.1007/978-3-7091-7533-0_64

Floreano, D., & Mattiussi, C. (2008). Bio-inspired
artificial intelligence: theories, methods, and technolo-
gies. Cambridge: The MIT Press.

Fogel, L. J. (1962). Autonomous Automata. Industrial
Research Magazine, 4(2), 14–19.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966).
Artificial intelligence through simulated evolution.
New York: Wiley.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization and machine learning. Boston: Addison-
Wesley Longman Publishing, Inc.

Holland, J. (1975). Adaptation in natural and artificial
systems. Ann Arbor, MI: University of Michigan Press.

Keymeulen, D., Durantez, M., Konaka, K., Kuniyoshi,
Y., & Higuchi, T. (1996). An evolutionary robot naviga-
tion system using a gate-level evolvable hardware. In
T. Higuchi, M. Iwata, & W. Liu (Eds.), Proceedings
of the First International Conference of Evolvable
Hardware: from biology to hardware (ICES96) (pp.
195-209). New York: Springer-Verlag.

Koza, J. R. (1992). Genetic programming. Cambridge,
MA: The MIT Press.

Koza, J. R., Bennett, F. H. III, Andre, D., & Keane,
M. A. (1999). Genetic programming III: Darwinian
invention and problem solving. San Francisco, CA:
Morgan Kaufmann Publishers, Inc.

Lee, J., & Sitte, J. (2004, December). A gate-level
model for morphogenetic evolvable hardware. In
Proceedings of the International Conference on Field
Programmable Technology (ICFPT´2004) (pp. 113-
119). Brisbane, Australia.

Lee, J., & Sitte, J. (2006, June). Gate-level Morpho-
genetic Evolvable Hardware for Scalability and Adap-
tation on FPGAs. In Proceedings of the First NASA/
ESA Conference on Adaptive Hardware and Systems
(AHS´2006) (pp.145-152). Istambul, Turkey.

Lohn, J. D., & Colombano, S. P. (1999). A circuit
representation technique for automated circuit design.
IEEE Transactions on Evolutionary Computation, 3(3),
205–219. doi:10.1109/4235.788491

Lohn, J. D., & Hornby, G. S. (2006, February). Evolv-
able hardware: using evolutionary computation to
design and optimize hardware systems. IEEE Com-
putational Intelligence Magazine.

Louis, S. J., & Rawlins, J. E. (1991). Designer-genetic
algorithms: genetic algorithms in structure design. In
R. K. Belew, & L. B. Booker (Eds.), Proceedings of
the Fourth International Conference on Genetic Al-
gorithms (ICGA-91) (pp. 53-60). San Francisco, CA:
Morgan Kaufmann.

Neri, F., Cotta, C., & Moscato, P. (2011). Handbook
of Memetic Algorithms. New York: Springer-Verlag.

Ong, Y. S., & Keane, A. J. (2004). Meta-lamarckian
learning in memetic algorithms. IEEE Transactions on
Evolutionary Computation, 8(2), 99–110. doi:10.1109/
TEVC.2003.819944

 S

Category: Systems and Software EngineeringEvolvable Hardware

7150

Oreifej, R. S., & DeMara, R. F. (2012). Intrinsic evolv-
able hardware platform for digital circuit design and
repair using genetic algorithms. Applied Soft Comput-
ing, 12, 2470–2480. doi:10.1016/j.asoc.2012.03.032

Pedroni, V. A. (2008). Digital electronics and design
with VHDL. Burlington, MA: Elsevier, Inc.

Pedroni, V. A. (2010). Circuit design and simulation
with VHDL (2nd ed.). Cambridge: The MIT Press.

Pierzchala, E., Gulak, G., Chua, L. O., & Rodrigues-
Vásquez, A. (Eds.). (1998). Field-programmable
analog arrays. Dordrectht, NL. Kluwer Academic
Publishers. doi:10.1007/978-1-4757-5224-3

Rechenberg, I. (1965). Cybernetic solution path of
an experimental problem (Technical Report Library
Translation No. 1122). Farnborough, UK: Royal Air-
craft Establishment.

Rechenberg, I. (1973). Evolutionsstrategie: optimier-
ung technischer systeme nach prinzipien der biologisch-
en evolution. Stuttgart, Germany: frommann-holzboog.

Salvador, R., Vidal, A., Moreno, F., Riesgo, T., &
Sekanina, L. (2012). Accelerating FPGA-based evo-
lution of wavelet transform filters by optimized task
scheduling. Microprocessors and Microsystems, 36,
427–438. doi:10.1016/j.micpro.2012.02.002

Stoica, A., Zebulum, R. S., & Keymeulen, D. (2000).
Mixtrinsic Evolution. In Proceedings of the 3rd Interna-
tional Conference on Evolvable systems: from biology
to hardware (ICES’2000) (pp. 208-217). Edinburgh,
Scotland, UK.

Thompson, A. (1996). Silicon Evolution. In J. R. Koza,
D. E. Goldberg, & R. L. Riolo (Eds.), Proceedings of
Genetic Programming (GP96) (pp. 444–452). Cam-
bridge: The MIT Press.

Thompson, A. (n.d.). Evolutionary Electronics at Sus-
sex. Retrieved September 12, 2013, from http://www.
sussex.ac.uk/Users/adrianth

Torresen, J. (2004, September). An evolvable hardware
tutorial. In Proceedings of the 14th International Confer-
ence on Field Programmable Logic and Applications
(FPL´2004) (pp. 821-830). Antwerp, Belgium.

Whitaker, J. C. (2005). The electronics handbook. Boca
Raton, FL: CRC Press.

Zebulum, R. S., Pacheco, M. A. C., & Vellasco, M.
M. B. R. (2001). Evolutionary electronics: Auto-
matic design of electronic circuits and systems by
genetic algorithms. Boca Raton, FL: CRC Press.
doi:10.1201/9781420041590

ADDITIONAL READING

Altera. (2013). All Development Kits. Altera Corpora-
tion. Retrieved September 12, 2013 from http://www.
altera.com/products/devkits/kit-dev_platforms.jsp

Boylestad, R. L. (2000). Electronic devices and circuits
theory (10th ed.). Boston: Pearson Education.

Chu, P. P. (2008). FPGA prototyping by VHDL ex-
amples. New Jersey: John Wiley & Sons, Inc.

Goodman, E. (2002). GALOPPS 3.2.4 - the “Genetic
ALgorithm Optimized for Portability and Parallelism
System.” MSU GARAGe Software. Retrieved Septem-
ber, 12, 2013, from http://garage.cse.msu.edu/software/
galopps/index.html

Higuchi, T. Liu, Yong, & Yao, X. (2006). Evolvable
hardware. New York: Springer.

Koza, J. R. (1994). Genetic programming II: automatic
discovery of reusable programs. Cambridge, MA: The
MIT Press.

Langdon, W. B., & Poli, R. (2002). Foundations of
genetic programming. New York: Springer-Verlag.
doi:10.1007/978-3-662-04726-2

Mentor Graphics. (2013). ModelSim: leading simula-
tion and debugging. Retrieved September 12, 2013
from http://www.mentor.com/products/fpga/model

Punch, B., & Zongker, D. (1998). lil-gp Genetic Pro-
gramming System, version 1.1. Retrieved September,
12, 2013, from http://garage.cse.msu.edu/software/
lil-gp/index.html

Quagliarella, D., Périaux, J., Poloni, C., & Winter, G.
(1998). Genetic algorithms and evolution strategy in
engineering and computer science: recent advances and
industrial applications. Chichester: John Wiley & Sons.

Taub, H. (1982). Digital circuits and microprocessors.
New York: McGraw-Hill.

Evolvable HardwareCategory: Systems and Software Engineering

 S

7151

Whitley, D. (1994). A genetic algorithm tutorial.
Statistics and Computing, 4, 65–850. doi:10.1007/
BF00175354

Whitley, D., Gordon, V. S., & Mathias, K. (1994).
Lamarkian evolution: the Baldwin effect and function
optimization. Paper presented at 3rd International
Conference on Evolutionary Computation - Parallel
Problem Solving (PPSN III). Jerusalem, Israel, p. 6-15.

Xilinx. (2013). All Programmable FPGAs. Xilinx Inc.
Retrieved September 12, 2013 from http://www.xilinx.
com/products/silicon-devices/fpga/index.htm

KEY TERMS AND DEFINITIONS

Evolutionary Algorithms (EAs): Algorithms
which are based on evolutionary computation prin-
ciples.

Evolutionary Computation (EC): A research
area that consists of computational optimization search
methods based on heuristics which imitates nature to
find optimized solutions.

Evolutionary Electronics (EEL): Also known as
Hardware Evolution, Evolvable Hardware, EvolWare,
or bio-inspired electronics, is a research area which
covers all the applications involving the use of Evo-
lutionary Computation in electronic systems’ design.

Field Programmable Analog Array (FPAA): A
programmable chip that contains operational amplifiers
and passive components that can be arranged in different
ways. To receive different configurations, the FPAA is
connected through an interface to a computer which
contains vendor specific software that offers to the
developer a specification language usually graphical.

Field Programmable Gate Array (FPGA): A
programmable chip that contains logic gates as well as
that can be arranged in different ways. To receive differ-
ent configurations, the FPGA is connected through an
interface to a computer which contains vendor specific
software that offers to the developer two kinds of speci-
fication languages: one graphical and the other textual.
VHDL (IEEE Standardized), Verilog, and AHDL are
examples of the textual description languages.

Genetic Algorithm (GA): An evolutionary algo-
rithm that works with encoded population-based search
imitating nature through the following mechanisms:
selection, reproduction and mutation. The encoding
consists of mapping each possible solution belongs to
the search space to a symbol string, usually bits. Each
encoded string is called chromosome. A population of
chromosomes which is a sample of the search space is
the base for the heuristic search.

Genetic Programming (GP): A variation of ge-
netic algorithm in which the members of the population
are parse trees. GP usually is used to evolve symbolic
information (examples are: computer code, symbolic
regression, and automatic electrical circuit design).

