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Evolvable Hardware

INTRODUCTION

Evolvable Hardware (EHW) is an intelligent technol-
ogy which belongs to a large area called Evolutionary 
Electronics (EEL), which includes applications of 
Evolutionary Computation (EC) in the domain of elec-
tronics. EHW combines concepts from Evolutionary 
Computation (EC) and Electronic Design (ED), and 
it has been an active area of research in the last years. 
This article provides an updated review of this area. 
First, EEL with focus on EHW is overviewed, point-
ing out the applicability of this technology. A brief 
review of two important EC paradigms is provided: 
GAs (Genetic Algorithms) and Genetic Programming 
(GP), since they are the most used in EHW. On the 
other hand, the basic aspects of ED are also shown 
with focus on Reconfigurable Computing (RC) and 
the Field Programmable Gate Arrays (FPGAs) technol-
ogy. Next, the usual taxonomy found in the literature 
is presented: by design type - analog and digital, and 
by evolution type: extrinsic, intrinsic and mixtrinsic. 
Some relevant applications are presented and discussed. 
Finally, future trends are presented.

BACKGROUND

As previously described, this subject merges two areas 
of study. A brief background of both areas is presented 
here to provide the necessary comprehension.

Evolutionary Computation

Problems considered complex and hard (e.g., multimo-
dality, large search space, large number of constraints) 
to be solved using conventional optimization techniques 
of Computer Science are being addressed by EC, which 

employs a collection of algorithms called Evolutionary 
Algorithms (EAs). EAs imitate the nature, specifically 
the Darwinian principle of survival of the fittest. In EC, 
an individual is the representation of a possible solu-
tion. A set of individuals forms the initial population, 
randomly created. The individuals of this population 
eventually produce descendants by means of selection, 
reproduction and mutation, according to the survival 
rule in which the best fitted individuals are those who 
will have more chances to reproduce. The descendants 
form a new population and the process is repeated for 
many generations. When a stopping criterion is met, 
the evolution stops, and the best individual ever found 
is the solution for the problem being handled.

The main EAs are: Evolutionary Programming (EP), 
(Fogel, 1962), (Fogel, Owens & Walsh, 1966), Evolu-
tion Strategies (ES) (Rechenberg, 1965, 1973), Genetic 
Algorithms (GAs) (Holland, 1975) (Goldberg, 1989), 
and Genetic Programming (GP) (Koza, 1992, 1999). 
GAs and GP are the most frequently used in EHW.

Considering P(t) a population of individuals at time 
t, based on the concepts previously presented, GAs 
and GP can be represented by the algorithm shown 
in Figure 1 and described as follows (Bäck, Fogel & 
Michalewicz, 2000a), Goldberg (1989):

Representation

Before running the EA, it is necessary to choose the 
representation, i.e., how the candidate solutions are 
represented in during the execution of an EA. Data 
structures are the commonly representations used by 
computer programs. Depending on the problem, the data 
structure itself can be the real-world solution. But there 
are applications in which such a direct representation is 
not possible, for instance, a list of tasks, a mechanism, 
or an electronic circuit. Binary strings, finite state 
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representations and parse trees are the data structures 
processed by the EAs. The term used for this indirect 
representation in EC is genotype, usually composed 
by one or more chromosomes and the one employed 
for the solution in the real-world is phenotype.

First Generation and Evaluation

For algorithm presented on Figure 1, the initial 
population of individuals is randomly generated. Each 
individual of the population needs to be evaluated to 
inform the EA how good the individual is. This is called 
fitness evaluation and can be processed in two steps: a) 
the genotype to phenotype conversion – in the case of 
an indirect representation; and b) the fitness computa-
tion of the phenotype related to that individual. This 
computation is a procedure using expressions related 
to the problem to produce usually a number, which 
will be used as a measurement of quality. An example 
is an individual such as a sequence of cities to deliver 
a product. This sequence is used in an expression 
looking for higher profits. A sequence that provides a 
good profit receives a better evaluation than another 
individual that provides lower profits. Each individual 
of the population enters the while loop of the algorithm 
after have being evaluated.

Selection

In this phase, the individuals of the population are 
selected for crossover according to their fitness value. 
This selection uses probability. So, the selected indi-
viduals can be the ones with higher fitness values, but 
there can be too some individuals with lower fitness 
values. The most known selection mechanisms are: 
proportional (or roulette wheel), tournament, trunca-
tion, linear rank, and exponential rank.

Crossover

This operation consists of the exchange of genetic 
information between the selected individuals. They 
are called parents. For instance, a crossover between 
two parents “111111” and “000000” can produce two 
possible offspring such as “001100” and “110011.” 
The two bits in their middle portion were changed. This 
operation is probabilistic. Crossover types most known 
are: one point, two point and uniform. A chromosome 
is composed of genetic information (subsets of bits or 
numbers) called building blocks. It is desirable that 
crossover operations allow the exchange of informa-
tion between parents preserving their building blocks, 
promoting the positive evolution, i.e., descendants with 
better values of fitness then their ancestors. Crossover 
is an operator that performs local search in the search 
space of solutions.

Mutation

After crossover, the descendants are probabilistically 
submitted to the mutation operator, which consists in 
changing the value of a single locus (a locus is a posi-
tion where the symbol is in a chromosome) to another 
value. Example: a mutation at locus 0 in the binary 
chromosome “111000111,” results in “111000110.” 
Mutation provides diversity in the search for the so-
lution, since it performs global search, an attempt to 
avoid the AE to be stuck at local maxima.

Genetic Algorithms

GAs (Holland, 1975), (Goldberg, 1989), (Bäck, Fogel, 
& Michalewicz, 2000a), are the most popular EAs and 
all the features described previously are found in it.

Genetic Programming

GP (Koza, 1992, 1999) is an EA that usually evolves 
computer programs. The chromosome is encoded in 
a tree structure. The tree is composed by function 
nodes and terminal nodes. The function nodes are, 
in most cases, arithmetic or mathematical operations 
and Boolean or conditional or iteration functions. 
The function nodes are responsible for connecting the 
terminal nodes, forming the tree, thus generating an 
evolved program in a LISP-like form.

Figure 1. An evolutionary algorithm
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Lamarckian Evolutionary Algorithms

Lamarckian Evolutionary Algorithms (LEA) are 
population based EAs, but they emphasize exchange 
of learning between individuals to produce the next 
generation. LEA are also referred in the literature as 
Memetic Algorithms (MA), Baldwinian EAs, or social 
algorithms (Neri, Cotta, & Moscato, 2011).

Considering a pop population with par parameters, 
the main LEA operators responsible for exchange of 
individual learning information and their evolution 
are: cooperation (cooperate), improvement (improve), 
and competition (compete). To avoid premature con-
vergence, it is often employed some kind of restart 
procedure. Figure 2 shows a basic template of a MA 
based on these concepts.

EA Applications

Some areas of application are: Mathematics (optimi-
zation, time-series), Biology (biochemistry, ecology), 
Physics (nuclear, optics), Engineering (mechanics, 
aerospace, robotics, electronics, signal processing), 
Computer Science (data mining, image processing), 
fault-tolerant systems (Zebulum, Pacheco, & Vellasco, 
2001). More examples can be found at Bäck, Fogel, 
Michalewicz (2000). Examples of applications with 
LEAs are: Artificial Neural Network training, pattern 
recognition, robotic motion planning, medical systems, 
and VLSI design.

Electronic Design

ED (Whitaker, 2005), this great area of electronics, 
accumulates at least one hundred years of engineer-

ing knowledge of electronic systems development. 
This knowledge is based on human efforts, i.e., some 
developers created a set of rules to be followed during 
a project, all of them based on analog and digital circuit 
theory. Electronic systems are conceived through the 
observation of these rules. Belonging to this wide area, 
the technology of programmable devices is of special 
interest for EHW.

FPAA

FPAA (Field Programmable Analog Array) (Pierzchala, 
Gulak, Chua, & Rodrigues-Vásquez, 1998) is a pro-
grammable device composed of operational amplifiers 
and passive components. It can be programmed by 
software and this configuration can be transferred to 
them through a computer interface. The configuration 
contains an analog circuit created by the designer.

PLD

A PLD (Programmable Logic Device) (Pedroni, 2008) 
is a digitally programmable device that can be catego-
rized in SPLDs (Simple PLD) - PLAs, PALs, or GALs, 
CPLDs (Complex PLDs), and FPGAs.

The FPGA is composed of thousands of logic ele-
ments called CLBs (Configurable Logic Blocks) or 
LABs (Logic Array Blocks), depending of the vendor. 
Each of these logic blocks is composed of elementary 
units such as Lookup Tables, “D” flip-flops, fast carry 
chain, adders, and multiplexers. The configuration 
that the FPGA receives corresponds to specific forms 
of associate these logic elements in order to build a 
specific digital circuit.

It is possible to program a FPGA in two ways. 
Using HDL (Hardware Description Language, such 
as Verilog and AHDL, or an IEEE standard HDL 
called VHDL (Very High Speed Integrated Circuits 
HDL). Alternatively, a graphic interface can be used, in 
which the designer draws the schematic of the desired 
digital circuit.

The design flow (Pedroni, 2010, pp. 3-10) to put 
an FPGA to work implemented with some idealized 
digital circuit is through an EDA (Electronic Device 
Automation) PC tool supplied by the vendor: a) project 
designer register his or her specifications; b) schematic 
or VHDL code containing the circuit described by the 
designer is entered in the EDA tool; c) analysis and 

Figure 2. A LEA template
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synthesis is processed. This is called code compilation; 
d) Fitting the compiled VHDL code into a specific 
space (in the PC) related to a specific FPGA device 
is processed. This is called place and routing; e) bit-
stream file (the file that contains the configuration) is 
generated; and f) download the bitstream file to the 
FPGA device. Between steps (b) and (c), (c) and (d), 
(d) and (e) it is possible to run simulations to check the 
consistency of the digital circuit to be implemented.

This flexibility provided by FPGAs allowed to 
grow an area of research called RC (Reconfigurable 
Computing) (Zebulum, Pacheco, & Vellasco, p. 241). 
Basically, RC runs an application in two parts: a) a 
conventional computer running the ordinary parts of 
one program; and b) a FPGA implemented with a spe-
cialized circuit running a specific part of the program 
providing acceleration.

EVOLVABLE HARDWARE

Zebulum, Pacheco & Vellasco (2001) define EEL as 
a research area that covers all the applications involv-
ing EC for electronic design. To design an electronic 
circuit using EC it is necessary to model the problem 
taking into account the characteristics presented in the 
EC section, such as the representation. Considering 
the algorithm presented at Figure 1, the population of 
individuals here is a population of possible candidate-
circuits (in genotype form, e.g., bit strings) that satis-
fies the necessary requisites of a design specification.

Phenotype-Genotype (Electronic 
Circuit-Chromosome) Mapping

The representation (the phenotype to genotype map-
ping) will be demonstrated using a second order 
Butterworth low-pass filter presented as an example 
in Figure 3.

Four relevant aspects of Figure 3: 1) following this 
kind of modeling, the size of the chromosome has a 
relationship with the size of the circuit; 2) it is up to 
the designer the investigation of the estimated size of 
the search space and the respective specification of 
the bit widths for of each gene (a gene for EC here is 
a sequence of bits or symbols that represent together 
something meaningful – in this case ctype, cvalue, term1 
and term2); 3) to run the EA it is necessary to build a 
full chromosome, with all genes of the circuit-candidate; 
and iv) it is possible to conclude that a digital system 
can follow this netlist style of modeling at gate level. 
A subprogram can do this conversion (chromosome 
to netlist file).

With the candidate-solutions mapped, it is now 
necessary to establish the evaluation process (see 
EC section). In this example a good chromosome is 
the one that maps component values that provides 
a frequency response acceptably close to the filter 
parameters presented at Figure 3. This is done in the 
circuit-candidate with a sweep signal for Vin and a cor-
responding observation of Vout. Receiving a netlist file, 
a circuit simulator can produce a value useful for this 
evaluation process. Observe that it is not necessary to 
handle the Butterworth formulas.

Figure 3. Phenotype to genotype mapping for a circuit
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This lack of dependency of all formulas involved 
in a classical design gives novelty for the solutions. 
Consider three sets: 1) A: all the solutions provided by 
classic ED; 2) B: all the solutions provided by EEL; 
and 3) C: all the possible solutions. Empirical results 
demonstrated empirically that A ∈ B (Lohn & Hornby, 
2006). But it is not possible to affirm that B = C.

Consider a problem of GP where there is a search 
for a VHDL code. An example can be the one presented 
in Figure 4, where a digital circuit can be expressed in 
a chromosome represented in a tree structure.

The tree structure which represents the chromo-
some is then mapped to the VHDL code (phenotype) 
presented at Figure 5.

Figures 4 and 5 show how a chromosome can be 
transformed to a real VHDL code. This transforma-
tion is lexically possible because the VHDL code 

presents three fixed sections: 1) library declarations 
(lines 1 and 2 of Figure 5); 2) pin declarations (lines 
3 to 6 of Figure 5); and 3) chip behavior (lines 7 to 
10 of Figure 5), i.e., what the chip to be evolved must 
process digitally to produce the desired input/output 
relationship. For digital combinational circuits this is 
almost a direct conversion for GP and GA (in cases of 
binary representation). After the code is converted it can 
be evaluated in two ways: 1) through logic simulator 
software which works with VHDL; or 2) through real 
circuit evaluation. In this case the code is synthesized 
and transferred to a FPGA (see Electronic Design/
PLD section). The fitness evaluation can be in this 
case a measurement of how close the result is from 
the truth-table.

Each chromosome of each population at each gen-
eration must pass to this conversion to be calculated a 
fitness value. With this measurement the EA algorithm 
proceeds with its loop (Figure 1) and the process is 
repeated until its termination condition.

Evolvable Hardware Definition

To understand the definition of EHW it is necessary to 
explain evolution. In the case of a circuit evolution, it 
is possible in EHW to evaluate the candidate-solutions 
in software simulation or in a real circuit-on-the-loop. 
It is called extrinsic evolution (or offline fitness com-
putation – OFC) when all the EA runs in software 
and only the best chromosome of the last generation 

Figure 4. Tree-structure representation for GP

Figure 5. VHDL code mapped from GP
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is implemented in hardware. It is called intrinsic 
evolution when each chromosome of each population 
at each generation is evaluated in a real circuit dur-
ing the EA loop. This kind of evolution is also called 
real-time evolution, hardware in the loop, or EHW 
(online fitness computation – ONL) (Stoica, Zebulum, 
& Keymeulen, 2000, p.4). A third kind of evolution 
mixes the two previous types in the called mixtrinsic 
evolution (Stoica, Zebulum, & Keymeulen, 2000).

Floreano and Mattiussi (2008, p. 58) follow this 
concept, but they alert for the fact that EHW has also 
been used to cover all the EEL area, for example, in 
Torresen (2004).

Fault-tolerance systems has gained so much at-
tention that another concept for EHW has appeared: 
according to IEEE Task Force on Evolvable Hardware 
(2012): the objective of EHW is to design systems that 
can self-adapt as necessary to compensate for changing 
operational environments or to survive and recover 
from faults using simulated evolution to search for new 
hardware configurations.

Professor Adrian Thompson, the pioneer of EHW, 
recommends in his home-page that an electronic 
search for EEL must be made using the following 
keywords: Hardware Evolution, Evolvable Hardware 
(EHW, E-Hard), Evolutionary Electronics, EvolWare, 
and bio-inspired electronics (Thompson, nd), i.e., it is 
possible to use the terms EEL or EHW to express the 
same concept.

Pioneer works of EHW are: Louis & Rawlins (1991), 
which was the first to introduce the idea of using EAs 
to perform structure design; the first to use FPGAs in 
structure design (De Garis, 1993); and the first to apply 
intrinsic evolution (Thompson, 1996).

EHW Specific Danger

When an application runs intrinsic evolution there is 
a dangerous situation. The circuit could be damaged 
due to an incorrect connectivity between the compo-
nents. This is fixed with two actions: the generation 
of chromosomes that are not capable of produce in-
compatible connections; or to apply penalties during 
the EA evaluation phase for individuals that present 
such anomalies.

Taxonomy

A taxonomy proposed by Torresen (2004) for EHW 
with slight modifications is subdivided in eight fields 
and repeated here.

•	 Algorithm (EA): the application can be de-
veloped using one or more of the four EA pre-
viously presented – GA, GP, EP, ES; or com-
bined with other techniques: a HA (Hybrid 
Algorithm);

•	 Technology (TE): the system can be analog 
(A), digital (D);

•	 Architecture (AR): fixed circuit with param-
eter tuning (CT) or complete circuit design 
(CD);

•	 Building Block (BB): analog (ANLG) compo-
nent level (transistor, passive componets), gate 
(GATE) level (AND, OR, etc), or function level 
(FUNC) level (multiplexes, adders, etc);

•	 Target Hardware (THW): the circuit to be 
evolved can be a custom (CST) hardware (e.g. 
ASIC), a commercially (COM) available PLD 
(e.g. FPGA), or the experiment was completed 
only with simulation results (SIM);

•	 Fitness Computation (FC): this category was 
previously presented;

•	 Evolution (EV): Off-chip (OFCP) evolution 
(the EA is performed on a separate proces-
sor); on-chip (ONCP) evolution (the EA is per-
formed on a separate processor incorporated 
into the chip containing the target EHW); and 
complete HW (CHWD) evolution (the EA runs 
on a special hardware, i.e., not a traditional 
processor);

•	 Scope (SC): if the circuit is evolved and, at 
end, it is put to work, this is called static (S) 
evolution. On the other hand, if each evolved 
circuit replaces the circuit in operation, this is 
called dynamic (D) evolution.

EHW Applications

Taking the previous taxonomy as a basis, Table 1 
presents a sample of the most important contributions 
of EHW.
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FUTURE RESEARCH DIRECTIONS

One of the great challenges of EHW is to provide 
scalability to work with larger circuits. One counter-
measure is to enlarge the size of the chromosome to 
be proportional to larger search spaces. An analogous 
effect can be obtained through another technique called 
VLR (Variable Length Representation) (Zebulum, 
Pacheco, & Vellasco, 2001, p. 53). What encourages 
this direction is that recent experiments had shown that 
only 3% of the available slices in an academic FPGA 
were used to fit a modified GA (Balaji & Rao, 2012).

An important contribution is morphogenesis for 
EHW (Lee & Sitte, 2004, 2006). With this strategy it 
is possible to design hardware considering scalability 
as well as novelty that EAs can provide for solutions.

The possibility of an application to self-adapt and 
self-repair is a key component for mission-critical 
systems that can be damaged by radiation, noise, and 
other sources. NASA/DoD Conference on Evolvable 
Hardware is a Conference that encourages academic 
productivity in this direction.

Some challenges are still present. The design flow 
for an application run in a FPGA (ED section) is time-
consuming. Even with more memory or clock in the 
computer that runs the EDA tool, it is necessary to 
consider a relevant time to implement just one chromo-
some. Considering g as the number of generations, p 
the size of a population and ni the number of individu-

als in a population, any intrinsic evolution consume a 
total time of approximately g × p × ni. This does not 
take account the size of the chromosome that usually 
is proportional to the level of the complexity, enlarg-
ing the search space. Therefore, high computational 
resources are mandatory for evolving real-world cir-
cuits. These problems are being addressed by machine 
parallelism and FPGAs with DPR (Dynamic Partial 
Reconfiguration). Works considering this problem are 
an open highway.

CONCLUSION

EHW and a brief background necessary to its compre-
hension were presented.

As just a simple sample of the universe of applica-
tions, it is possible to conclude that EHW is continu-
ously presenting advances in the level of complexity 
of applications, regarding the parameters considered 
in the taxonomy during these 22 years of academic 
productivity.

Evolvable Hardware is a fascinating area of research 
due to its flexibility for several and distinct applications.

Table 1. Sample of more than 20 years of EEL applications 

Application EA TE AR BB THW FC EV SC

Digital Basic functions evolution 
Louis & Rawlins (1991), Barros, Lopes & Stelle (2007) GA D CD GATE SIM OFL OFCP S

Amplification and Filter Design 
London & Colombano (1999) GA A CD ANLG CST OFL OFCP S

Analog Circuit Synthesis 
Koza, Bennett III, Andre, & Keane (1999) GP A CD ANLG CST OFL OFCP S

Robot Navigation 
Keymeulen, Durantez, Konaka, Kuniyoshi & Higuchi (1996) GA D CD GATE CST ONL CHWD S

Adaptive Image Compression 
Salvador, Vidal, Moreno, Riesgo & Sekanina (2012) ES D CD FUNC COM ONL ONCP D

Spread Spectrum 
Balaji & Rao (2012) HA D CT GATE COM ONL ONCP D

Automatic Fault Detection and Self-Repair 
Oreifej & DeMara (2012) GA D CD GATE COM ONL ONCP D

Circuit Design 
Ong & Keane (2004) HA D CD GATE COM OFL OFCP S
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KEY TERMS AND DEFINITIONS

Evolutionary Algorithms (EAs): Algorithms 
which are based on evolutionary computation prin-
ciples.

Evolutionary Computation (EC): A research 
area that consists of computational optimization search 
methods based on heuristics which imitates nature to 
find optimized solutions.

Evolutionary Electronics (EEL): Also known as 
Hardware Evolution, Evolvable Hardware, EvolWare, 
or bio-inspired electronics, is a research area which 
covers all the applications involving the use of Evo-
lutionary Computation in electronic systems’ design.

Field Programmable Analog Array (FPAA): A 
programmable chip that contains operational amplifiers 
and passive components that can be arranged in different 
ways. To receive different configurations, the FPAA is 
connected through an interface to a computer which 
contains vendor specific software that offers to the 
developer a specification language usually graphical.

Field Programmable Gate Array (FPGA): A 
programmable chip that contains logic gates as well as 
that can be arranged in different ways. To receive differ-
ent configurations, the FPGA is connected through an 
interface to a computer which contains vendor specific 
software that offers to the developer two kinds of speci-
fication languages: one graphical and the other textual. 
VHDL (IEEE Standardized), Verilog, and AHDL are 
examples of the textual description languages.

Genetic Algorithm (GA): An evolutionary algo-
rithm that works with encoded population-based search 
imitating nature through the following mechanisms: 
selection, reproduction and mutation. The encoding 
consists of mapping each possible solution belongs to 
the search space to a symbol string, usually bits. Each 
encoded string is called chromosome. A population of 
chromosomes which is a sample of the search space is 
the base for the heuristic search.

Genetic Programming (GP): A variation of ge-
netic algorithm in which the members of the population 
are parse trees. GP usually is used to evolve symbolic 
information (examples are: computer code, symbolic 
regression, and automatic electrical circuit design).


