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Abstract—This paper applies a heterogeneous parallel ecology- Four population-based approaches are employed cooper-

inspired algorithm (pECO) to solve a complex problem from  atively in a heterogeneous model: the Artificial Bee Colony
bioinformatics. The ecological-inspired algorithm represents a  algorithm (ABC) [3], Particle Swarm Optimization algonith
new perspective to develop cooperative evolutionary algahms. (PSO) [4], Differential Evolution (DE) [5], and a hybrid Défr-

Different algorithms are applied to compose the computatioal ential Evolution / Biogeography-based Optimization aitjon
ecosystem in a heterogeneous model. The aim is to search lomw e (iDE-BBO) [6]

ergy conformations for the Protein Structure Prediction problem,

concerning the 3D-AB off-lattice model. Being a problem tha This paper is organized as follows: Section Il describes

demands a lot of computational effort, a parallel mastersive  ha 3p.AB off-lattice PSP problem; Section Il describes th

architecture is employed in order to allow the application d the £ annroach as well as its parallel version pECO: Section IV

computational ecosystem in a reasonable computing time. Bm shows how the experiments were conducted: Secti'on V shows

the results, the pECO approach obtained the best conformatin exp X o . X
the results obtained and the analysis made; finally, in &ecti

for the 13 amino-acid long sequence and competitive resulter ! / : )
the other sequences. VI some conclusions and future directions are pointed.

. INTRODUCTION IIl. PROTEIN STRUCTURE PREDICTION

Many Bioinformatics problems are featured mainly to  proteins are the basic structures of all living beings [7].
be non-linear and strongly constrained. This is the case ofhey are composed of a chain of amino acids that are linked
the protein structure prediction problem approached is th'together by means of peptide bonds. Several amino acids
paper. Due to the lack of exact methods for solving suchuyist in nature, but only 20 are proteinogenic. They can be
a class of problems, the need for robust heuristic methodgassified into two classes, according to their affinity tdewa
arises. Along decades, Evolutionary Computation (EC) angyyqrophilic (or Polar) and Hydrophobic. According to this
Swarm Intelligence (SI) have provided a large range of flexib pehavior, one can conclude that the hydropaticity of the sid

and robust optimization methods, capable of dealing sseceschain is one of the main process that governs the process of
fully with complex optimization problems. Both EC and S| {oyming protein structures [8].

are population-based methods in which each individual of

a population represents a tentative solution to the problem Protein folding is the process by which a polypeptide
to be solved. In recent years several other Sl algorithmshain is transformed into a compact structure that performs
have appeared [1]. With such diversity of search strategiesome biological function. Its known that better understagd

it is possible to establish an analogy with the dynamics othe protein folding process can result in important medical
biological ecosystems. advancements and development of new drugs.

In [2] the potentiality of some ecological concepts are  Computer science has an important role here, proposing
illustrated presenting an ecology-inspired algorithm @@r  models for studying the Protein Structure Prediction (PSP)
optimization. In order to explore the use of different skarc problem [9]. Nowadays, the simulation of computational mod
strategies cooperatively in an ecologically inspired eanht els that take into account all the atoms of a protein is fratjye
in this work, a parallel and heterogeneous application ofnfeasible, even with the most powerful computational re-
ECO (pECO) is developed and applied to a hard optimizatiorsources. Consequently, several simplified models thatatst
problem from bioinformatics. The aim is to search low energythe protein structure have been proposed. One of them is
conformations for the Protein Structure Prediction (PSBpp the AB off-lattice model. [10] employed neural networks,
lem, concerning the 3D-AB off-lattice model. Being a prahle Monte Carlo search and biologically inspired methods using
that demands a lot of computational effort, a parallel nraste the 2D-AB off-lattice model. An extended 3D version was
slave architecture is employed in order to allow the aptibca  presented by [11]. Recently, [12] introduced an improved
of the computational ecosystem in a reasonable computingnplementation of tabu search with the 3D-A&8f-lattice
time. model, using the energy function proposed by [13], obtanin



good performance. This paper is focused on the 3DgfB  b; represents théth bond that joins théi — 1)th and theith
lattice model. residues, and it is represented by the vedtor= 7; — 7_1,
andkl = —1; k2 = +1/2.

A. The 3D-AB Off-lattice Model The species-dependent global interactions are given by

The 2D AB off-lattice model was introduced by [13] to the Lennard-Jones potenciab(,); for pairs of ith and jth
represent protein structures. In this work, we use the 3gen residues separated by a distancegf
ralization of the 2D AB off-lattice model proposed by [14. | N2 N
this model each residue is represented by a single interacti _ (12 .6
site located at the & position. These sites are linked by rigid Brs = Z Z 4e(ei, 05)(ry i) @)
unit-length bondsi;) to form the protein structure. The three- _ _
dimensional structure of aiV-length protein is specified by Where £(0y,0;) is chosen to favor the formation of the
the N — 1 bond vectors;, N — 2 bond angles; and N —3  hydrophobic core (A residues). Thus(o;, 0;) is 1 for AA
torsional anglesy;, as shown in Figure 1. These angles areinteractions and 1/2 for BB/AB interactions.

defined in the rangg-180°, 180°]. . . _
_ ) ) _ o B. Encoding of Candidate Solutions
The 20 proteinogenic amino acids are classified into two

classes, according to their affinity to water (hydrophdjci An important issue when using population-based ap-
'A’ (hydrophobic) and 'B’ (hydrophilic or polar). This mode Proaches for a given problem is the encoding of the candidate
does not describe the solvent molecules. However, solvergolutions. The encoding has a strong influence not only in the
effects such as the formation of the hydrophobic core arertak size of the search space, but also in the complexity of the
into account through interactions between residues, dampr Problem, due to the presence of unknown epistasis between
to their hydrophobicity (species-dependent global intéoas).  variables that form the individuals (solution vectors).this
o o ) . work, a given conformation of the protein is represented

When a protein is folded into its native conformation, theas a set of bond rotation and torsion angles over a three-
hydrophobic amino acids tend to pack inside the protein, irjimensional space, as shown in Section II-A. Considering
such a way to get protected from the solvent by an aggregatiofe folding of a protein withn amino acids, an individual
of polar amino acids that are positioned outwards. Interacy represent the set of bond rotation and torsion angles. A
tions between amino acids take place and the energy of th@dividual has(2n — 5) variables, such that positiong; to

conformation tends to decrease. Conversely, the confmat p ., represent the bond rotation angles, aid ; t0 Pa,_5
tends to converge to its native state, in accordance with thgspresent the torsion angles.

Anfinsen’s thermodynamic hypothesis [15].

i=1 j=i+2

] ) . To represent the position of the amino acids, three-
The energy function of a folding using the 3D-AB Off- gimensional Cartesian coordinates are defined by a vector
lattice Model is given by [14]: (zi, vi» 2). The first and second amino acids of the primary
structure are set at the origin and point (0, 1, 0), respelgtiv
. Next amino acids are positioned at Cartesian coordinates
E(bi;0) = Eangles + Etorsion + Erg = relative to their predecessors and obtained by 3D georaétric

N—2 N-3 transformations.
—k1 Y bibiyr —k2 Y bi-bito
i—1 i—1 IIl. THE ECOLOGICAL-INSPIREDAPPROACH

N-2 N . . . .
de(on o) (p—12 _ =6 The ecological-inspired algorithm, named ECO, represents
+ Z Z E(UZ’UJ)(% — i) a new perspective to develop cooperative evolutionary-algo
=1 j=it2 rithms [2]. The ECO is composed by populations of individual

1) (candidate solutions for a problem being solved) and eaph po
ulation evolves according to an optimization strategy. réhe
where fore, individuals of each population are modified according
r;; represents the distance betweih and jth residuesic  to the mechanisms of intensification and diversificatiord an
= o9, ..., oy form a binary string that represents the proteinthe initial parameters, specific to each optimization et
sequence. The ECO system can be modelled in two ways: homogeneous
or heterogeneous. A homogeneous model implies that all
populations evolve in accordance to the same optimization
strategy, configured with the same parameters. Any change
in the strategies or parameters in at least one population
characterises a heterogeneous model.

Eangies and Ey,,50n are the energies from bond angles
and torsional forces, respectively; and are given, regmdyt
by Equations 2 and 3.

B — NX:QbA»-b-A ) The ecological inspiration stems from the use of some
Angles b ¢ Tl ecological concepts, such as: habitats, ecological oglshiips
=1 and ecological successions [16]. Once dispersed in thelsear
space, populations of individuals established in the sami®n
N-3 constitute an ecological habitat. For instance, in a maltied
Erorsion = —ko Z bi - bito (3)  hyper-surface, each peak can become a promising habitat for
Py some populations. A hyper-surface may have several habitat



(@) (b)

Fig. 1. Example of a hypothetic protein structure (a) and s of b;, 7; anda; (b, Adapted from [14]). White balls represent the polardess and black
balls represent the hydrophobic residues. The backbonghandonnections between elements are shown in black lines.

As well as in nature, populations can move around through alopulations communicate. The opposite happens with fsirthe
the environment. However, each population may belong onlypopulations.

to one habitat at a given moment of tinte Therefore, by
definition, the intersection between all habitats at monésit

A. Implementation of the Parallel Computational Ecosystem
the empty set.

With the definition of habitats, two categories of ecologica in Ilr:) ngeiE%risil1jee|(;l/?r:?(l)oge(\)/felrza(l:o}oncigsgrsI(Es(l:;\)/’etsr;e ﬁ&?ss'
relationships can be defined. Intra-habitats relatiorsshiiyat ogordination of a master rocepssor Each roces’sor (master
occur between populations inside each habitat, and intef p ' P

habitats relationships that occur between habitats [16]. or slaves) is responsible for initializing the populati@nd
performing the evolutive period of an population indepen-

In ECO, the intra-habitat relationship is the mating be-dently. The master processor is responsible for defining the
tween individuals. Populations belonging to the same habit communication topologies between populations and habitat
can establish a reproductive link between their individual
favouring the co-evolution of the involved populationsaihgh
competition for mating. Populations belonging to differen
habitats are called reproductively isolated.

In Algorithm 1 the italic instructions are processed by
each processor (master or slaves) while bold instructioes a
processed by the master processor. In the first step, line 3,
each slave initializes a populatiad;. In line 4, the master

The inter-habitats relationship are the great migrationscoordinates the ecological succession loop. The first step
Individuals belonging to a given habitat can migrate to ptheinside the ecological succession loop is the evolutiveogkeri
habitats aiming at identifying promising areas for surkaad  that is carried by the slaves (line 5). In line 6, each slave
mating. calculates the centroids and send them to the master. Then,
the master creates the habitats and defines the intra-tsabita
communication topology, lines 7 and 8 respectively. Once
defined the intra-habitat communication topologies, thetara
coordinates the mating process, requesting the best éhaili
of each specie and sending it to an adjacent specie. Next,
each specie replaces a randomly selected individual by a
new individual, which in turn, is generated through a geneti

Inside the ecological metaphor, the ecological successiorexchange between the received individual and an individual
represent the transformational process of the system.i$n thchosen using the tournament strategy (line 9).
process, populational groups are formed (habitats), ioalat . . . -
between populations are established and the system seabili Once the interactions between populations are finished, the

by means of the self-organization of its components master defines the inter-habitats communication topolbgg (
' 10). The master coordinates the migration process between

A key concept of the proposed ECO system is the definitiomabitats, requesting the best individual of a populatiom ra
of habitats. The ECO approach uses a hierarchical clugterindomly chosen from each habitat and sending it to an populatio
algorithm to set-up the habitats where each cluster reptese randomly chosen of an habitat also randomly chosen (line 11)
habitat. Hence, the habitats are defined probabilistitaking  Finally, the ecological succession loop restarts.
into account the distance information returned by clustgri
algorithm [17].

Once the habitats have been defined, the next step is the

definition of the communication topology for each habitaitth All experiments done in this work were run in a cluster
is probabilistically defined of 25 networked computers. Each computer has an Intel

Core-2 Quad processor at 2.8 GHz, 2 GBytes RAM. All
For a habitat with more than one population, intra-habitattomputers run a minimal installation of Arch Linux and used
communication occurs in such a way that each populatioMPICH2 !, version 1.0 for the implementation of the message
inside the habitat chooses another population to perform-co passing interface. All algorithms were implemented in ANSI
munication. Here, the distance between populations infleen programming language.
directly the probabilistic decision. The closer two popialas
are from each other the higher is the chance of these two !Available in: http:/mww.mcs.anl.gov/research/prog@utpich2/

In addition to the mechanisms of intensification and di-
versification specific to each optimization strategy, when-c
sidering the ecological context of the proposed algorittira,
intra-habitats relationships are responsible for infgirgy the
search and the inter-habitats relationships are resgenfsib
diversifying the search.

IV. COMPUTATIONAL EXPERIMENTS




Algorithm 1 Pseudo-code for parallel ECO (pECO) (F controls the amplification of the differential variatiomd

1: Start CR = 1.0 (crossover constant) with DE/rand/1/bin. And for
2. leti=1,...,NQ,j=1,...,NH andt = 0; i - — i
3: Initialize each population®; () with PO P; random candidate solutions JDE/BBO.the _pargmeters use.d af& b 1.0 (maXImum
4: while stop criteria not satisfiedo {Ecological succession cyclgs pOSS|b|e |mm|grat|0n and em|grat|0n rateé)R = 0.9, F =
5. Perform evolutive period for each populatiap; (t); 0.5, and S,,,.. =POP [6]
6: Idendify the region of referena€’; for each populationQ; (t);
7. define_Habitats()
8.  For each habitat H, (t) define the communication topologyC'T}; (t) between V. RESULTS ANDANALYSIS
populations Q7 (t); . . .

9. interactionsC() . In this section the results of our experiments are presented
ﬂ): .Dtef'”e t.comﬂ‘z;'ca“o“ topologyT H (t) between H; (t) habitats; as well as a comparison with the best results found in liteat

. Interactions . .
120 tet4+1 The performance takes into account the average best solutio
14315 end while found over all runs and the average processing time. Results

- End are shown in Table Il. In this table, first column represents

the amino acids sequences), the second column shows the
) ) _best results found in literaturé(), the third column identifies
~Due to the stochastic nature of the algorithms compared ife pest-ever solution found by the pECO approakh. )
this work, 10 independent runs were done with differentahit o fourth column is the average value of the best solutions
random seeds. For each run, an upper-bound for the numbgpained in 10 runs,,,), the fifth column shows the average
of fitness function evaluations was established 600, 000. processing time in seconds,), and the sixth column shows
the percentage difference betweehdnd E.;.
A. Benchmark sequences

. . TABLE II. RESULTS FOR THE3D AB OFFLATTICE MODEL.
In the experiments reported below, a total of 4 synthetic STRATEGY: ABC-PSO-DEJDE/BBO
protein sequences were used. These sequences have begp SO yormm Yo ORI
previously used by other researchers _(for instance, [18])| 13 26,507 [19] 26507 26454 0.17 30683 0.000
and they were based on the Fibonacci sequence. In Table I, 21 -52917[20]  -52.029 ~ -51.334 048 39045 1.678

is the number of monomers of the sequences (13, 21, 34 antfg1 _f773'.7§’82013[[2211]] _i%é‘le;gﬁ _?51.7?;2%611..1033 1232335 ?gi%g

55 amino acids-long sequences).

From sixth column of Table II, it is possible to notice

TABLE I. BENC S CESFO BD-AB off-latti . . .
ENCHMARK E%UDEE'\‘L ESFORTH oriatice that, for the two first sequences (13 and 21 amino acids)

the differences observed are null and very small, respsygtiv
N _| Sequence For the two large sequences (34 and 55 amino acids) the

13 | ABBABBABABBAB

. . 0 o
>T T BABABGABABGABGABABBAB differences are more accentuated, with 3.460% and 8.191%,
34 | ABBABBABABBABBABABBABABBABBABABBAB respectively. Overall, the pECO approach found competitiv
55 | BABABBABABBABBABABBABABBABBABABBAB results.

BABABBABABBABBABABBAB

Probably,speed-ups the most widely used performance
measure in parallel computing [22]. This measure aims at
B. Control Parameters evaluating how much a parallel algorithm is faster than the

. ] quivalent sequential version. Speed-sp)is defined as the
The parameters for the pECO algorithm are: number 0Fime needed for running a given algorithm in one processor

populations NQ) that will be co-evolved, the initial popula- (1) givided by the running time of the same parallel algo-
tion size POP), number of cycles for ecological successions i,m running inm processorsT,). In this work m = 100
(ECO-STEF, the size of the evolutive perioEVO-STER  rocessing cores. The speed-ups achieved were 1.8, 338, 4.7
that represents the number of function evaluations in eacEnd 11.93 for 13, 21, 34, and 55 amino acid-long sequences
EC|:O.-STEI?and fthe tqurnamecrjlt.&zé'-hSItZ)_E) used to choose respectively. A sublinear speed-up,( < m) behavior can
'Srzg[\llgrlljetsofopret;]gg r;gtr?maelz?ers”::/eerr_e ?jelfti?]tegoerpnn;iurirg;ﬁ‘;lgvit be clearly identified here. Recall that a speed-up higher tha
Vi > = " """ one suggests that the parallelization of the algorithmeke=es
NQ = ZOQdPOP - 5_Q EC?'S;EP N 5'OO’OEVO'§T|EPf _h the overall computational cost. Ideally, the speed-up khbe
1,000, an T'Sh|ZE _b'5 T ?If etercljger)(;ous model of the |inear, put this is not possible in practice, since processo
PECO approach, combines all four algorithms (ABC'PSO'PE'are not used only for processing, but also for other tasks of
jDE/BBO) in which1/4 of the populations behaves according o underlying operating system [23] and, specially in this
to one of these strategies. work, for message-passirgmmunication between them. This

Default parameters recommended in the literature werés due to the fact that the number of species to be processed
used in the algorithms employe®OPis a common parameter divided by the number of processors does not give a specie per
between all algorithms and is adjusted as previously menprocessing core. It is important to recall that the speedarp
tioned. For ABC algorithm, there is only one control param-be improved including more processing cores. For instance,
eter, limit = 100 [3]. For PSO algorithm, besideBOP, the ~ for N@ populations, an equal number of processing cores can
parameters were set to standard valu@sertia weight!V =  be used in order to achieve a quasi-linear speed-up. It & als
0.721; cognitive and social componenis, = ¢, = 1.193,  Possible to observe that the speed-up increases with theipro

respective|y_ For DE a|gorithm, the parameters Are= 0.9 size. This is due to the relatively hlgh time needed to trahsm
data between processes for small proteins, when compared

2Standard PSO (SPS0-07): http://www.particleswarm.®rfograms.html with the processing load. Therefore, it is necessary tdéska




a load balance between the processing and communication
loads between processes. Better speed-ups can be achoeved f
bigger proteins. This shows how computationally-inteashe
problem is, thus justifying the parallel approach. The cated
efficiency for pECO approach is 0.018, 0.038, 0.0473, and
0.1193 for 13, 21, 34, and 55 amino acid-long sequences,
respectively. These values suggest that the processorsotre
being fully used all the time. In fact, speed-up and efficienc
are a direct consequence of the balance between the progessi
load of the slaves and the communication load between master
and slaves.

Figure 2 shows the convergence plot for all amino-acids
tested. In this figure, the #zis shows the number of iterations
and the yaxis represents the best-ever value averaged over
the same iteration of all runs. Analyzing these plots we can
observe that for 13 and 21 amino-acids-long sequences the
convergence is accentuated in the direction of a stagnation
point in the earlier ecological successions. In the case3of 1
amino acids the optimum value is reached and for 21 amino
acids a solution very close to the global optimum is reached.
For 34 and 55 amino acids-long sequences the convergence is
not so abrupt as for the first two sequences but still with fast
convergences. It is possible to verify that small improvetae
are achieved from half of the ecological successions fatwar
These convergence plot indicate that, in order to improee th
results, strategies for maintaining diversity inside pgapians
are required.

Also, Figure 2 shows for each sequence some labels indicatin
which algorithm achieved the best solution in each ecoklgic
succession. Once a different algorithm updates the begt sol
tion, a new label is added. For example, for the 13 amino acids
long sequence the ABC algorithm achieved the best solution
until around succession 10; from successions 10 to around
2,500 the JDE/BBO algorithm achieved the best solution; and
from successions 2,500 to 5,000 the DE algorithm achieved
the best solution. Analysing these labels, it is possible to
notice the coevolution between the different search giese
(ABC/PSO/DE/|DE-BBO) because they alternate in finding
the best solutions. Possibly this is due to the peculiarfty o
each method in searching the space of solutions. It is also
possible to conclude that, in this problem case, theseestrat
gies are quite complementary, even during few successions
where one method dominates in obtaining better solutions. T
convergence plots indicate that ABC and PSO algorithms are
best suited for global search (initial ecological sucaass),
whilst the DE and jDE/BBO algorithms are best suited for
local search (final ecological successions).

Figure 3 shows the evolution of the number of habitats
for each ecological succession step. It is observed thaleat
beginning of the optimization process, with the population
widely dispersed in the search space, there is a large nushber
habitats for all sequences. As the optimization processesiov
through the ecological successions, the populations tend f
move through the search space converging to specific regions
As shown in Figure 3, the number of habitats decreases
with the ecological succession cycles for 13 and 55 amino
acids-long sequences, indicating that the populationd ten

ig. 2.
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DEBBO

Bestever fitness
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0 1[;00 2(;00 3600 4(;00 5000
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(a) Convergence for the 13 amino-acids-long se-
quence.

" hBC
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(b) Convergence for the 21 amino-acids-long se-
quence.
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(c) Convergence for the 34 amino-acids-long se-
quence.
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DEBBO
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(d) Convergence for the 55 amino-acids-long se-

quence.

Plots for the pECO convergence

converge to points close to each other. This decay is inlerseamino acid-long sequence, due to its higher complexity, the
proportional to the complexity of the problem. For example,populations are dispersed through the search space duking a
for the smallest sequence it is possible to notice a graduauccessions. This indicates that with more ecological estcc
convergence of populations. On the other hand, for the 55ions the pECO approach could achieve even better results.



5]

Number of habitats
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0 4000 5000 0

00 3000 4000 5000 [8]

1000 20 0 1000 20 -
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(a) Convergence for the 13 amino-acid®) Convergence for the 55 amino-
long sequence. acids-long sequence.

Fig. 3. Plots for the number of habitats

VI. CONCLUSION [10]

The performance of a parallel ecologically-inspired opti-
mization algorithm (pECO) was analyzed in this paper, under
the task of minimizing the energy function of a Protein 11
Structure Prediction problem, featuring the off-lattide-3B
model. Four population-based algorithms (ABC, PSO, DEm]
and jDE/BBO) were employed in an ecological heterogeneous
model.

The results obtained were competitive with the grounou?’]
solutions found in literature. Also, with analysis in theopl [14]
of habitats convergence, it is possible to verify that th€pE
approach can achieve even better results if more ecological
successions are used. [15]

Parallel processing is essential to allow us to obtain good
quality results in a reasonable computing time. As the sfze o
the proteins increase, the computational demand will asze
accordingly. Therefore, future works will consider the uge [16]
highly parallel approaches for dealing with the PSP prob-
lem, such as the use of GPGPU (General Purpose Graphif]
Processing Units) [24]. A hierarchical parallel approadh w
be explored, where the processing load related to the fitness
function evaluations is also divided into several slavegctyh
in turn, are responsible to compute the fitness function of a
number of individuals. (18]

Itis possible to highlight that the use of different algbnits
can be better explored if using some source of feedback fromg
the optimization process during its course to better dista
the habitats formation and to better define the intra and inte
habitats communication topologies. This could be achieved?
using the heuristic information from the hierarchical ¢téuing
procedure or other KDD strategies to aid the self-orgaitinat
process of the system. Also, the diversification of evolitiv
behaviors of the computational ecosystem, by insertingroth
algorithms, is a future research direction.

[21]

[22]
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