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7.1 Introduction

Swarm-based algorithms are inspired by the behavior of some social living

beings, such as ants, termites, birds, and fishes. Self-organization and decentra-

lized control are remarkable features of swarm-based systems that, such as in

nature, lead to an emergent behavior. Emergent behavior is a property that

emerges through local interactions among system components and it is not possi-

ble to be achieved by any of the components of the system acting alone (Garnier

et al., 2007).

In the beginning, the two mainstreams of the Swarm Intelligence area were ant

colony optimization (Dorigo and Stützle, 2004) and particle swarm optimization

(PSO) (Kennedy and Eberhart, 2001). In recent years, new swarm intelligence algo-

rithms have appeared, inspired by fish schools (Cai, 2010), gravity and mass inter-

actions (Rashedi et al., 2009), as well as different aspects of the behavior of bees

(Abbass, 2001b; Karaboga, 2005; Lucic and Teodorovic, 2002; Pham et al., 2005),

bacteria (Passino, 2002), glowworms (Krishnanand and Ghose, 2005), fireflies

(Yang, 2008), cockroaches (Havens et al., 2008), bats (Yang, 2009), and cuckoo

birds (Yang and Deb, 2009). For a thorough review of recent approaches, see

Parpinelli and Lopes (2011). Despite the swarm inspiration common to these

approaches, they have their own particular way to exploit and explore the search

space of the problem.

Although almost all the above cited algorithms were designed to be applied to

continuous optimization, several of them were later adapted to handle discrete

domain problems. Unlike the continuous domain, in which the elements have the
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property of varying smoothly, the elements inside a discrete domain—such as inte-

gers or binary digits—accept only distinct, separated values. The discrete domain is

characterized by dealing with countable sets, either finite or infinite. Binary and

combinatorial applications are examples of discrete domain problems.

This work reviews how swarm algorithms, that traditionally deal with continu-

ous domains, can be adapted to discrete problems. In this work, we highlighted

their adaptation strategies to handle this class of problems as well as their main fea-

tures concerning the problem being solved. Note that algorithms created specifi-

cally to handle discrete problems are beyond the scope of this work. This is the

case, for instance, of the ant colony optimization algorithm (Dorigo and Stützle,

2004), the mosquito host-seeking algorithm (Feng et al., 2009), the calling behavior

of Japanese tree frogs algorithm (Hernández and Blum, 2012), the river formation

dynamics algorithm (Rabanal et al., 2007), and the intelligent water drops algo-

rithm (Shah-Hosseini, 2007).

Section 7.2 shortly describes the bioinspirations of the main swarm algorithms

adapted to discrete problems; Section 7.3 brings the main concerns to handle dis-

crete problems, the discretization methods, and the encoding strategies; Section 7.4

details all the problems and applications addressed by each continuous algorithm;

Section 7.5 summarizes and discusses the main issues; and Section 7.6 presents the

concluding remarks and points future research directions.

7.2 Swarm Algorithms

For all traditional versions of the algorithms discussed in this survey, in their

essence, the candidate solutions are encoded as a set of real variables, which repre-

sent a point in a multidimensional space. In this section, we briefly describe the

swarm algorithms that are applied or adapted to handle discrete problems.

7.2.1 Particle Swarm Optimization

The PSO metaheuristics was motivated by the coordinate movement of fish schools

and bird flocks (Kennedy and Eberhart, 2001). A potential solution to the problem

being solved is represented by a particle, and the PSO is a swarm of particles.

Particles “flow” through hyperdimensional search space of the problem, and

changes to the position of the particles within the search space are based on the

sociocognitive tendency of individuals to emulate the success of other individuals.

Each individual of a population (in this case, particles) has its own life experience

and is able to evaluate the quality of its experience. As social individuals, they also

have knowledge about how well their neighbors have behaved. These two kinds of

information correspond to the cognitive component (individual learning) and social

component (cultural transmission), respectively. Hence, an individual decision is

taken considering both the cognitive and social components, thus leading the popu-

lation (the swarm) to an emergent behavior.
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7.2.2 Roach Infestation Optimization

The roach infestation optimization (RIO) was introduced by Havens et al. (2008),

who applied to benchmark functions and achieved competitive results, when com-

pared to a standard PSO. Actually, RIO has some elements that resemble the tradi-

tional PSO algorithm. In the RIO algorithm, cockroach agents are defined using

three simple behaviors:

1. Cockroaches search for the darkest location in the search space and the fitness value is

directly proportional to the level of darkness (find darkness phase).

2. Cockroaches socialize with nearby cockroaches (find friend phase).

3. Cockroaches periodically become hungry and leave the friendship to search for food (find

food phase).

7.2.3 Cuckoo Search Algorithm

Cuckoo search algorithm (CSA) (Yang and Deb, 2009) is based on the brood para-

sitism of some cuckoo species. The algorithm uses the Levy flights rather than sim-

ple random walk. The CSA uses the following main basic rules:

1. Each cuckoo lays one egg at a time and dumps its egg in a randomly chosen nest.

2. The best nests with high-quality eggs will continue to the next generation.

3. The number of available host nests is fixed, and the egg laid by a cuckoo is discovered

by the host bird with a probability paA[0,1]. In this case, the host bird can either get rid

of the egg or simply abandon the nest and build a new nest.

7.2.4 Firefly Algorithm

The firefly algorithm (FA) was proposed by Yang (2008) and uses three main basic

rules:

1. A firefly will be attracted by other fireflies regardless their sex.

2. Attractiveness is proportional to their brightness and decreases as the distance among

them increases.

3. The landscape of the objective function determines the brightness of a firefly.

7.2.5 Gravitational Search Algorithm

The gravitational search algorithm (GSA) was created based on the law of gravity

and the notion of mass interactions (Rashedi et al., 2009). The GSA uses the theory

of Newtonian physics and its searcher agents are the collection of masses. In GSA,

there is an isolated system of masses; using the gravitational force, every mass in

the system can detect the situation of other masses. The gravitational force is there-

fore a way of transferring information between different masses. The GSA agents

are considered as objects and their performance is measured by their masses. All

these objects attract each other by a gravity force, and this force causes a move-

ment of all objects globally toward the objects with heavier masses. The heavy
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masses correspond to good solutions of the problem. The position of the agent

corresponds to a solution of the problem, and its mass is determined using a fitness

function.

7.2.6 Bat Algorithm

The bat algorithm (BA) was first presented by Yang (2010). The basic idea behind

the BA is that a population of bats (possible solutions) use echolocation to sense

distance and fly randomly through a search space updating their positions and

velocities. The bats’ flight aims at finding food/prey (best solutions). A loudness

decay factor acts in a similar role as the cooling schedule in the traditional simu-

lated annealing optimization method, and a pulse increase factor regulates the pulse

frequency. As the loudness usually decreases once a bat has found its prey/solution

(in order to not to loss the prey), the rate of pulse emission increases in order to

raise the attack accuracy.

7.2.7 Glowworm Swarm Optimization Algorithm

The glowworm swarm optimization (GSO) algorithm was first presented by

Krishnanand and Ghose (2005) as an application to collective robotics. In this algo-

rithm, each glowworm uses a probabilistic mechanism to select a neighbor that has

a luciferin value associated with him and moves toward it. Glowworms are

attracted to neighbors that glow brighter (i.e., glowworms that have more luciferin).

The movements are based only on local information and selective neighbor interac-

tions. This enables the swarm to divide into disjoint subgroups that can converge to

multiple optima of a given multimodal function.

7.2.8 Artificial Fish School Algorithm

In water areas, a fish can always find food at a place where there are plenty of

food by following other fishes, hence generally the more the food, the more the

fish. Following this rule, artificial fish school algorithm (AFSA) builds some artifi-

cial fish (AF), which search an optimal solution in solution space (the environment

in which AF live) by imitating fish swarm behavior. Three basic behaviors of AF

are defined as follows (Cai, 2010):

1. Prey: The fish perceives the concentration of food in water to determine the movement

by vision or sense and then chooses the tendency.

2. Swarm: The fish will assemble in groups naturally during the moving process, which is a

kind of living habits in order to guarantee the existence of the colony and avoid dangers.

3. Follow: In the moving process of the fish swarm, when a single fish or several fishes find

food, the neighborhood partners will trail and reach the food quickly.
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7.2.9 Bacterial Evolutionary Algorithm

The bacterial evolutionary algorithm (BEA) is inspired by bacteria’s behavior.

Bacteria can transfer DNA to recipient cells through mating and this process is

called transduction. By transduction, it is possible to spread the features of a single

bacterium to the rest of the population. This genetic recombination mechanism

characterizes a microbial evolution process. Male cells directly transfer strands of

genes to female cells. After that, those female cells acquire characteristics of male

cells and transform themselves into male cells, thus spreading to the entire bacteria

population. Genes can be transferred from a single bacterium (host cell) to others

(recipient cells) and eventually this would lead to an increase in the evolution speed

of the entire population (Nawa and Furuhashi, 1999). The flow of the BEA is

described as follows:

1. Generation of the initial population: Chromosomes are randomly created and evaluated.

2. Bacterial mutation: The bacterial mutation is applied to each chromosome, one by one.

3. Gene transfer operation: The gene transfer operation occurs between the chromosomes.

7.2.10 Bee Algorithm

The bee algorithm1 (BA1) was first introduced by Pham et al. (2005) and applied to

a benchmark of mathematical functions. In this algorithm, a bee is a d-dimensional

vector containing the problem variables (a solution). Moreover, a solution repre-

sents a visited site (i.e., food source) and has a fitness value assigned to it. The

algorithm balances exploration and exploitation by using scout bees that randomly

search for new sites and uses recruitment for neighborhood search in sites with

higher fitness, respectively. Bees that have the highest fitness are chosen as

“selected bees” and sites visited by them (elite sites) are chosen for neighborhood

search. The algorithm conducts searches in the neighborhood of the selected sites,

assigning more bees to search near to the best sites (recruitment).

7.2.11 Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm was first proposed by Karaboga (2005)

for solving multidimensional and multimodal optimization problems. The bees’

aim is to discover places of food sources (regions in the search space) with high

amount of nectar (good fitness). There are three types of bees: the scout bees that

randomly fly in the search space without guidance, the employed bees that exploit

the neighborhood of their locations selecting a random solution to be perturbed,

and the onlooker bees that use the population fitness to select probabilistically a

guiding solution to exploit its neighborhood. If the nectar amount of a new source

is higher than the previous one in their memory, they update the new position and

forget the previous one (greedy selection). If a solution is not improved by a

1The subindex 1 is introduced here to differentiate the bee algorithm from the bat algorithm.
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predetermined number of trials, then the food source is abandoned by the corre-

sponding employed bee and it becomes a scout bee.

7.2.12 Bee Colony Optimization

The bee colony optimization (BCO) was proposed by Lucic and Teodorovic (2002)

and, similarly to ABC, it imitates the bees’ behavior in nature when looking for a

food, by simulating the foraging behavior. The BCO is based on the constructive

concept. It was designed as a method which builds solutions from the scratch

within execution steps, unlike the ABC local search which performs iterative

improvements of the current best solution. There are two alternating phases of the

BCO (forward pass and backward pass) constituting a single step in the BCO algo-

rithm. In each forward pass, every bee agent visits the solution components, creates

a partial solution, and after that returns to the hive. Having obtained new partial

solutions, the bees meet in the hive and start the backward pass. In the backward

pass, all bee agents share information about the quality of their partial solutions.

Having all solutions evaluated, each bee decides with a certain probability whether

it will stay loyal to its solution or not.

7.2.13 Marriage in Honey-Bees Optimization Algorithm

The marriage in honey-bees optimization (MBO) algorithm was presented by

Abbass (2001b). The main idea concerning the algorithm based on bee mating

behavior is that the queen is considered the best solution to an optimization prob-

lem and, during the mating flight, it selects drones probabilistically for reproduc-

tion so as to form the spermatheca. The spermatheca is, then, a pool of selected

solutions. New broods are created by crossovering the genotypes of drones and the

queen. Natural selection takes place by replacing weaker queens by fitter broods.

7.3 Main Concerns to Handle Discrete Problems

In most swarm intelligence algorithms, the possible solution is encoded as a set of

real variables, which represents, for instance, the location of a particle (in PSO) or

a source food (in ABC). In these examples, updates in a given vector position

(dimension) can be done independently of the remaining ones. The updated values

remain within the predefined range for that dimension, the candidate solution is

valid (for the sake of simplification, constraints are not considered here). However,

for combinatorial problems, such representation is not suitable, provided that a

solution is a permutation of integer values. Therefore, updates of a vector that

represents a solution for a combinatorial problem must preserve the validity of the

permutation. Consequently, to apply the above-mentioned algorithms to discrete

optimization problems, it is necessary to adapt the encoding to discrete dimensions.
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We characterize the codification of candidate solutions in three encoding

schemes. The first encoding uses a binary codification (BC) for candidate solutions.

The second encoding uses an integer codification (IC) for candidate solutions.

Swarm algorithms that employ BC or IC are adapted to discrete domain since its

beginning (i.e., initial swarm). The third encoding deals with real values but uses

transformation methods to handle discrete domains. The real solution vector can be

transformed into a BC (real-to-binary: RTB) or it can be transformed into an IC

(real-to-integer: RTI), where RTI represents a combination of integer values.

Swarm algorithms that employ RTB or RTI require these transformations at each

iteration loop.

7.3.1 Discretization Methods

In discrete problems, such as combinatorial, binary, and categorical, it is necessary

to reduce the number of possible states to feasible solutions. This is done by the

discretization of the continuous space by transforming the values into a limited

number of possible states. There are several discretization methods, and the main

are presented below.

7.3.1.1 Sigmoid Function

The sigmoid function (SF) can be used to transform a continuous space value into

a binary one. Such discretization method is very popular (Banati and Bajaj, 2011;

Palit et al., 2011), and the transformation is applied to each dimension of the solu-

tion vector, as shown in Eq. (7.1), thus forcing each element to be a binary digit:

xij 5
1; if randðÞ# 1

11 expð2xijÞ
0; otherwise

8<
: ð7:1Þ

with i5 1, . . ., N, j5 1, . . ., D, where N is the population size, D is the dimension

size, and rand() is a random number drawn uniformly from [0,1].

7.3.1.2 Random-Key

The random-key (RK) encoding scheme can be used to transform a position from a

continuous space into an integer/combinatorial space (Chen et al., 2011; Li et al.,

2010). To decode the position, the nodes are visited in ascending order for

each dimension. For example, the continuous solution vector x
!
i 5

ð0:90; 0:35; 0:03; 0:21; 0:17Þ can be decoded as x
!
i 5 ð5; 4; 1; 3; 2Þ.

7.3.1.3 Smallest Position Value

The smallest position value (SPV) method maps the positions of the solution vector

by placing the index of the lowest valued component as the first item on a
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permutated solution, the next lowest as the second, and so on. This method creates

an integer vector solution by indexing the position of all the particles (Verma and

Kumar, 2012; Yousif et al., 2011).

7.3.1.4 Modified Position Equation

The modified position equation (MPE) method has been used only in the PSO algo-

rithm (Pan et al., 2008; Tasgetiren et al., 2007). As mentioned before, the standard

PSO updates the particle position using three choices: follow its own position (Xt
i ),

go toward its personal best position (Pt
i), or go toward the best particle position of

the swarm (Gt
i). After that, the particle position on iteration t can be updated fol-

lowing Eq. (7.2):

Xt
i 5 c2 � F3ðc1 � F2ðω � F1ðXt21

i Þ;Pt21
i Þ;Gt21

i Þ ð7:2Þ

where λt
i 5w� F1ðXt21

i Þ is the velocity of the particle and F1 is the mutation oper-

ator with probability w. A uniform random number r in the range [0,1] is generated

and, if it is less than w, then the mutation operator is applied to generate a per-

turbed permutation of the particle by λt
i 5F1ðXt21

i Þ; otherwise current permutation

is kept as λt
i 5Xt21

i . In this equation, δti 5 c1 � F2ðλt
i;P

t21
i Þ is the cognitive part of

the particle; F2 is the crossover operator with probability c1. Note that λt
i and Pt21

i

will be the first and second parents for the crossover operator. It results either in

δti 5F2ðλt
i;P

t21
i Þ or in δti 5λt

i depending on the choice of a uniform random num-

ber. The third component of Eq. (7.2), Xt
i 5 c2 � F3ðδti;Gt

iÞ, is the social part of the

particle, where F3 is the crossover operator with probability c2. Note that δti and
Gt21

i will be the first and second parents for the crossover operator. It results either

in Xt
i 5F3ðδti;Gt21

i Þ or in Xt
i 5 δti depending on the choice of a uniform random

number.

7.3.1.5 Great Value Priority

The great value priority (GVP) method is used to encode a continuous space into a

binary one (Congying et al., 2011). First, the position of the solution vector x
!
i with

the largest element is selected, where i5 1, . . . , N and N is the population size.

This position is set on the first position of a new vector named as permutation vec-

tor p
!
. Next, the position of the second largest element of x

!
i is selected and placed

in the next position of p
!
. This procedure is repeated successively for all dimensions

of x
!
i and, once p

!
is fulfilled, Eq. (7.3) is applied to transform it into binary, where

j5 1, . . . , D and D is the dimension size:

x
!
ij 5

1; if p
!
j . p

!
j11

0; otherwise

�
ð7:3Þ
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7.3.1.6 Nearest Integer

In this method, a real value is converted to the nearest integer (NI) by rounding or

truncating up or down (Burnwal and Deb, 2012).

7.4 Applications to Discrete Problems

For the algorithms mentioned in Section 7.2, a literature search was done so as to

find discrete applications in different domains. Although this search was not

exhaustive, it covers the most relevant applications and emphasizes the applicabil-

ity of those algorithms to discrete problems.

7.4.1 Particle Swarm Optimization

Kennedy and Eberhart (1997) developed the first PSO algorithm for combinatorial

optimization problems, where particles were encoded as binary sequences. In the

binary version, trajectories are changes in the probability that a coordinate will take

a zero or one value. Also, the velocity of the particle may be described by the num-

ber of bits changed per iteration or the Hamming distance between the particle at

time t and t1 l.

Deep and Bansal (2008), Hembecker et al. (2007), Shen et al. (2012), and Wan

and Nolle (2009) used the SF method to calculate the trajectory in the binary search

space to solve the Knapsack problem (KP). For the same problem, Lopes and

Coelho (2005) used a PSO hybridized with a guided local search and some con-

cepts drawn from genetic algorithms (GA). In Li and Li (2009), a binary PSO is

proposed to solve the KP using a mutation operator.

A PSO was used to solve the flow shop scheduling problem by Ucar and

Tasgetiren (2006). First, a population of particles with continuous values is ran-

domly constructed and then transformed into discrete values by applying the SPV

method. The same method was used to solve the single machine total-weighted tar-

diness problem by Tasgetiren et al. (2004a,b), where the SPV rule is applied to

convert the position vector to a job permutation. Verma and Kumar (2012) also

used PSO with SPV to solve a combinatorial optimization problem, the DNA

sequence assembly. Lin et al. (2010) used a continuous PSO combined with the

RK transformation to solve the job shop scheduling problem (JSSP). PSO was

hybridized with a local search based on simulated annealing (SA) technique.

Congying et al. (2011) used the PSO in a typical combinatorial optimization

problem, the quadratic assignment problem (QAP), and the GVP method was used

to transform the continuous space to discrete.

Rosendo and Pozo (2010) presented a hybrid PSO algorithm to solve the traveling

salesman problem (TSP). This work maintains the main PSO concept for updating

the velocity of the particle using path relinking (Glover and Laguna, 1997) and the

Lin�Kernighan (LK) algorithm (Lin and Kernighan, 1973) to improve local search.

177A Survey of Swarm Algorithms Applied to Discrete Optimization Problems



Labed et al. (2011) proposed MHPSO, a hybrid PSO to solve the multidimen-

sional KP. As in Lopes and Coelho (2005), it combines PSO with the crossover

operator of GA. The crossover operator is applied in both the best position of each

particle (pbest) and its current position, as well as in the best position obtained by

the swarm (gbest) and its current position.

To the best of our knowledge, Pan et al. (2008) reported for the first time in the

literature a discrete particle swarm optimization (DPSO) algorithm to solve the no-

wait flow shop scheduling problem. The particles are represented as discrete job

permutations and a new position update method is developed based on the discrete

domain that consists of three operators. A new crossover operator was also intro-

duced, and it is able to produce a pair of different permutations even from two

identical parents. A block of jobs from the first parent is determined by two-cut

points randomly, and this block is moved to the right or left of the solution vector.

Then, the offspring permutation is filled out with the remaining jobs from the sec-

ond parent. The DPSO algorithm is also hybridized with the variable neighborhood

(VND) local search by Mladenovic and Hansen (1997) to improve the performance.

Tasgetiren et al. (2007) also used DPSO with the MPE method to solve the general-

ized TSP.

7.4.2 Roach Infestation Optimization

Hendrawan and Murase (2011) proposed a discrete RIO to solve a feature selection

problem using a neural network as a predictive tool. A binary encoding vector was

used for each roach, and each dimension represents a feature (value 0 or 1). A 0

indicates that the corresponding feature is not selected, while 1 means the opposite.

To update the position of the roach, the cockroach velocity is updated with a muta-

tion operator and then the cognition and social parts of the cockroach are updated

using a two-point crossover.

7.4.3 Cuckoo Search Algorithm

Burnwal and Deb (2012) demonstrated for the first time a CSA to solve a schedul-

ing problem for a flexible manufacturing system (FMS). They modified the Levy

flights from continuous to discrete values using the NI. For the same type of prob-

lem, Kumar and Chakarverty (2011) encoded a solution in the CSA in the form of

an integer vector.

Gherboudj et al. (2012) proposed a discrete binary CSA to solve the KP. To get

binary solutions, the SF was used and Layeb (2011) presented a quantum-inspired

cuckoo search algorithm (QICSA) for the same KP but, instead, a binary encoding

was used.

7.4.4 Firefly Algorithm

The first FA for combinatorial optimization was put forward by Sayadi et al.

(2010) for makespan minimization in a permutation flow shop scheduling problem.
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Also, Falcon et al. (2011) used the same ideas for a fault diagnosis problem. In

both cases, they used a binary approach: for updating the firefly’s position, and SF

was applied to each component of the real-valued vector. The SF method was used

to transform the values from real to binary by Palit et al. (2011), for the KP, and by

Banati and Bajaj (2011), to solve the binary problem of feature selection.

Yousif et al. (2011) introduced a method based on FA for scheduling jobs on

grid computing. In this case, the SPV approach was used for updating the positions

of the fireflies from continuous position values to discrete permutations.

Fister et al. (2012) used the FA to solve a combinatorial optimization problem,

the graph 3-coloring. The RK method was used to convert the real values to

discrete.

7.4.5 Bee Algorithm

The BA1 was first applied to continuous optimization functions and later for sched-

uling jobs (Pham et al., 2007a) and binary data clustering (Pham et al., 2007b). In

these papers, the authors used discrete encoding, ensuring that possible solutions

would be valid. The BA1 also inspired Bahamish et al. (2008) to create a discrete

encoding for the protein tertiary structure prediction (PTSP), a difficult combinato-

rial optimization problem.

A well-known discrete problem is the generalized assignment problem (GAP),

approached by Ozbakir et al. (2010) using a modified BA. In the original BA1,

scout bees continue searching in the solution space until the algorithm is termi-

nated. However, in the modified BA1, an adaptive penalty coefficient mechanism is

employed.

A binary BA1 (BBA) was proposed by Xu et al. (2010) focusing on a two-level

distribution optimization problem (DOP), which expressed the agents (bees) as two

binary matrices, representing how to assign each bee to its course or mission.

7.4.6 Artificial Bee Colony

The applicability of the ABC algorithm and the GAP (Baykasoğlu et al., 2007)

demonstrates the capability to adapt this algorithm to discrete problems, using the

RK method. The ABC was also applied to other discrete problems, such as the

JSSP, TSP, and multidimensional KP. For these applications, many variants and

hybridisms of the ABC were proposed.

An adaptation of the original ABC method was presented by Banharnsakun

et al. (2012) for the JSSP, by changing the behavior of the onlooker bees and using

the SF method to transform the continuous values into binary. The proposed new

method, called best-so-far ABC, uses all the onlooker bees with the information

from all employed bees to make a common decision on a new candidate food

source. Because of that, the onlookers can compare information from all candidate

sources and they are able to select the best-so-far position. As a result, this modifi-

cation makes the algorithm converge more quickly since that solution will be

biased toward the best solution found so far.
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A combinatorial ABC (CABC) with discrete encoding was proposed by

Karaboga and Gorkemli (2011) for the TSP. In that work, a new mutation operator

from GA was used, and it was adapted to the neighborhood search mechanism of

employed and onlooker bees. The hybridism between GA and ABC was also

approached by Singh et al. (2011), which used ABC techniques to improve the

global search by adding employed and onlooker bees on the search process, and

this method was called real genetic bee colony algorithm (RGBCA). A similar

hybridism, between ABC and greedy subtour crossover (GSX), was used by

Banharnsakun et al. (2010) for the same problem. In this hybrid method, the exploi-

tation process of the ABC algorithm was improved by the GSX, so as to update

employed bees’ old food sources based on their neighboring food sources, assisting

the ABC to generate feasible solutions all the time.

The KP is another classical discrete problem that has been studied using the

ABC algorithm. Pulikanti and Singh (2009) used a modified and binary version of

ABC for this problem. In the original ABC algorithm, the neighborhood of the best

found food sources is searched in order to achieve even better food sources. In the

novel ABC algorithm, a hybrid probabilistic mutation scheme was performed for

searching the neighborhood of food sources. Here the SF method was used again to

convert real values into binary.

Hybrid methods have been used to improve the original ABC algorithm, gener-

ally associated to a neighborhood search mechanism to improve global searches.

Pacurib et al. (2009) uses this improved search, adding a search iteration operator

based on the fixed point theorem of contractive mapping in Banach spaces (discrete

vector space) with ABC algorithm to solve Sudoku puzzles.

Another hybrid discrete artificial bee colony (DABC) was proposed by

Marinakis et al. (2009), using a two-phase algorithm that combines the DABC and

the greedy randomized adaptive search procedure (GRASP). This DABC�GRASP

algorithm was created for the solution of clustering problems and the two phases

consist of the computation of the activated features by the DABC and the computa-

tion of the fitness of each food source by the clustering algorithm.

7.4.7 Bee Colony Optimization

The BCO proposed by Teodorovic and Dell’Orco (2005) was applied to the ride-

matching problem and wavelength assignment (RWA) using a discrete encoding.

Later, Banerjee et al. (2008) created a hybrid BCO for modeling process and sup-

ply chain scheduling; in this case, the SF method was used to transform the contin-

uous space into binary. Davidovic et al. (2012) also used the BCO algorithm for

scheduling independent tasks on homogeneous processors; their approach brings a

modified BCO which allows the bees a freedom to generate various solutions lead-

ing to a diversification of the search process. Wong et al. (2008a) also studied the

BCO and applied it to the TSP.

Chong et al. (2006) described a BCO algorithm based on foraging and waggle

dance, using the dance duration as determining factor for selecting a new path.

This approach was applied to the JSSP with discrete encoding and a neighborhood
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structure to search for feasible solutions and improve prior solutions (Wong et al.,

2008b). A set of priority dispatching rules were used to create the initial solutions.

7.4.8 Marriage in Honey-Bees Optimization Algorithm

The MBO algorithm was applied to the propositional satisfiability problems, known

as SAT problems (Abbass, 2001b). MBO was applied to 50 variables of the SAT

problems with 215 different constraints, presenting good results for this combinato-

rial optimization problem with a binary encoding. Later, the algorithm was

improved in Abbass (2001a) by using a single queen with multiple workers in the

colony and also applied to the 3-SAT problem where each constraint contains

exactly three variables.

A conventional annealing approach was used by Teo and Abbass (2001) on the

mating flight process to balance search exploration and exploitation, and this modi-

fied MBO was applied to SAT problems. This algorithm was also applied in data-

mining (Benatchba et al., 2005) and scheduling problems (Koudil et al., 2007) with

the SF method to convert the continuous space into binary.

The SF method was also used by Marinakis et al. (2008) in an MBO hybridized

with GRASP for clustering problems with N objects into K clusters. Yang et al.

(2007) combined the MBO with the Nelder�Mead method with the objective of

improving its performance and thus creating the Nelder-Mead Marriage in Honey

Bees (NMMBO) algorithm to be applied to the TSP.

7.4.9 Other Swarm Intelligence Algorithms

The GSA was applied by Li et al. (2010) with the RK discretization method trans-

forming the continuous solutions into discrete ones. Chen et al. (2011) also applied

the GSA to solve the TSP with RK, but integrating the SA technique into the algo-

rithm for accomplishing local search. A binary implementation of GSA was pro-

posed by Papa et al. (2011), together with the SF method, and used for a feature

selection problem.

Nakamura et al. (2012) proposed a binary version of the BA to solve the hyper-

cube problem, where each bat is a set of binary coordinates. The equation to update

the position of the original BA is replaced by the SF method of discretization.

The GSO was applied by Deng-Xu et al. (2011) to solve the multiconstrained

Quality of Service (QoS) multicast routing problem using a discrete vector; this

problem is a direct application of the well-known TSP.

Xiangyang et al. (2011) proposed the AFSA to solve KP using the RK method.

He et al. (2009) proposed the AFSA mapped into the integer space directly, using a

method that ensures that the candidate solution stays in integer space throughout

the optimization process.

Balazs et al. (2012) proposed a BEA to solve a permutation flow shop problem

with a real-valued vector (arrays). The adaptation of real-valued vectors to permu-

tations is done by using the RK method. Inoue et al. (2000) and Miwa et al. (2002)

proposed a binary encoding for the BEA to solve the nurse scheduling problem
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using mutation and crossover similar to those of GA. Feng and Xiao (2011) applied

the same method for a route planning problem.

7.5 Discussion

The algorithms presented in Section 7.2 were originally devised for dealing with

continuous search spaces. However, for discrete search spaces, which is the case of

binary and combinatorial problems, the key issue is how to adapt the aforemen-

tioned algorithms.

In this survey, we selected 64 papers for analysis. Figure 7.1 shows the distribu-

tion of the swarm algorithms covered here. It is clearly observed that PSO was the

most frequently found algorithm, representing a quarter of all papers analyzed. The

ABC algorithm was the second one, representing 13% of the total.

Figure 7.2 summarizes the distribution of the discretization methods

(Section 7.3) employed by the algorithms. The most commonly used method is the

SF; 62% of the papers used it to transform continuous values into discrete ones. It

is worth to mention that SF is also extensively applied in several other areas, such

as artificial neural networks, biomathematics, chemistry, and statistics.

The RK method was the second most frequent, found in 18% of the papers.

Since this method is exclusive to transform into integer, not binary, when binary

values were necessary a combination of the RK method with the GVP was used by

Congying et al. (2011). In this combined process, the first stage consisted of trans-

forming the continuous values into discrete using the RK and a second stage using

GVP to convert the discrete values in binary ones. The SPV was also used in 10%

of the papers to transform continuous into discrete. The MPE method was used in

Figure 7.1 Algorithms distribution.
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5% of the papers. This method was combined with a discrete encoding to handle

scheduling and TSP problems. The MPE method was used only in PSO algorithms,

but it could be adapted to any other algorithm that uses the same main procedures

of PSO, i.e., the update of speed and position. Finally, only 3% of the papers used

the NI for this same sort of transformation.

Figure 7.3 summarizes how many times each discretization method was used by

each algorithm in the papers surveyed. Note that two of them, RIO and GSO, did

not use any discretization method. This is due to the straight encoding schemes

Figure 7.2 Discretization methods.

Figure 7.3 Discretization methods used in the algorithms.
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(integer or binary) that do not require further discretization. In two papers, there

was no enough information for identifying the discretization method used, so they

were not counted in Figure 7.3.

Figure 7.4 lists the encoding schemes (BC, IC, RTB, or RTI—see Section 7.3);

19% of the papers preferred to use the encodings directly as binary and 25% as

integer. In this approach, the solution vector is discrete and the algorithm code

needs to be modified accordingly to work with these values. For this purpose, sev-

eral authors created a discrete version of the continuous algorithm, e.g., the DPSO,

the CABC, and the DABC optimization. The other 55% of papers preferred to use

the original continuous encoding then transforming them the real-valued vector

into integer or binary, by using one of the methods presented in Section 7.3.

Figure 7.5 is a more detailed view of the previous plot. It summarizes which

encoding scheme was used in each algorithm and how many times these schemes

were used.

Finally, regarding the application, Figure 7.6 shows the main classes of pro-

blems to which the swarm optimization algorithms were applied. Scheduling pro-

blems are the most frequently found, closely followed by the KP.

7.6 Concluding Remarks and Future Research

Real-world discrete and combinatorial problems are usually challenging and require

computationally intensive algorithms. Swarm intelligence algorithms have been an

interesting alternative for providing satisfactory solutions. The individual character-

istics of the continuous swarm algorithms are very useful for these applications.

However, to apply them to a discrete problem requires adaptation, hybridization, or

modification the original algorithms to handle those sort of problems.

The methods used to achieve this purpose are the most diverse. This survey

aims to classify the most common discretization methods and encoding strategies

Figure 7.4 Distribution of

encoding schemes.
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to guide future authors to select the best method and strategy when working with

continuous swarm algorithms for discrete problems. The SF and RK discretiza-

tion methods appeared most times in the literature review. Both methods seek the

transformation of the continuous values handled by the algorithms into discrete

ones, requiring an adaptation to deal with possible solutions in a discrete

environment.

The results achieved by each paper presented in this survey demonstrate how

continuous algorithms can be useful in discrete problems. The large number of

papers adapting the PSO for classical combinatorial problems such as Knapsack,

Scheduling and TSP support this trend. For the scheduling problem, the FA and

Figure 7.5 Encoding schemes related of swarm algorithms.

Figure 7.6 Applications of the swarm algorithms.
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BEA also appeared several times, creating a trail for future authors that intend to

work with this combinatorial problem.

Although most of swarm algorithms presented in literature are used for continu-

ous domains, they can also provide good solutions for discrete problems. This

seems to be an interesting research opportunity, either developing new methodolog-

ical approaches or applying to specific discrete/combinatorial problems.

Future work points to a more extensive research on different discretization meth-

ods and encoding schemes, focusing on expanding the range of possibilities on

using continuous algorithms to discrete problems. Therefore, authors will have in

the future more alternatives to combine the desired continuous algorithm with com-

binatorial and binary problems.
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