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Abstract—This paper presents an application of
Molecular Dynamics (MD) to the Protein Folding Prob-
lem (PFP) using a simplified off-lattice model of proteins
(3D-AB). To the best of our knowledge, this paper
presents the first application of MD to the PFP using
globular protein sequences represented with the 3D-
AB model. The methodology is explained in details.
Five synthetic sequences and four real globular proteins
sequences were used for testing the approach. Results
show that the method is capable of creating realistic
folds of the proteins, displaying biological features such
as hydrophobic core formation and protein breathing.
Future works will investigate more efficient parallel
processing methods and the creation of new benchmarks.

Keywords-Molecular Dynamics; protein folding prob-
lem; 3D-AB model

I. INTRODUCTION

Proteins are the basic structures of all living
beings because they are responsible for perform-
ing important life-maintenance functions, such
as: structural (e.g. fibrinogen); hormonal (e.g. in-
sulin); defense (fibrinogen); enzymatic (e.g. amy-
lase); and transport (e.g. hemoglobin), among oth-
ers. Finding the proteins that make up an organism
and understanding their function is the founda-
tion of Molecular Biology. They are polymers
composed by a chain of amino acids (also called
residues) that are linked together by means of pep-
tide bonds, and are synthesized in the ribosome of
cells following a template given by the messenger
RNA (mRNA).

The specific biological function of a protein
is ultimately determined by its unique three-
dimensional structure (also known as the native
conformation), to which it folds under physio-
logical conditions. This process is known as the
protein folding. Due to its great importance for
Medicine and Biochemistry, researchers have been
focusing on the study of this process. There-
fore, acquiring more knowledge about the three-
dimensional structure of proteins and, conse-
quently, about its functionality, is an important is-
sue, since such knowledge can be used extensively
in the development of new drugs with specific
functionality.

A great motivation for studying the protein
folding is the fact that ill-formed proteins can be
completely inactive or even harmful to the organ-
ism. Furthermore, several diseases are believed to
be the result of the accumulation of ill-formed
proteins, such as Alzheimer’s disease, cystic fibro-
sis, Huntington’s disease and some types of cancer
[1]–[3].

In recent years, a large number of new pro-
teins have been discovered, thanks to the several
genome sequencing projects being conducted in
the world. However, only a small amount of such
proteins have its 3-dimensional structure known.
For instance, the
UniProtKB/TrEMBL repository of protein se-
quences has currently around 27 million records
(as in November/2012), and the Protein Data Bank
– PDB [4] has the structure of only 86,344 proteins
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(as in November/2012). This fact is due to the
cost and difficulty in unveiling the structure of
proteins, from the biochemical point of view. Here,
the Computer Science can play an important role,
developing computational models and approaches
for the Protein Folding Problem (PFP). Due to the
computational complexity, computational models
that take into account every atom of the protein
macromolecule are not feasible. Consequently,
several simplified models for proteins have been
proposed by using some biochemical properties,
which can display some interesting features of the
protein folding process and the protein structure.

II. THE PROTEIN FOLDING PROBLEM

The protein folding is the process by which
polypeptide chains are transformed into compact
structures that perform biological functions. As
mentioned before, under physiological conditions,
the most stable three-dimensional structure is
called the native conformation and actually allows
a protein to perform its function.

In vitro experiments carried out by Anfinsen
and colleagues [5] show that proteins can be
denaturated by modifications in the environment
where they are. Most proteins can be denatu-
rated by temperature and pH changes, affecting
weak interactions between residues (i.e.: hydrogen
bonds). During the denaturation process, proteins
lose their native shape and, consequently, their
function. Anfinsen showed that some denatured
(misfolded or unfold) proteins can refold into their
native conformation. However, the spontaneous
refolding only occurs for single-domain proteins.
Failure to fold into the intended three-dimensional
conformation usually leads to proteins with dif-
ferent properties that simply become inactive. In
the worst case, such misfolded (incorrectly folded)
proteins can be harmful to the organism.

A better understand of the protein folding pro-
cess could help to: (a) accelerate drug discovery by
replacing slow, expensive structural biology exper-
iments with faster computational simulations, and
(b) infer protein function from genome sequences.
With the fast exponential growth of experimentally
determined structures available in the PDB, the

PFP has become as much a problem of inference
and machine learning as it is of protein physics [6].
For instance, new theories have been developed in
protein engineering [7] and structure-based drug
design [8], [9].

Despite the considerable theoretical and experi-
mental effort expended to study the protein folding
process, there is not yet a detailed description of
the mechanisms that govern the folding process.

Although the concept of the folding process
arose in the field of Molecular Biology, this prob-
lem is clearly interdisciplinary, requiring support
of many knowledge areas, and it is considered to
be one of the most important open challenges in
Biology and Bioinformatics [10]. In contemporary
Computational Biology, there are two important
problems regarding the folding of proteins. The
first problem is to predict the protein structure
(conformation) from sequence (primary structure)
called the Protein Structure Prediction (PSP). The
second one is to predict protein folding path-
ways, which consists in determining the folding
sequence of events which lead from the primary
structure of a protein (its linear sequence of amino
acids) to its native structure. This is the Protein
Folding Problem (PFP). It is commonly found in
the literature both problems being referred as the
PFP [11]. In this work we consider exclusively the
second problem.

There are some computational methods to deal
with the folding problem. However, the Molec-
ular Dynamics (MD) approach (including all its
variants) is the only computational methodology
that really provides a time-dependent analysis of
a system in Molecular Biology and, consequently,
it can be employed to solve the PFP [12].

Several computational models have been pro-
posed for representing protein structures with
different levels of complexity and, consequently,
computational feasibility. Ideally, both the pro-
tein and the solvent should be represented at the
atomic level because this approach is the closest
to experiments [13]. However, the simulation of
computational models that take into account all
the atoms of a protein is frequently unfeasible due
to the multidimensionality of the system (> 104



degrees of freedom) [12], even with the most pow-
erful computational resources (in nature, proteins
can rapidly and reliably find their way into well-
defined folded configurations). Generally, atom-
istic simulations of real-size proteins are usually
limited to unfolding the native conformation of
the proteins followed by refolding [13]. The di-
mensionality of a system containing the protein
and the solvent can be reduced when the solvent
is treated implicitly and a reduced coarse-grained
model of proteins is used. In this scenery, several
reduced (mesoscopic) models have been proposed.
Although such reduced models are not realistic,
their simulation can show some characteristics
of real proteins. The success of reduced repre-
sentations in reproducing several aspects of the
folding process is due to the fact that this process
has generally evolved to satisfy the principle of
minimal frustration [14]. Computational studies
of reduced models have provided several valuable
insights into the folding process [15], [16].

The prediction of the structure of a protein is
modelled as the minimization of the corresponding
free-energy, following the Anfinsen’s Thermody-
namic Hypothesis. It is also known that the native
conformation of a protein represents the folding
state with minimal free-energy. A computational
model that obeys this principle must have the
following features:

• a model of the protein, defined by a set of
entities representing atoms and connections
among them;

• a set of rules defining the possible conforma-
tions of the protein;

• a computationally feasible function for eval-
uating the free-energy of each possible con-
formation.

Whereas the protein structure prediction prob-
lem (PSP) is widely acknowledged as an open
problem, the protein folding problem (PFP) has
received little attention. It is important to note
that the ability to predict the folding pathways
can improve methods for predicting the native
structure of proteins.

The total number of possible conformations of a
protein is huge and it would take an astronomical

length of time to find the native conformation by
means of exhaustive search of the whole confor-
mational space [17]. Nowadays, it is known that
the folding process does not include mandatory
steps between unfolded and folded states, but a
search of many accessible conformations [17]. A
possible approach to enumerate folding pathways
is to start with an unfolded protein and consider
the various possibilities for the protein to fold.
The protein folds from a denatured conformation
with a high free energy to its native conformation,
following an energy landscape [18]. Notice that
the free energy barrier between the native state
and the multiple denature conformations is huge.

III. T HE AB OFF-LATTICE MODEL

The AB off-lattice model was introduced by
[19] to represent protein structures. In this model
each residue is represented by a single interaction
site located at the Cα position. These sites are
linked by rigid unit-length bonds (̂bi) to form the
protein structure. The three-dimensional structure
of an N-length protein is specified by theN − 1
bond vectorŝbi, N − 2 bond anglesτi andN − 3
torsional anglesαi, as shown in Figure 1.

(a)

(b)

Figure 1. (a) Example of a hypothetic protein structure and (b)
definition of b̂i, τi andαi, adapted from [20]). Blue balls represent
the polar residues and Red ones represent the hydrophobic residues.
The backbone and the connections between elements are shownin
black lines.



The 20 proteinogenic amino acids are divided
into two classes, according to their affinity to water
(hydrophobicity): ’A’ (hydrophobic) and ’B’ (hy-
drophilic or polar). Notice that this model does not
describe the solvent molecules. However, solvent
effects, such as the formation of the hydrophobic
core, are taken into account through interactions
between residues, according to their hydrophobic-
ity (species-dependent global interactions).

When a protein is folded into its native confor-
mation, the hydrophobic amino acids tend to pack
inside the protein, in such a way to get protected
from the solvent by an aggregation of polar amino
acids that are positioned outwards. Interactions be-
tween amino acids take place and the energy of the
conformation tends to decrease. Conversely, the
conformation tends to converge to its native state,
in accordance with the Anfinsen’s thermodynamic
hypothesis [5]. Therefore, the energy function of
a folding is given by [20]:

E(b̂i; σ) = EAngles + Etorsion + ELJ =

−k1
∑N−2

i=1 b̂i · ˆbi+1

−k2
∑N−3

i=1 b̂i · ˆbi+2

+
∑N−2

i=1

∑N
j=i+2 4ε(σi, σj)(r

−12
ij − r−6

ij ) (1)

where:σ = σ0, ...,σN form a binary string that rep-
resent the protein sequence,EAngles and Etorsion

are the energies from bond angle and torsional
forces, respectively. Wherêbi represents theith
bond that joins the (i− 1)th and theith residues,
and is represented by the vectorb̂i = ~ri − ~ri−1,
andk1 = −1; k2 = +1/2.

The species-dependent global interactions are
given by the Lennard-Jones potencial (ELJ ); for
pairs of ith and jth residues separated by a dis-
tance ofrij . Whereε(σi, σj) is chosen to favor the
formation of the hydrophobic core (’A’ residues).
Thus, ε(σi, σj) is 1 for AA interactions and 1/2
for BB/AB interactions.

IV. M OLECULAR DYNAMICS

Molecular Dynamics (MD) is a computational
simulation of physical movements of particles
(atoms or molecules). The theoretical basis for

MD embodies many of the important results pro-
duced by the great names of analytical mechanics
– Newton, Euler, Hamilton and Lagrange. The ba-
sic form of MD involves little more than Newton’s
second law [21]. The idea of MD is to generate
the trajectory of a system withN particles through
numerically integration of the classical equations
of motion.

MD is a deterministic approach, differently
from Monte Carlo simulations that are stochastic
Thus, a MD simulation will always generate the
same trajectory from the same initial condition.

The pseudo-code of the Molecular Dynamics is
shown in Algorithm 1.

Algorithm 1 Molecular Dynamics pseudo-code
1: Start
2: Set the initial conditions: positionsri(t0), ve-

locities vi(t0) and accelerationsai(t0)
3: while t < tmax do
4: Compute forces on all particles
5: Integrate equations of motion
6: Perform ensemble control
7: Compute geometric constraints
8: Compute the desired physical quantities
9: t← t + δt

10: end while
11: End

The high level of detail in MD simulations gives
general physical conclusions. However, these sim-
ulations are usually limited to short timescales
(typically,ns) because the calculation of the phys-
ical forces is computationally expensive. Two so-
lutions to overcome the computational cost are to
use coarse-grained models and use faster hardware
[22], [23] in MD simulations.

In the next subsections the steps for implement-
ing MD for the 3D-AB model will be shown.

A. Set the initial conditions

In this step, initial positions, velocities and ac-
celerations are assigned to all particles (i.e. amino
acids). An initial unfolded or partially folded
conformation is randomly generated. To represent
the position of the amino acids, three-dimensional



Cartesian coordinates are defined by a vector−→ri ,
as shown in Equation 2.

−→ri = (xi, yi, zi) ∈ ℜ, i = 0, ..., N − 1 (2)

Where,ℜ is the set of real numbers (in our
program, we use the double precision representa-
tion); N is the number of amino acids;xi, yi and
zi represent the Cartesian coordinates.

The first amino acid of the primary structure is
positioned at the origin of the Cartesian system
and next amino acids are positioned at Cartesian
coordinates relative to its predecessor and obtained
from random spherical coordinates (see Figure 2
1), as shown in Equation 3:

Figure 2. Example of spherical coordinates

xi = xi−1 + rij ∗ sinθ ∗ cosφ
yi = yi−1 + rij ∗ sinφ ∗ sinθ
zi = zi−1 + rij ∗ cosθ (3)

Whereφ ∈ [0, 2π] andθ ∈ [0, π].
The spherical coordinatesrij, φ and θ are the

radial distance, azimuth and inclination, respec-
tively. It is important to recall that the AB model
uses unity radial distances between residues, that
is, unit-length bond, as shown in Equation 4.

rij = |b̂i| = 1 (4)

The initial velocities are generated in two steps.
First, the initial velocities are assigned to random
directions and a fixed magnitude based on the
temperature, as shown in Equation 5.

1This figure is available at http://www.wolframalpha.com

vi

∣

∣

∣

t=0
= velMag ∗ −→ξ ; (5)

Where velMag represents the magnitude,
which is based on the temperature, as shown in
Equation 6;

−→
ξ is a randomly oriented vector of

unit length, generated by a random number gen-
erator with uniform distribution over the interval
[-1, +1] [21].

velMag =
√

3.(1− 1
N
).T0 (6)

WhereN andT0 represent the number of amino
acids of the protein and the initial temperature,
respectively.

For generating the unit length vectors, a rejec-
tion method proposed by [24] is used, where the
probability distribution is related to the uniform
distribution on a unit sphere, as shown in the
Algorithm 2.

Algorithm 2 Random Unit length vector genera-
tion algorithm

1: Start
2: s2 ← 2
3: while s2 > 1 do
4: x← 2 ∗ rand()− 1
5: y ← 2 ∗ rand()− 1
6: s2 ← x2 + y2

7: end while
8: x← 2 ∗ (

√
1− s2) ∗ x

9: y ← 2 ∗ (
√
1− s2) ∗ y

10: z ← 1− 2 ∗ s2
11: End

Where, rand() is a Linear Congruential Ran-
dom Number generator (LCG) [25].

Next, the velocities are also adjusted to ensure
that the center of mass is zero is at rest, thereby
eliminating any overall flow [21], as shown in
Equation 7.

vi

∣

∣

∣

t=0
= vi

∣

∣

∣

t=0
− 1

N

∑

j vj

∣

∣

∣

t=0
(7)

The initial accelerations initialized to zeroed.



ai

∣

∣

∣

t=0
= 0 ∀i ≤ N − 1 (8)

Where,N represents the number of particles
(i.e. amino acids).

B. Compute forces on all particles

The forces fi that act on the particles are
usually derived from the potential energy, which is
presented in Equation 1. The force corresponding
to u(r) is f = ∇u(r), whereu(r) = EAngles +
Etorsion+ELJ . The equations of motion are written
according to Newton’s second law, as shown in
Equation 9.

m~̈ ir =
∑N

j=1(j 6=i) fij (9)

Where, N represents the number of amino
acids. The Newton’s third law implies thatfji =
−fij Thus, each particle pair need to be examined
only once. The AB model does not represent the
mass value of residues. Thus, we used the unity
dimensionless mass in this work (m = 1).

As shown in Equation 1, the force field has three
terms: bond-angle forces, bond-torsion forces and
forces corresponding to the Lennard-Jones poten-
tial.

• Lennard-Jones potential: The force that the
jth amino acid exerts on theith amino acid,
corresponding to the Lennard-Jones potential
is:

fij = 48 ∗ ε(σi, σj)(r
−14
ij − 1

2
r−8
ij ) ∗ ~rij

(10)
• Bond-angle forces: A change in the bond-

angle (τi) produces forces on three neighbor
residuesj = i− 2, i− 1, i given by:

−∇rju(τi) = − du(τ)
d(cosτ)

∣

∣

∣

τ=τi
f
(i)
j (11)

whereu(τi) is the angle potential andf (i)
j =

∇rjcos(τi)
As

∑

j fj = 0, the forces can be expressed
by:

f
(i)
i−2 = (ci−1,i−1cii)

−1/2[ ~bi−1(ci−1,i/ci−1,i−1)− ~bi]

f
(i)
i = (ci−1,i−1cii)

−1/2[ ~bi−1 − ~bi(ci−1,i/cii)]
(12)

ci,j represents the scalar product of theith and
the jth bond vectors and it is represented by
the vectorci,j = ~bi · ~bj .
The potential associated with the bond angles
for the AB protein model (EAngles) is shown
in Equation 1. This equation can be written
in cosine form because the AB model uses
unit-length bonds, as follows:

u(τi) = −k1b̂i · ˆbi+1 = −k1 ∗ cos(τi) (13)

and the derivative used for the forces is given
by − du(τ)

d(cosτ)
= −k1.

• Bond-torsion forces:
The force associated with a torsional degree
of freedom is defined in terms of the relative
coordinates of four consecutive residues.
The torque caused by a rotation about the
ith bond generates forces on four neighbor
residues (j = i−2, ..., i+1) and it is defined
as shown in Equation 11, but replacing the
argumentτi by αi. Whereu(αi) is the angle
potential and~f (i)

j = ∇rjcos(αi).
As

∑

j fj = 0, the forces are expressed as
shown in Equation 14.
where:

w1 = ci−1,i+1cii − ci−1,ici,i+1

w2 = ci−1,i−1ci,i+1 − ci−1,ici−1,i+1

w3 = c2i−1,i − ci−1,i−1cii
w4 = ciici+1,i+1 − c2i,i+1

w5 = ci−1,i+1ci,i+1 − ci−1,ici+1,i+1

w6 = −w1
qi = (ci−1,i−1cii − c2i−1,i)(ciici+1,i+1 − c2i,i+1)

(15)

The potential associated with torsion for the AB
protein model (Etorsion) is shown in Equation 1.
This equation can also be written in cosine form
as shown in Equation 13. The derivative used for
the forces is given by− du(α)

d(cosα)
= −k2.



~f
(i)
i−1 = −(1 + ci−1,i/cii)~f

(i)
i−2 + (ci,i+1/cii)~f

(i)
i+1

~f
(i)
i = (ci−1,i/cii)~fi−2 − (1 + ci,i+1/cii)~f

(i)
i+1

~f
(i)
i−2 =

cii

q
1/2
i (ci−1,i−1cii−c2i−1,i)

[w1
~bi−1 + w2

~bi + w3
~bi+1]

~f
(i)
i+1 =

cii

q
1/2
i (ciici+1,i+1−c2i,i+1

)
[w4

~bi−1 + w5
~bi + w6

~bi+1] (14)

Further information about bond-angle and bond-
torsion forces calculation (with an example of an
alkane chain) can be found in [21].

C. Integrate equations of motion

In this work, we use the velocity-verlet algo-
rithm [26]. The implementation scheme of this
algorithm is:

~ri(t+ δt) = ~ri(t) + ~v(t)δt+ 1
2
~a(t)δt2

~vi(t+ δt/2) = ~vi(t) +
1
2
δt~ai(t)

~vi(t+ δt) = ~vi(t+ δt/2) + 1
2
~ai(t + δt)δt (16)

Where, ~ri(t),~vi(t) and ~ai(t) are the position,
velocity and acceleration of theith residue, re-
spectively;t andδt are the time and the timestep.

D. Perform ensemble control

Our MD simulation performs the canonical en-
semble (also referred to as the ensemble NVT),
where the number of particles (residues), the vol-
ume and the temperature are controlled at desired
values. The temperature is controlled using the
method of weak coupling to a thermal bath pro-
posed by [27]. In this approach, coupling removes
or adds energy to the system to maintain an ap-
proximately constant temperature. The velocities
are scaled at each step using the scaling factorα,
as follows

~vi(t) = λ ∗ ~vi(t) (17)

λ =
√

1 + δt
τT
(Tsp

T
− 1) (18)

Whereλ, τT , Tsp, T are the scaling factor, the
coupling constant, the desired temperature (set-
point) and the current temperature, respectively.

E. Compute geometric constraints

As mentioned before, a protein with the AB
model is subject to geometrical constraints due to
the fixed unit-length bonds between amino acids
(|~ri − ~rj|2 = b2i = 1).

Considering a protein withN residues, there are
a total ofnc = N−1 geometric constraints. In this
work, we use the SHAKE algorithm [28] to deal
with constraints.

The SHAKE algorithm starts after advancing
the system over a single timestep, while ignoring
the constraints [21]. Thus, a set of uncorrected
coordinates is obtained that are represented by
Equation 19.

~r′i(t+ δt/2) = 2~ri(t)− ~ri(t− δt)

+(δt/2)2/mi · ~fi(t) (19)

Algorithm 3 shows the SHAKE algorithm. The
SHAKE algorithm has two parts. First, corrections
along the direction of~rij(t) are done. The esti-
mated coordinates~r′i and~r′j are updated by using
the correction factorγ, which is determined as
shown in lines 1 and 8 of the algorithm. Next,
velocities are corrected in a similar manner. Here,
it is important to recall thatmi and mj are the
masses of theith andjth amino acids, respectively.
The AB model does not represent the mass value
of residues. Thus, we used the unity dimensionless
mass in this work (i.e.mi = mj = 1). In addition,
bi represent the bond length between theith and
jth amino acids which, as mentioned, are unit-
length bonds in the AB model. The process is re-
peated for both direction and velocity corrections
until all the constraints are satisfied.

The precision of the SHAKE algorithm is given
by |~r0−~r|/|~r0| < 10−k, where10−k is the desired



precision. Our implementation has a precision of
10−6.

Algorithm 3 SHAKE algorithm
1: Start

Coordinates correction:
2: γ ← ~r2

′

ij−b2i
4(δt/2)2(1/mi+1/mj)~r′ij ·~rij

3: while |γ| < 10−k · b2i do
4: ~r′i ← ~ri − γ~rij
5: ~r′j ← ~ri + γ~rij

6: γ ← ~r2
′

ij−b2i
4(δt/2)2(1/mi+1/mj )~r′ij ·~rij

7: end while
Velocities correction:

8: γ =
¨~ ijr·~rij
2~r2ij

9: while |γ| < 10−k · b2i do
10: ~̈ ′

ir ← ~̈ jr − γ~rij
11: ~̈ ′

jr ← ~̈ jr + γ~rij

12: γ =
¨~ ijr·~rij
2~r2ij

13: end while
14: End

F. Compute the desired physical quantities

Besides the total energy (see Equation 1) of
the obtained conformation, we also compute the
radius of gyration [29] Radius of gyration is a
measure of compactness of a set of points (in
this case, the residues of the protein). The more
compact the set of points, the smaller the radius
of gyration is. The radius of gyration is computed
by Equation 20:

Rg =

√∑N−1

i=0
[(xi−X)2+(yi−Y )2+(zi−Z)2]

N
(20)

In this equation,xi, yi andzi are the coordinates
of the residues.X, Y andZ are the average of all
xi, yi andzi; andN is the number of residues.

G. General comments

• The simulation takes place in a cubic con-
tainer, using periodic boundary conditions.
The periodic boundary conditions are equiv-
alent to considering an infinite array of iden-
tical copies of the simulation region [21].

There are two consequences of this period-
icity: particles (i.e. amino acids) that leave
the simulation region through a particular
bounding face immediately reenters the re-
gion through the opposite face, and particles
lying within a distace of a boundary interact
with particles in an adjacent copy of the
system (i.e. particles near the opposite bound-
ary). The second consequence is considered
to be a wraparound effect. If a particle have
moved outside the region its coordinates are
adjusted to bring it inside the simulation
region, as shown in Equations 21, 22 and 23.

xi =

{

xi − Lx if xi ≥ Lx/2
xi + Lx otherwise

(21)

yi =

{

yi − Ly if yi ≥ Ly/2
yi + Ly otherwise

(22)

zi =

{

zi − Lz if zi ≥ Lz/2
zi + Lz otherwise

(23)

Wherexi, yi and zi represent the Cartesian
coordinates of the amino acids;Lx, Ly andLz

are the region size in thex, y andz directions,
respectively.
The components of the distance between
amino acids are determined in a similar man-
ner, as shown in Equations 24, 25 and 26.

rijx =

{

rijx − Lx if rijx ≥ Lx/2
rijx + Lx otherwise

(24)

rijy =

{

rijy − Ly if rijy ≥ Ly/2
rijy + Ly otherwise

(25)

rijz =

{

rijz − Lz if rijz ≥ Lz/2
rijz + Lz otherwise

(26)

Whererijx, rijy andrijz are the components
of the distance between theith andjth amino
acids.

• We do not use real physical units because
they are not defined for the AB model of



proteins. Thus, the energy, temperature and
length are shown in reduced (or dimension-
less) units.
It is important to note that in simulations of
real molecular systems is convenient to ex-
press physical quantities, such as temperature
and pressure, in reduced units, and to use
basic units in order to translate them to real
units. The basic units depend on experimental
data and they are: length (σ), energy (ǫ), mass
(m) and temperature (ǫ/KB), whereKB is
the Boltzmann constant [30]. Moreover, the
main reason for using dimensionless units
in simulations with real physical units is
related to scaling. Thus, properties that have
been measured in dimensionless units can be
scaled to the physical units for the problem
of interest. From a practical point of view, the
use of dimensionless units removes any risk
of problems with data representation.

V. COMPUTATIONAL EXPERIMENTS

All experiments reported in this work were run
in a desktop computer with a Intel processor Quad
Core, running Arch Linux All algorithms were
implemented in ANSI-C programming language.

VI. BENCHMARKS

Sections VI-A and VI-B present the synthetic
and real protein sequences, respectively, used in
this work. On one hand, the synthetic sequences
were only used for simple HP models [31], [32].
On the other hand, the real protein sequences are
first introduced here and, consequently, there are
no reference values for these sequences.

A. Synthetic sequences

Synthetic sequences were used, which were
proposed by [32] for the 3DHP model, used by
[31] for the 3DHP-SC model. They have either
27, 31, 36 and 48 amino acids and are shown in
Table I.

Table I
BENCHMARK SEQUENCES FOR THEAB OFF-LATTICE MODEL ,

PROPOSED BY[32] FOR THE3DHP MODELS.

id N Sequence
5 27 AB4A4B2ABABA3BAB2A2B2A

6 27 ABBBAAAABABAABBBABAABABBBAB

7 27 AB(AABB)2A4(BBBA)2A2B2A

8 31 (AAB)2A6(BBAAAAA)2A2

9 36 BA(BBA)11B

B. Real protein sequences

Real proteins sequences and structures were
also used in this work. Table II shows the list
of real protein sequences that were used in this
work. In this table, the second column, third and
fourth columns identify, respectively, the PDB
code, name and the size (N) of the proteins.

Table II
L IST OF REAL PROTEINS

id PDB code Name N

10 2gb1 Protein G 56
11 1pcy Oxidized Poplar Plastocyanin 99
12 2trx Escherichia coli’s Thioredoxin 108
13 3fxn Clostridium Beijerinckii’s Flavodoxin 138

These proteins were extracted from PDB files
2. The PDB format has 12 sections, where in each
section 46 different records are listed in a specific
order. In this work, the amino acid sequence and
the coordinates of the amino acids of the protein
are required. Thus, we used the SEQRES and
ATOM records of the PDB file. It is important
to recall that we use the backbone of the proteins,
which is formed by the Cαs of the amino acids.
Hence, our approach reads the Cα coordinates
from the PDB file.

In order to convert the protein sequences of the
PDB into the AB model alphabet (i.e.: ’A’ and ’B’
for hydrophobic and hydrophilic residues, respec-
tively) we used the amino acid type classification
presented in [33]. Table III shows the equivalent
AB sequences of the proteins.

2Available in http://www.pdb.org



Table III
SEQUENCES

Protein Sequence
2gb1 AB3A3BAB2ABAB4B(AAB)2AB2A2(BBBA)3A(BA)2B(BBBA)2BAB2

1pcy A(BAAAAABBA)2(BA)2AB2A3B3A4B2A3B4(AAB)2AB(BA)2B4A2

2trx B3A(AB)2(BBBA)2(AB)2A2(AAAB)2A5BA6B2A2B4(AB)2A2(BA)2

3fxn B4A3B3(AAB)2A5B(BA)2A3BA5(BA)2B2A2(BA)2A

C. Structure alignment and evaluation

The applicability of a coarse-grained model can
be evaluated by comparing the obtained structures
with real protein structures (i.e. protein structures
extracted from PDB). Therefore, we assess the
quality of the obtained structures by comparing
them with real structures, using the Algorithm 4.

Algorithm 4 Structure evaluation algorithm
1: Start
2: AB likea ← fitting(P1)
3: AB likeb ← fitting(P2)
4: RMSD ← kabsch(AB likea, AB likeb)
5: End

Basically, Algorithm 4 has three steps, where
the first two steps are fitting procedures and the
last one represents a quality assessment.

• Fitting procedures: In step 1 (AB likea ←
fitting(P1)), the PDB file coordinates (P1)
are fitted to an off-lattice structure (called
“AB like”), where all bond lenghts are
scaled to 3.8Å (AB likea), which is the
mean distance between consecutive Cα atoms
[34]. In step 2 (AB likeb ← fitting(P2)), the
coordinates of the obtained AB model struc-
ture (P2 are fitted to the “AB like’ structure,
where all unit-length bonds are also scaled
to 3.8 Å (AB likeb). Algorithm 5 shows the
fitting procedure.
Where,sin(θ), cos(θ), acos(x), atan2(x, y)
are the sine, cosine, inverse cosine and the
inverse tangent, respectively. It is important
to recall that theatan2 function returns a
positive value for counter-clockwise angles,
and a negative value for clockwise angles.

• Quality assesment:

Algorithm 5 Fitting procedure –fitting(p)
1: Start

Let N be the protein size (number of amino
acids)
Let p be the input coordinates (from PDB or
AB)
Let a be the output “AB like” coordinates
Let dx, dy and dz Let r be the bond lenght
betweeni and (i+ 1) amino acids

2: for i = 1→ N − 1 do
3: dx← p[i+ 1].x− p[i].x
4: dy ← p[i+ 1].y − p[i].y
5: dz ← p[i+ 1].z − p[i].z
6: r ←

√

(dx2 + dy2 + dz2)
7: θ[i]← acos(dz/r);
8: φ[i]← atan2(dx, dy);
9: end for

10: a[0].coord← p[0]
11: for i = 2→ N do
12: a[i].x ← a[i − 1].x + 3.8 ∗ sin(θ[i − 1]) ∗

cos(φ[i− 1])
13: a[i].y ← a[i − 1].y + 3.8 ∗ sin(θ[i − 1]) ∗

sin(φ[i− 1])
14: a[i].z ← a[i− 1].z + 3.8 ∗ cos(θ[i− 1])
15: end for
16: returna
17: End

According to [34] RMSD is used to assess
protein model quality. It measures the simi-
larity of two structures from coordinates, as
shown in Equation 27.

RMSD =

√∑N−1

i=0
|P1i

−P2i
|

N
(27)

Where,N , P1i andP2i represent the number
of amino acids, the Cartesian coordinates of



the first protein structureP1 and the Cartesian
coordinates of the second protein structure
P1, respectively.
The RMSD evaluation depends on the super-
positioning of the protein structures. Since
the RMSD is a rotation-dependent measure,
a RMSD-optimised is done using the Kabsch
method [35] in order to obtain the lowest
RMSD. The main idea of the Kabsch method
is to calculate the rotation matrix (U), which
is used to minimize the RMSD. Basically, the
Kabsch method algorithm has three steps: a
translation to the origin of both structures, the
computation of a covariance matrix and the
computation of the rotation matrix.
From the structure similarity point of view,
[36] pointed that for small proteins with size
up to 150 amino acids, RMSD values less
than 3Å (i.e. RMSD ¡ 3Å) indicate that the
model presents a good quality. In addition,
RMSD values between 3 and 5̊A (i.e. 3 ≤
RMSD ≤ 5) are considered acceptable and
useful, and predictions with deviations above
5 Å are considered to be uninformative. [37]
also stated that models with RMSD values up
to 6.5 Å can be informative and useful.

VII. RESULTS AND ANALYSIS

Table IV shows the results obtained for the
synthetic sequences. In this table, the second and
last columns identify, respectively, the best results
obtained and the average processing time.

Table V shows the results obtained for the real
sequences.

Table IV
RESULTS FOR THE SYNTHETIC SEQUENCES.

N
Energy

tp(s)Best Avg±stdev
27 -75.8225 -71.44±3.38 302.56
27 -73.0161 -67.96±3.52 264.34
27 -74.3461 -68.63±3.56 325.72
31 -103.4963 -99.36±3.08 247.09
36 -94.0439 -89.92±2.59 271.53

As shown in Table V, the average RMSD values
obtained is greater than 9̊A, indicating that the

AB model, using the dimensionless unit length
bonds, is uninformative. This may be caused by
lack of information essential to describe secondary
structures, such as hydrogen bonding (i.e. non-
bonded interactions between the NH group of the
ith amino acid and C=O group of thei+4th amino
acid), that is the most prominent characteristic
of α-helices. Moreover, non-bonded interactions
based on the hydrophobicity of the side chains,
which are included in the energy equation of the
AB model only allow the formation of a hydropho-
bic core inside the proteins. The conformation of
α-helices is also driven by the environment (sol-
vent). For instance, [38] explained that it seems
reasonable to assume that the conformation ofα-
helices located in hydrophilic environments, such
as water, differs from those located in hydrophobic
environments, such as the cell membrane. Here,
it is important to recall again that the AB model
does not consider the environment. Overall, the
main weakness of the AB model is related to
the lack of a clear representation of secondary
structures, despite the formation of a hydrophobic
core, which is also an important aspect of the
protein folding.

Overall, the processing time is a function of the
length of the sequence, growing as the number
of amino acids of the sequence increases. This
fact, by itself, strongly suggests the need for
high performance approaches for dealing with this
problem. With the advantage of parallel process-
ing, it will be possible to simulate several folding
pathways, which will allow us to explore the
energy landscape of the AB model.

A. Pathways

Figures 3(a), 3(b) and 3(c) show the time de-
pendence of the total energy of the best confor-
mation of each sequence, radius of gyration of
the best conformation of each sequence and the
radius of gyration of the hydrophobic (RgH) and
hydrophilic (RgP ) residues of protein 2gb1, using
the conversion table following the classification by
[33]. Such plot confirm the Anfinsen’s thermody-
namic hypothesis, where a denatured conforma-
tion has high energy and folding to the native



Table V
RESULTS OBTAINED FOR REAL SEQUENCES

Protein
Energy RMSD Avg(Rg ) Avg(Tp) (s)

Best Average Best Average
2gb1 -166.96 -159.44± 3.46 7.35 9.52± 0.79 1.85 2621.50
1pcy -350.97 -339.41± 6.76 10.5 12.34± 1.11 2.46 8377.56
2trx -393.17 -379.57± 5.94 11.06 11.94± 0.75 2.36 12954.22
3fxn -490.08 -474.30± 7.09 11.25 12.54± 0.87 2.61 21301.80

state, the free energy of the protein decreases
significantly.

Notice that, in Figure 3(c), it is possible to
observe the formation of a compact hydrophobic
core, surrounded by polar residues, during folding
because the radius of gyration of the hydrophobic
residues is much lower than that of the polar
residues (that is,RgH < RgP ). Also, in this figure,
we can observe an evidence of conformational
fluctuations (commonly known as breathing mo-
tion [39]) in the maximized plot.

An example of a folding trajectory of protein
2gb1, using the AB model, is presented in Figures
4 and 5. In these Figures, it is shown seven
folding states that were obtained in a simulation.
The figure captions below each protein structure
show the energy (E), radius of gyration (Rg) and
the RMSD (betweenAB like structures obtained
from real proteins and AB structures) at different
times (t). Two amino acidsi andj are taken to be
in contact ifr2ij < 1.75 [20]. The number of local
and global interactions is also shown. A contact
betweenith and jth amino acids is called local
if 2 ≤ |i − j| ≤ 4 and global if |i − j| > 4.
Contact maps are also shown in this figure in order
to observe the formation of secondary structures.

In addition, Figure 5(d) shows the backbone
trace and the contact map of the protein 2gb1
obtained from PDB files. The backbone trace was
obtained using the RasMol software3. The contact
map was obtained using the CMView tool [40]
4, where we use 7Å as the threshold distance
and consider pairs of residues whose sequence
separation is|i − j| ≥ 2. In Figure 5(d), it is

3RasMol is a molecular visualization software. Available at
http://www.rasmol.org

4CMView is available in http://www.bioinformatics.org/cmview

possible to observe anα-helix (amino acids 22–
36) as a band along the main diagonal.β-sheets
are also shown (amino acids 2–17 and 41–56),
where anti parallelβ-sheets are represented by thin
bands orthogonal to the main diagonal, and the
two centralβ-sheets are in parallel.

In Figures 4(b), 4(c) and 4(d), it is possible to
observe the formation of an antiparallelβ-sheet
between the 24th and 35th amino acids, that is
different from the real structure which, in turn,
has anα-helix between the 22nd and 36th amino
acids. Figure 4(d) also suggests the formation of
an α-helix. However, in Figures 5(b) and 5(c) it
is not easy to found the secondary structures from
the contact maps. Moreover, it is possible to ob-
serve that the RMSD decreases during the folding
process towards the native state. Notwithstanding,
the RMSD measures are still high [36], [37] and
the AB model is too simple to represent protein
structures.

VIII. C ONCLUSIONS

The PFP is still an open problem for which
there is no closed computational solution. While
most works used HP models, the off-lattice AB
model is still poorly explored despite being a
simplified model with a level more of biological
expressiveness.

To the best of our knowledge, this work presents
the first implementation of Molecular Dynamics
using the off-lattice AB model. This work also
offered new reference values for benchmark se-
quences that can be used in the future by other
researchers for testing computational approaches
applied to the same problem.

Future work will include simulations and anal-
ysis of folding pathways using other structures
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Figure 3. Properties (in dimensionless MD units): (a) Energy of the best conformation of each sequence, (b) radius of gyration of the
best conformation of each sequence and (c) represent the radius of gyration of the hydrophobic (RgH) and hydrophilic (RgP ) residues
of sequence 2gb1.

drawn from real protein structures extracted from
the PDB, using a more complex coarse-grained
model for proteins.

Besides the energy, radius of gyration, RMSD
and thermodynamic measures, such as the tem-
perature, pressure, kinetic energy and the specific
heat [21], [30], we intend to study other metrics
in order to contribute to better understanding the
process.

MD simulations with different thermodynamic
ensembles will be done, which are characterized
by the control of certain thermodynamic quantities
using thermostats and barostats such as the canoni-
cal ensemble (NVT – moles, volume, temperature)

and the isothermal-isobaric (NPT – moles, pres-
sure, temperature) ensembles, including a thermo-
dynamic analysis of the folding process.

An important drawback is regarding the pro-
cessing time for the simulations. There is a strong
increase of processing time as the length of the
protein grows, following a polynomial complexity.
This fact, by itself, strongly suggests that future
research will need highly parallel approaches for
dealing with the PFP, such as the use of GPGPU
(General Purpose Graphics Processing Units) [23],
[41] or hardware-based accelerators [42].

Overall, we believe that the use of Molecular
Dynamics for the PFP using coarse-grained mod-
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Figure 4. Folding Pathway example, protein 2gb1 (part 1 of 2).

els is very promising for this area of research.
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