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Curitiba, Brazil

Email: cesarbenitez@utfpr.edu.br

Rafael Stubs Parpinelli
Applied Computing Graduate Program

Santa Catarina State University
Joinville, Brazil

Email: parpinelli@joinville.udesc.br

Heitor Silvério Lopes
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Abstract—This paper applies a heterogeneous parallel ecology-
inspired algorithm (pECO) to solve a complex problem from
bioinformatics. The ecological-inspired algorithm represents a
new perspective to develop cooperative evolutionary algorithms.
Different algorithms are applied to compose the computational
ecosystem in a heterogeneous model. The aim is to search low en-
ergy conformations for the Protein Structure Prediction problem,
concerning the 3D-AB off-lattice model. Being a problem that
demands a lot of computational effort, a parallel master-slave
architecture is employed in order to allow the application of the
computational ecosystem in a reasonable computing time. From
the results, the pECO approach obtained the best conformation
for the 13 amino-acid long sequence and competitive resultsfor
the other sequences.

I. I NTRODUCTION

Many Bioinformatics problems are featured mainly to
be non-linear and strongly constrained. This is the case of
the protein structure prediction problem approached in this
paper. Due to the lack of exact methods for solving such
a class of problems, the need for robust heuristic methods
arises. Along decades, Evolutionary Computation (EC) and
Swarm Intelligence (SI) have provided a large range of flexible
and robust optimization methods, capable of dealing success-
fully with complex optimization problems. Both EC and SI
are population-based methods in which each individual of
a population represents a tentative solution to the problem
to be solved. In recent years several other SI algorithms
have appeared [1]. With such diversity of search strategies,
it is possible to establish an analogy with the dynamics of
biological ecosystems.

In [2] the potentiality of some ecological concepts are
illustrated presenting an ecology-inspired algorithm (ECO) for
optimization. In order to explore the use of different search
strategies cooperatively in an ecologically inspired context,
in this work, a parallel and heterogeneous application of
ECO (pECO) is developed and applied to a hard optimization
problem from bioinformatics. The aim is to search low energy
conformations for the Protein Structure Prediction (PSP) prob-
lem, concerning the 3D-AB off-lattice model. Being a problem
that demands a lot of computational effort, a parallel master-
slave architecture is employed in order to allow the application
of the computational ecosystem in a reasonable computing
time.

Four population-based approaches are employed cooper-
atively in a heterogeneous model: the Artificial Bee Colony
algorithm (ABC) [3], Particle Swarm Optimization algorithm
(PSO) [4], Differential Evolution (DE) [5], and a hybrid Differ-
ential Evolution / Biogeography-based Optimization algorithm
(jDE-BBO) [6].

This paper is organized as follows: Section II describes
the 3D-AB off-lattice PSP problem; Section III describes the
ECO approach as well as its parallel version pECO; Section IV
shows how the experiments were conducted; Section V shows
the results obtained and the analysis made; finally, in Section
VI some conclusions and future directions are pointed.

II. PROTEIN STRUCTURE PREDICTION

Proteins are the basic structures of all living beings [7].
They are composed of a chain of amino acids that are linked
together by means of peptide bonds. Several amino acids
exist in nature, but only 20 are proteinogenic. They can be
classified into two classes, according to their affinity to water:
Hydrophilic (or Polar) and Hydrophobic. According to this
behavior, one can conclude that the hydropaticity of the side
chain is one of the main process that governs the process of
forming protein structures [8].

Protein folding is the process by which a polypeptide
chain is transformed into a compact structure that performs
some biological function. Its known that better understanding
the protein folding process can result in important medical
advancements and development of new drugs.

Computer science has an important role here, proposing
models for studying the Protein Structure Prediction (PSP)
problem [9]. Nowadays, the simulation of computational mod-
els that take into account all the atoms of a protein is frequently
infeasible, even with the most powerful computational re-
sources. Consequently, several simplified models that abstract
the protein structure have been proposed. One of them is
the AB off-lattice model. [10] employed neural networks,
Monte Carlo search and biologically inspired methods using
the 2D-AB off-lattice model. An extended 3D version was
presented by [11]. Recently, [12] introduced an improved
implementation of tabu search with the 3D-ABoff-lattice
model, using the energy function proposed by [13], obtaining



good performance. This paper is focused on the 3D-ABoff-
lattice model.

A. The 3D-AB Off-lattice Model

The 2D AB off-lattice model was introduced by [13] to
represent protein structures. In this work, we use the 3D gene-
ralization of the 2D AB off-lattice model proposed by [14]. In
this model each residue is represented by a single interaction
site located at the Cα position. These sites are linked by rigid
unit-length bonds (̂bi) to form the protein structure. The three-
dimensional structure of anN -length protein is specified by
theN − 1 bond vectorŝbi, N − 2 bond anglesτi andN − 3
torsional anglesαi, as shown in Figure 1. These angles are
defined in the range[−180o, 180o].

The 20 proteinogenic amino acids are classified into two
classes, according to their affinity to water (hydrophobicity):
’A’ (hydrophobic) and ’B’ (hydrophilic or polar). This model
does not describe the solvent molecules. However, solvent
effects such as the formation of the hydrophobic core are taken
into account through interactions between residues, according
to their hydrophobicity (species-dependent global interactions).

When a protein is folded into its native conformation, the
hydrophobic amino acids tend to pack inside the protein, in
such a way to get protected from the solvent by an aggregation
of polar amino acids that are positioned outwards. Interac-
tions between amino acids take place and the energy of the
conformation tends to decrease. Conversely, the conformation
tends to converge to its native state, in accordance with the
Anfinsen’s thermodynamic hypothesis [15].

The energy function of a folding using the 3D-AB Off-
lattice Model is given by [14]:

E(b̂i;σ) = EAngles + Etorsion + ELJ =

−k1

N−2∑

i=1

b̂i · ˆbi+1 − k2

N−3∑

i=1

b̂i · ˆbi+2

+

N−2∑

i=1

N∑

j=i+2

4ε(σi, σj)(r
−12
ij − r−6ij )

(1)

where
rij represents the distance betweenith and jth residues;σ
= σ0, ..., σN form a binary string that represents the protein
sequence.

EAngles andEtorsion are the energies from bond angles
and torsional forces, respectively; and are given, respectively,
by Equations 2 and 3.

EAngles = −k1

N−2∑

i=1

b̂i · ˆbi+1 (2)

Etorsion = −k2

N−3∑

i=1

b̂i · ˆbi+2 (3)

b̂i represents theith bond that joins the(i − 1)th and theith
residues, and it is represented by the vectorb̂i = ~ri − ~ri−1,
andk1 = −1; k2 = +1/2.

The species-dependent global interactions are given by
the Lennard-Jones potencial (ELJ ); for pairs of ith and jth
residues separated by a distance ofrij .

ELJ =

N−2∑

i=1

N∑

j=i+2

4ε(σi, σj)(r
−12
ij − r−6ij ) (4)

Where ε(σi, σj) is chosen to favor the formation of the
hydrophobic core (’A’ residues). Thus,ε(σi, σj) is 1 for AA
interactions and 1/2 for BB/AB interactions.

B. Encoding of Candidate Solutions

An important issue when using population-based ap-
proaches for a given problem is the encoding of the candidate
solutions. The encoding has a strong influence not only in the
size of the search space, but also in the complexity of the
problem, due to the presence of unknown epistasis between
variables that form the individuals (solution vectors). Inthis
work, a given conformation of the protein is represented
as a set of bond rotation and torsion angles over a three-
dimensional space, as shown in Section II-A. Considering
the folding of a protein withn amino acids, an individual
will represent the set of bond rotation and torsion angles. An
individual has(2n − 5) variables, such that positionsP1 to
Pn−2 represent the bond rotation angles, andPn−1 to P2n−5

represent the torsion angles.

To represent the position of the amino acids, three-
dimensional Cartesian coordinates are defined by a vector
(xi, yi, zi). The first and second amino acids of the primary
structure are set at the origin and point (0, 1, 0), respectively.
Next amino acids are positioned at Cartesian coordinates
relative to their predecessors and obtained by 3D geometrical
transformations.

III. T HE ECOLOGICAL-INSPIREDAPPROACH

The ecological-inspired algorithm, named ECO, represents
a new perspective to develop cooperative evolutionary algo-
rithms [2]. The ECO is composed by populations of individuals
(candidate solutions for a problem being solved) and each pop-
ulation evolves according to an optimization strategy. There-
fore, individuals of each population are modified according
to the mechanisms of intensification and diversification, and
the initial parameters, specific to each optimization strategy.
The ECO system can be modelled in two ways: homogeneous
or heterogeneous. A homogeneous model implies that all
populations evolve in accordance to the same optimization
strategy, configured with the same parameters. Any change
in the strategies or parameters in at least one population
characterises a heterogeneous model.

The ecological inspiration stems from the use of some
ecological concepts, such as: habitats, ecological relationships
and ecological successions [16]. Once dispersed in the search
space, populations of individuals established in the same region
constitute an ecological habitat. For instance, in a multimodal
hyper-surface, each peak can become a promising habitat for
some populations. A hyper-surface may have several habitats.



(a) (b)

Fig. 1. Example of a hypothetic protein structure (a) and Definition of b̂i, τi andαi (b, Adapted from [14]). White balls represent the polar residues and black
balls represent the hydrophobic residues. The backbone andthe connections between elements are shown in black lines.

As well as in nature, populations can move around through all
the environment. However, each population may belong only
to one habitat at a given moment of timet. Therefore, by
definition, the intersection between all habitats at momentt is
the empty set.

With the definition of habitats, two categories of ecological
relationships can be defined. Intra-habitats relationships that
occur between populations inside each habitat, and inter-
habitats relationships that occur between habitats [16].

In ECO, the intra-habitat relationship is the mating be-
tween individuals. Populations belonging to the same habitat
can establish a reproductive link between their individuals,
favouring the co-evolution of the involved populations through
competition for mating. Populations belonging to different
habitats are called reproductively isolated.

The inter-habitats relationship are the great migrations.
Individuals belonging to a given habitat can migrate to other
habitats aiming at identifying promising areas for survival and
mating.

In addition to the mechanisms of intensification and di-
versification specific to each optimization strategy, when con-
sidering the ecological context of the proposed algorithm,the
intra-habitats relationships are responsible for intensifying the
search and the inter-habitats relationships are responsible for
diversifying the search.

Inside the ecological metaphor, the ecological successions
represent the transformational process of the system. In this
process, populational groups are formed (habitats), relations
between populations are established and the system stabilizes
by means of the self-organization of its components.

A key concept of the proposed ECO system is the definition
of habitats. The ECO approach uses a hierarchical clustering
algorithm to set-up the habitats where each cluster represents a
habitat. Hence, the habitats are defined probabilisticallytaking
into account the distance information returned by clustering
algorithm [17].

Once the habitats have been defined, the next step is the
definition of the communication topology for each habitat that
is probabilistically defined.

For a habitat with more than one population, intra-habitat
communication occurs in such a way that each population
inside the habitat chooses another population to perform com-
munication. Here, the distance between populations influence
directly the probabilistic decision. The closer two populations
are from each other the higher is the chance of these two

populations communicate. The opposite happens with farthest
populations.

A. Implementation of the Parallel Computational Ecosystem

In the parallel version of ECO, named pECO, the process-
ing load is divided into several processors (slaves), underthe
coordination of a master processor. Each processor (master
or slaves) is responsible for initializing the population,and
performing the evolutive period of an population indepen-
dently. The master processor is responsible for defining the
communication topologies between populations and habitats.

In Algorithm 1 the italic instructions are processed by
each processor (master or slaves) while bold instructions are
processed by the master processor. In the first step, line 3,
each slave initializes a populationQi. In line 4, the master
coordinates the ecological succession loop. The first step
inside the ecological succession loop is the evolutive period
that is carried by the slaves (line 5). In line 6, each slave
calculates the centroids and send them to the master. Then,
the master creates the habitats and defines the intra-habitats
communication topology, lines 7 and 8 respectively. Once
defined the intra-habitat communication topologies, the master
coordinates the mating process, requesting the best individual
of each specie and sending it to an adjacent specie. Next,
each specie replaces a randomly selected individual by a
new individual, which in turn, is generated through a genetic
exchange between the received individual and an individual
chosen using the tournament strategy (line 9).

Once the interactions between populations are finished, the
master defines the inter-habitats communication topology (line
10). The master coordinates the migration process between
habitats, requesting the best individual of a population ran-
domly chosen from each habitat and sending it to an population
randomly chosen of an habitat also randomly chosen (line 11).
Finally, the ecological succession loop restarts.

IV. COMPUTATIONAL EXPERIMENTS

All experiments done in this work were run in a cluster
of 25 networked computers. Each computer has an Intel
Core-2 Quad processor at 2.8 GHz, 2 GBytes RAM. All
computers run a minimal installation of Arch Linux and used
MPICH2 1, version 1.0 for the implementation of the message
passing interface. All algorithms were implemented in ANSI-C
programming language.

1Available in: http://www.mcs.anl.gov/research/projects/mpich2/



Algorithm 1 Pseudo-code for parallel ECO (pECO)
1: Start
2: Let i = 1, . . . , NQ, j = 1, . . . , NH and t = 0;
3: Initialize each populationQi(t) with POPi random candidate solutions;
4: while stop criteria not satisfieddo {Ecological succession cycles}
5: Perform evolutive period for each populationQi(t);
6: Idendify the region of reference~Ci for each populationQi(t);
7: define Habitats()
8: For each habitat Hj(t) define the communication topologyCTj(t) between

populations Q
j

i
(t);

9: interactions C()
10: Define communication topologyTH(t) betweenHj(t) habitats;
11: interactions H()
12: t← t + 1;
13: end while
14: End

Due to the stochastic nature of the algorithms compared in
this work, 10 independent runs were done with different initial
random seeds. For each run, an upper-bound for the number
of fitness function evaluations was established to5, 000, 000.

A. Benchmark sequences

In the experiments reported below, a total of 4 synthetic
protein sequences were used. These sequences have been
previously used by other researchers (for instance, [11], [18])
and they were based on the Fibonacci sequence. In Table I,N
is the number of monomers of the sequences (13, 21, 34 and
55 amino acids-long sequences).

TABLE I. B ENCHMARK SEQUENCES FOR THE3D-AB off-lattice
MODEL

N Sequence
13 ABBABBABABBAB
21 BABABBABABBABBABABBAB
34 ABBABBABABBABBABABBABABBABBABABBAB
55 BABABBABABBABBABABBABABBABBABABBAB

BABABBABABBABBABABBAB

B. Control Parameters

The parameters for the pECO algorithm are: number of
populations (NQ) that will be co-evolved, the initial popula-
tion size (POP), number of cycles for ecological successions
(ECO-STEP), the size of the evolutive period (EVO-STEP)
that represents the number of function evaluations in each
ECO-STEP, and the tournament size (T-SIZE) used to choose
solutions to perform intra and inter-habitat communications.
The values for these parameters were defined empirically with:
NQ = 200, POP = 50, ECO-STEP = 5,000, EVO-STEP =
1,000 , and T-SIZE = 5. The heterogeneous model of the
pECO approach, combines all four algorithms (ABC-PSO-DE-
jDE/BBO) in which1/4 of the populations behaves according
to one of these strategies.

Default parameters recommended in the literature were
used in the algorithms employed.POP is a common parameter
between all algorithms and is adjusted as previously men-
tioned. For ABC algorithm, there is only one control param-
eter, limit = 100 [3]. For PSO algorithm, besidesPOP, the
parameters were set to standard values2: inertia weightW =
0.721; cognitive and social componentsϕp = ϕg = 1.193,
respectively. For DE algorithm, the parameters areF = 0.9

2Standard PSO (SPSO-07): http://www.particleswarm.info/Programs.html

(F controls the amplification of the differential variation) and
CR = 1.0 (crossover constant) with DE/rand/1/bin. And for
jDE/BBO the parameters used areI = E = 1.0 (maximum
possible immigration and emigration rates),CR = 0.9, F =
0.5, andSmax =POP [6].

V. RESULTS AND ANALYSIS

In this section the results of our experiments are presented,
as well as a comparison with the best results found in literature.
The performance takes into account the average best solution
found over all runs and the average processing time. Results
are shown in Table II. In this table, first column represents
the amino acids sequences (N ), the second column shows the
best results found in literature (E∗), the third column identifies
the best-ever solution found by the pECO approach (Ebest),
the fourth column is the average value of the best solutions
obtained in 10 runs (Eavg), the fifth column shows the average
processing time in seconds (tp), and the sixth column shows
the percentage difference between E∗ and Ebest.

TABLE II. R ESULTS FOR THE3D AB OFF-LATTICE MODEL .
STRATEGY: ABC-PSO-DE-JDE/BBO

N E∗ Ebest Eavg tp(s) diff(%)
13 -26.507 [19] -26.507 -26.454± 0.17 3068.3 0.000
21 -52.917 [20] -52.029 -51.334± 0.48 3904.5 1.678
34 -97.7321 [21] -94.35 -91.845± 1.13 5882.9 3.460
55 -173.9803 [21] -159.726 -157.476± 1.03 10093.45 8.191

From sixth column of Table II, it is possible to notice
that, for the two first sequences (13 and 21 amino acids)
the differences observed are null and very small, respectively.
For the two large sequences (34 and 55 amino acids) the
differences are more accentuated, with 3.460% and 8.191%,
respectively. Overall, the pECO approach found competitive
results.

Probably,speed-upis the most widely used performance
measure in parallel computing [22]. This measure aims at
evaluating how much a parallel algorithm is faster than the
equivalent sequential version. Speed-up (sm) is defined as the
time needed for running a given algorithm in one processor
(T1) divided by the running time of the same parallel algo-
rithm, running inm processors (Tm). In this workm = 100
processing cores. The speed-ups achieved were 1.8, 3.8, 4.73,
and 11.93 for 13, 21, 34, and 55 amino acid-long sequences,
respectively. A sublinear speed-up (sm < m) behavior can
be clearly identified here. Recall that a speed-up higher than
one suggests that the parallelization of the algorithm decreases
the overall computational cost. Ideally, the speed-up should be
linear, but this is not possible in practice, since processors
are not used only for processing, but also for other tasks of
the underlying operating system [23] and, specially in this
work, for message-passingcommunication between them. This
is due to the fact that the number of species to be processed
divided by the number of processors does not give a specie per
processing core. It is important to recall that the speed-upcan
be improved including more processing cores. For instance,
for NQ populations, an equal number of processing cores can
be used in order to achieve a quasi-linear speed-up. It is also
possible to observe that the speed-up increases with the protein
size. This is due to the relatively high time needed to transmit
data between processes for small proteins, when compared
with the processing load. Therefore, it is necessary to establish



a load balance between the processing and communication
loads between processes. Better speed-ups can be achieved for
bigger proteins. This shows how computationally-intensive the
problem is, thus justifying the parallel approach. The computed
efficiency for pECO approach is 0.018, 0.038, 0.0473, and
0.1193 for 13, 21, 34, and 55 amino acid-long sequences,
respectively. These values suggest that the processors arenot
being fully used all the time. In fact, speed-up and efficiency
are a direct consequence of the balance between the processing
load of the slaves and the communication load between master
and slaves.

Figure 2 shows the convergence plot for all amino-acids
tested. In this figure, the x-axis shows the number of iterations
and the y-axis represents the best-ever value averaged over
the same iteration of all runs. Analyzing these plots we can
observe that for 13 and 21 amino-acids-long sequences the
convergence is accentuated in the direction of a stagnation
point in the earlier ecological successions. In the case of 13
amino acids the optimum value is reached and for 21 amino
acids a solution very close to the global optimum is reached.
For 34 and 55 amino acids-long sequences the convergence is
not so abrupt as for the first two sequences but still with fast
convergences. It is possible to verify that small improvements
are achieved from half of the ecological successions forward.
These convergence plot indicate that, in order to improve the
results, strategies for maintaining diversity inside populations
are required.
Also, Figure 2 shows for each sequence some labels indicating
which algorithm achieved the best solution in each ecological
succession. Once a different algorithm updates the best solu-
tion, a new label is added. For example, for the 13 amino acids-
long sequence the ABC algorithm achieved the best solution
until around succession 10; from successions 10 to around
2,500 the jDE/BBO algorithm achieved the best solution; and
from successions 2,500 to 5,000 the DE algorithm achieved
the best solution. Analysing these labels, it is possible to
notice the coevolution between the different search strategies
(ABC/PSO/DE/jDE-BBO) because they alternate in finding
the best solutions. Possibly this is due to the peculiarity of
each method in searching the space of solutions. It is also
possible to conclude that, in this problem case, these strate-
gies are quite complementary, even during few successions
where one method dominates in obtaining better solutions. The
convergence plots indicate that ABC and PSO algorithms are
best suited for global search (initial ecological successions),
whilst the DE and jDE/BBO algorithms are best suited for
local search (final ecological successions).

Figure 3 shows the evolution of the number of habitats
for each ecological succession step. It is observed that, atthe
beginning of the optimization process, with the populations
widely dispersed in the search space, there is a large numberof
habitats for all sequences. As the optimization process moves
through the ecological successions, the populations tend to
move through the search space converging to specific regions.
As shown in Figure 3, the number of habitats decreases
with the ecological succession cycles for 13 and 55 amino
acids-long sequences, indicating that the populations tend to
converge to points close to each other. This decay is inversely
proportional to the complexity of the problem. For example,
for the smallest sequence it is possible to notice a gradual
convergence of populations. On the other hand, for the 55
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Fig. 2. Plots for the pECO convergence

amino acid-long sequence, due to its higher complexity, the
populations are dispersed through the search space during all
successions. This indicates that with more ecological succes-
sions the pECO approach could achieve even better results.
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VI. CONCLUSION

The performance of a parallel ecologically-inspired opti-
mization algorithm (pECO) was analyzed in this paper, under
the task of minimizing the energy function of a Protein
Structure Prediction problem, featuring the off-lattice 3D-AB
model. Four population-based algorithms (ABC, PSO, DE,
and jDE/BBO) were employed in an ecological heterogeneous
model.

The results obtained were competitive with the ground
solutions found in literature. Also, with analysis in the plot
of habitats convergence, it is possible to verify that the pECO
approach can achieve even better results if more ecological
successions are used.

Parallel processing is essential to allow us to obtain good
quality results in a reasonable computing time. As the size of
the proteins increase, the computational demand will increase
accordingly. Therefore, future works will consider the useof
highly parallel approaches for dealing with the PSP prob-
lem, such as the use of GPGPU (General Purpose Graphics
Processing Units) [24]. A hierarchical parallel approach will
be explored, where the processing load related to the fitness
function evaluations is also divided into several slaves which,
in turn, are responsible to compute the fitness function of a
number of individuals.

It is possible to highlight that the use of different algorithms
can be better explored if using some source of feedback from
the optimization process during its course to better distribute
the habitats formation and to better define the intra and inter
habitats communication topologies. This could be achieved
using the heuristic information from the hierarchical clustering
procedure or other KDD strategies to aid the self-organization
process of the system. Also, the diversification of evolutive
behaviors of the computational ecosystem, by inserting other
algorithms, is a future research direction.
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