
A Comparison of Differential Evolution Algorithm
with Binary and Continuous Encoding for the MKP

Jonas Krause
Technological Federal University of Paraná (UTFPR)

Laboratory of Bioinformatics
Curitiba, Paraná, Brazil

Email: jkfries@gmail.com

Heitor Silvério Lopes
Technological Federal University of Paraná (UTFPR)

Laboratory of Bioinformatics
Curitiba, Paraná, Brazil

Email: hslopes@utfpr.edu.br

Abstract—This paper provides a brief description on how
continuous algorithms can be applied to binary problems. Dif-
ferential Evolution is the continuous algorithm studied and two
versions of this algorithm are presented: the Binary Differential
Evolution with a binary encoding and the Discretized Differential
Evolution with a continuous encoding. Several discretization
methods are presented and the most used method in literature
is implemented for the solution discretization. Benchmarks with
different complexity and search space sizes of the 0-1 Multiple
Knapsack Problem are used to compare the performance of
each Differential Evolution algorithm presented and the Genetic
Algorithm with binary encoding. Results suggest that continuous
methods can be very efficient when discretized for binary spaces.

I. INTRODUCTION

The discrete optimization problems have benefited with
the use of continuous strategies. The 0-1 Multiple Knapsack
Problem is one of them and this paper aim to demonstrate
that continuous algorithms can be applied in combinatorial
problems efficiently. In literature, algorithms designed for
continuous search spaces have been successfully applied in
discrete optimization problems. However, there is no final con-
clusion on what is the best strategy to apply these algorithms
in combinatorial problems.

In 2006, [1] presented a Binary Differential Evolution using
an angle modulation. It consists of a generation of a bit string
using a trigonometric generating function. One year later [2]
also implemented the angle modulation strategy for another
Binary Differential Evolution version. Other techniques are
used by [3], like the homomorphous mapping and the in-
terpretation of the continuous solution vector as a vector of
probabilities. In 2008, [4] presented a self-adaptive Differential
Evolution algorithm, a rank-based representation schema is
used to transform the discrete combinatorial problem into a
continuous domain and it only produces feasible solutions.
Another Binary Differential Evolution was presented by [5]
and this algorithm uses a mapping operator to convert the
discrete variables into continuous ones, a sigmoid function
for the mutation operator and an inverse mapping operator
to transform the continuous variables back to discrete. The
mutation operator was also the focus of [6] and [7]. Both used
a sigmoid function to discretize the mutation process. Recently,
the strategy of using a mixed discrete-continuous optimization
has also been applied to the Differential Evolution algorithm
[8]. Other discretization methods are described in [9] and most
of them can be applied to Differential Evolution.

A classical binary optimization problem is used to test
the above mentioned algorithms, the 0-1 Multiple Knapsack
Problem. This is one of the most used variants of the Knap-
sack Problem [10], [11] and it is used to optimize logistic,
transportation and production activities [12]. Algorithms using
the solution vector with binary variables can represent the best
combination of n different items to be carried in m different
knapsacks.

This paper presents two different methods to apply the
continuous Differential Evolution to binary problems. The first
method consists in using only binary variables, ensuring that
only valid solutions will be created. For this method, the
mutation process of the Differential Evolution was replaced
by a Genetic Algorithm inspired mutation. Instead of using
the weighted differences of population members, the mutation
process is a bit inversion. Consequently, the optimization
process will handle only binary variables. The second method
discretizes the solution vector, preserving all the characteristics
of Differential Evolution. Therefore, the algorithm will con-
tinue to handle continuous variables and search for solutions
in the continuous space.

The objective of this paper is to present discretization
techniques that can be used in the continuous Differential
Evolution algorithm and support the good applicability of con-
tinue devised methods in combinatorial problems. The results
of this discretized algorithm are compared with two binary
encoding algorithms, the Genetic Algorithm and a binary
version of the Differential Evolution. Despite the several ways
of discretization, the capability of maintaining the continuous
characteristics of the algorithm may be the key to efficiently
apply continuous methods in binary and combinatorial prob-
lems.

II. THE KNAPSACK PROBLEM

The Knapsack Problem (KP) consists in selecting the most
profitable combination of items to be carried in a knapsack.
Each item has associated profit and restriction values and the
restrictions total should not exceed the knapsack capacity.

The KP is part of a class problems called NP-complete,
thus the possible solutions increase exponentially and it cannot
be solved in polynomial-time. It is presented in literature in
several variants [11], the 0-1 Knapsack, the Bounded Knap-
sack, the Subset-Sum, the Change-Making, the Generalized
Assignment, the Bin-Packing and the 0-1 Multiple Knapsack.



A. The 0-1 Multiple Knapsack Problem

The 0-1 Multiple Knapsack Problem (MKP) is the classic
and most complete variant of the KP. Each item n has a profit
value and different restrictions for each knapsack. The binary
variables Xi (i = 1, 2, ..., n) represent whether the n-th item
will be part of the solution (1) or not (0). The objective is to
find the best combination of Xi items that maximize the sum
of the profit Pi, represented in Equation 1.

max(

n∑
i=1

(Pi.Xi)) (1)

However, each knapsack m has a maximum capacity Cj (j =
1, 2, ...,m) and the sum of the restrictions Wij should be less
or equal than each capacity for all j. This restriction function
is represented in Equation 2.

n∑
i=1

(Wij .Xi) ≤ Cj ,∀j (2)

The total number of possible combinations of the binary
variable Xi will depend on how many items will be carried
and the number m of knapsacks. The size of the Search Space
(SS) created by these two variables is the total number of
possible solutions and they increase exponentially according
to n, represented in Equation 3.

SS = m.2n (3)

The SS is also modeled by the restrictions and the knapsack
capacities, creating more complex search spaces. Therefore,
deterministic algorithms can take excessive time to find the
best solution as the number n of items increases. As alternative,
meta-heuristic methods can be used to find the best solutions
evolving an initial random population.

III. DISCRETIZATION METHODS

To apply continuous algorithms in combinatorial, binary
and categorial (discrete) problems, it is necessary to reduce the
total number of feasible solutions. The discretization methods
adapt the continuous devised algorithms to discrete problems
[9]. The most simple adaptation is to restrict the variables to
discrete only, turning the Search Space (SS) to a discrete one.
This discretization method changes the original encoding of
the algorithm and it will generate only feasible solutions. The
Binary Differential Evolution (BDE) presented in this paper
uses this technique. It restricts the variables to binary, thus
searching in binary spaces only.

Other discretization methods allow continuous variables
and restrict some specific steps of the algorithm. The angle
modulation [1], the homomorphous mapping and the inter-
pretation of the continuous solution vector as a vector of
probabilities [3] are discretization methods which have already
been presented. The rank-based representation schema [4], the
mapping operator and the sigmoid function to discretize the
mutation process also appear in literature [5]. These techniques
create new opportunities to apply the Differential Evolution
(DE) to discrete problems.

A recent survey [9] presents other discretization methods
that can be applied to the DE algorithm as well as to other
similar continuous meta-heuristics. As result of this survey,

the strategy of use a Sigmoid Function applied in one step of
the algorithm appeared as the most frequent and efficient dis-
cretization technique. The Random-Key discretization method
is the second most used technique and it consists in setting the
continuous solution in ascending order to encode it in a discrete
order. The Nearest Integer method converts the continuous
value to the nearest integer by truncating it up or down.
The Smallest Position Value maps the continuous solution by
placing the index of the lowest value component as the first
item on a permutated solution, the next lowest as the second
and so on. And the Great Value Priority method uses the same
technique, but it sorts the solution by the largest element.
The Discretized Differential Evolution (DDE) presented in
this paper use a sigmoid function to discretize a normalized
solution vector to form a bit string.

IV. GENETIC ALGORITHM

The Genetic Algorithm (GA) is a heuristic optimization
method presented by [13] and it has been used for high
complexity problems. Based on the Darwin’s evolution theory,
this population algorithm evolves the individuals solutions
through a predetermined number of generations. Each indi-
vidual is represented by its chromosome, a solution vector
that can be encoded as binary, integer or real numbers. These
characteristics made the GA one of the most used algorithms
for binary and combinatorial problems.

For the MKP, the GA is applied with a binary chromosome.
An initial random population is created and each individ-
ual has n dimensions, representing each item of the MKP.
A trial population is created by using a selection method,
stochastically selecting individuals from one generation to
create the basis for the next generation. The crossover process
represents the reproduction of the population, two individuals
are selected and their chromosomes are crossed to create a
child chromosome. The mutation process consists in inverting
a random bit of the chromosome creating a new individual.
This new population is evaluated as per each individual fitness,
generally associated with the objective function of the problem.

In this discrete optimization method, population evolution-
ary techniques are used to achieve the best chromosome. The
best binary combination of the solution vector is the most
evolved individual. This evolution occurs in a binary space
and the decision making criterion to change the dimension of
the n-th element from 0 to 1 or vice-versa is abrupt.

V. DIFFERENTIAL EVOLUTION

The Differential Evolution (DE) algorithm was first in-
troduced by [14] and devised for optimization problems in
continuous spaces. It arose as a simple and efficient heuristic
for global optimization.

DE is a population based algorithm and has different
strategies. The most widely used and successful strategy is
the DE/rand/1/bin [15]. This strategy consists in selecting
a random individual to be mutated, a difference of random
vectors to perturb the individual selected and a binomial
crossover. The mutation and crossover processes are applied in
a trial population, each individual fitness is calculated and the
new population is evaluated. Using continuous variables, the



DE searches the most evolved individual for a predetermined
number of generations.

The formulation of the DE/rand/1/bin strategy is shown in
Equation 4:

v(g, i, j) = x(g, r3, j) + F × [x(g, r1, j)− x(g, r2, j)] (4)

This equation represents the trial vector v receiving the
random vector x plus a random difference variation. The
DE/rand/1/bin represents the random individual x to be mu-
tated. The parameter F is the weighting factor used to control
the amplification of the differential variation. This strategy
may vary depending on the individual selected, an elitism can
select the best individual for the mutation process and the
strategy would be DE/best/1/bin. The best individual can also
be added on the differential variation, in this case the strategy
is called DE/rand-to-best/1/bin. Other strategies consist in
using two differential variations, represented by DE/rand/2/bin,
DE/best/2/bin and DE/rand-to-best/2/bin. The last element is
the crossover process and it can be set to DE/rand/1/bin
and DE/rand/1/exp, representing the binomial and exponential
crossovers respectively. The exponential crossover process can
also be used in all of the described methods, creating a list
of ten possible strategies that can be used on DE [16]. Both
proposed methods in this paper use the classical DE/rand/1/bin.

A. Binary Differential Evolution

This version of the Binary Differential Evolution (BDE)
was presented in [10] and it is adapted for binary spaces only.
The adaptation of the original DE starts on the initialization
of the population, instead of initiating with random continuous
values the individuals are initiated with random binary values.
The original mutation process of DE is replaced by a random
bit inversion. This adaptation of the DE mutation process is in-
spired on the GA. The perturbation process is a new parameter
inserted to establish how many individuals of the population
will pass through the mutation and crossover processes. This
new parameter also ensures that at least one individual will
be mutated. The DE crossover process is kept as the original
since all individuals will continue to be binary after it. This
process is activated during the perturbation procedure and after
the mutation.

Figure 1 represents the pseudocode of the BDE algorithm.

The BDE algorithm initializes with the parameters settings.
The first parameter is the individual dimension or range and
for the 0-1 MKP it represents the number n of items. NP is the
number of individuals of the population. The PM parameter
is the mutation rate and the PR parameter is the permutation
rate. A random population ~xi is created and the fitness of
each individual is calculated f(~xi). Each individual is selected
randomly by the permutation rate and it is submitted to the
mutation and crossover processes. The new individual ~y has its
fitness calculated f (~y). If the new fitness of the trial individual
is better than the previous individual fitness f (~xi), the trial
solution ~y will be part of the new population.

Due the fact that the algorithm is restricted to 0 or 1
variables, the sign function may represent the decision making
criteria of each dimension of the individual. In this scenario,
the dimensions also do not change gradually from 0 to 1 or
vice-versa.

Fig. 1. Binary Differential Evolution (BDE)
Parameters: range, NP , PM , PR
Initial Population ~xi (i = 1, . . . , range)
Evaluate fitness f(~xi) of each individual
while not done do

for i = 1 to NP do
if rndreal(0, 1) < PR ou j = jrand then

if rndreal(0, 1) < PM then
InverterBit(~yj)

end if
Crossover(~yj)

end if
end for
Calculate fitness f (~y)
if f (~y) > f (~xi) then
~xi ⇐= ~y

end if
Evaluate ~x*

end while
Print Results

B. Discretized Differential Evolution

This novel version of the Differential Evolution is a con-
tinuous encoded algorithm that discretizes only the solution
vector. The individual to be evolved by the Discretized Dif-
ferential Evolution (DDE) is a n dimensional vector and each
dimension is populated with a random float number between
-1 and 1. With a normalized entry for each individual of the
initial population, the DDE proceeds with the DE/rand/1/bin
strategy of mutation and crossover through the generations.
The new population is a group of continuous variables vectors
and these individuals have to be discretized to have their
fitness evaluated. This discretization method uses a sigmoid
function that allows each dimension to evolve gradually and
individually.

Let F be the float number in each i dimension, the solution
vector is discretized using the result of the sigmoid function
of F . If it is greater than zero the i-th dimension is set
to 1, otherwise, it is set to 0. This discretization process is
represented by Equation 5.

Xi =

{
1, if 2

1+exp (−2.Fi)
− 1 > 0,

0, otherwise
(5)

Using this strategy, the evolved dimensions do not jump
from 0 to 1 and vice-versa in binary spaces. They evolve
gradually around zero using weighted values to search for
the best continuous combination. This characteristic may be
the key to efficiently apply continuous algorithms to discrete
problems.

Figure 2 presents the pseudocode of the BDE algorithm.

The DDE algorithm initializes with the parameters NP ,
CR, F and range. The NP states for population, the total
number of individuals. The CR parameter is the crossover rate
and the F is the mutation rate. The range is the dimension of
each individual and for the MKP it is the number of items.
An initial random population is created with NP individuals
and their initial fitness is calculated. Through the number of



Fig. 2. Discretized Differential Evolution (DDE)

Function f (x) = DE (range, NP , CR, F )
x ⇐ random (range, NP )
fitx ⇐ f (x)
while not done do

for i = 1 to NP do
vi,G+1 ⇐ mutation (xi,G, F)
ui,G+1 ⇐ crossover (xi,G, vi,G+1, CR)

end for
if sigmoid (ui,G+1) > 0 then
ui,G+1 ⇐ 1

else
ui,G+1 ⇐ 0

end if
fitu ⇐ f (u)
for i = 1 to NP do

if fitu(i) > fitx(i) then
xi,G+1 ⇐ ui,G+1

else
xi,G+1 ⇐ xi,G

end if
end for

end while

generations previously set, a trial population is created using
the mutation and crossover processes. This new population is
discretized by the sigmoid function which assigns the values
1 or 0, depending whether the continuous dimension of the
individual is greater than 0 or not. The fitness of this trial and
discretized population is calculated and if the trial individual
fitness is greater than the previous one, the new individual is
incorporated to the new population.

The same strategy used when applying the DDE to this
binary problem can also be used to convert continuous values
into integer values and, consequently, apply the DE to combi-
natorial problems. Hence, this version of the DE may be called
discretized and can be adapted to other binary or combinatorial
problems.

VI. COMPUTATIONAL RESULTS

The GA implementation was based on GALOPPS 3.2.41

(Genetic ALgorithm Optimized for Portability and Parallelism
System). This software is a flexible and generic algorithm
written in ANSI C and based on the Simple Genetic Algo-
rithm (SGA) [17]. The BDE and the DDE algorithms were
implemented using DE 3.62, also in ANSI C.

The benchmarks were carefully selected from OrLib 3,4 to
represent the diverse search spaces (SS). They are presented on
Table I and available in [18]. They are sorted by their SS sizes,
but the structure of the SS also depends on the restrictions
and the knapsack capacities to define its complexity. The
benchmarks PB1 and WEING1 have the same SS size, but
different complexity due to this fact. These characteristics help
to understand the behavior of each algorithm when analysing
the further results.

1http://garage.cse.msu.edu/software/galopps/
2http://www1.icsi.berkeley.edu/storn/code.html
3http://people.brunel.ac.uk/˜ mastjjb/jeb/orlib/files/mknap2.txt
4http://www.cs.nott.ac.uk/˜ jqd/

TABLE I. ORLIB BENCHMARKS

Benchmark n m SS
PB5 20 10 10×220

PB1 27 4 4×227

WEING1 28 2 2×228

PB4 29 2 2×229

WEISH1 30 5 5×230

PB2 34 4 4×234

PB7 37 30 30×237

PB6 40 30 30×240

WEISH14 60 5 5×260

SENTO1 60 30 30×260

GK1 100 15 15×2100

WEING7 105 2 2×2105

GK3 150 25 25×2150

TABLE II. PARAMETERS

Parameter GA BDE DDE
Population 100 100 100
Generations 300 300 300
Mutation 0.05 0.05 0.05
Crossover 0.8 - 0.8
Perturbation - 0.5 -

The benchmarks selected represent some of the most
complex instances of the MKP with known optimum. The
optimum value is useful for evaluating quality of solutions
provided by each algorithm. Other instances with 250 and 500
knapsacks are available at the Orlib repository, but with no
known optimum.

Since GA and DE are population-based algorithms, the
total number of individuals to be evaluated and the number
of generations have to be defined. Despite of having different
mutation and crossover processes, their corresponding parame-
ters were similarly adjusted to compare the algorithms results.
The parameters used on each algorithm are selected as previous
studies [9], [10] and listed on Table II.

Table III presents the benchmarks, the known optimum
(Opt) and, for each method, the best solution found (Best),
the percentage of the known optimum achieved by the best
solution (% Opt), and the percentage of success (% Suc) that
is how many times the optimum solution was found in all runs.
The known optimum is the best possible binary combination
for an individual and it is represented on Table III as the
highest possible profit. Since GA, BDE and DDE are stochastic
methods, each algorithm was run 100 times with different
random seeds for the initial population. These results indicate
the capability and robustness of each algorithm as well as
the complexity of each benchmark. The Average (Avg) and
the Standard Deviation (SD) are important information to be
evaluated as well, they are presented on Table IV. The average
represents how close to the known optimum all the solutions
are and, consequently, it is related to the repeatability and
reliability of the algorithm.

Analysing the data on Table IV, the DDE has the highest
average in most benchmarks (PB5, PB1, WEING1, PB4, PB6,
WEISH14, SENTO1, GK1, WEING7 and GK3). DDE also has
the lowest standard deviation values in almost all benchmarks,
showing the low dispersion that each best-of-run solution
has from the average. These results suggest that the 100
DDE solutions are satisfactory, specially for the largest SS
benchmarks (SENTO1, GK1, WEING7 and GK3).

To better understand the difference between the BDE and
DDE and how this continuous algorithm works, the best binary



TABLE III. BEST INDIVIDUALS RESULTS

GA BDE DDE
Benchmark Opt Best % Opt % Suc Best % Opt % Suc Best % Opt % Suc
PB5 2139 2139 0% 8% 2139 0% 64% 2139 0% 72%
PB1 3090 3090 0% 6% 3090 0% 28% 3090 0% 30%
WEING1 141278 141278 0% 34% 141278 0% 78% 141278 0% 98%
PB4 95168 95168 0% 11% 91544 3.81% 0% 95168 0% 80%
WEISH1 4554 4554 0% 28% 4554 0% 100% 4554 0% 95%
PB2 3186 3186 0% 23% 3186 0% 89% 3186 0% 68%
PB7 1035 1000 3.38% 0% 1035 0% 22% 1035 0% 76%
PB6 776 765 1.42% 0% 765 1.42% 0% 776 0% 40%
WEISH14 6954 6723 3.32% 0% 6914 0.58% 0% 6954 0% 100%
SENTO1 7772 7543 2.95% 0% 7596 2.26% 0% 7761 0.14% 0%
GK1 3766 3643 3.27% 0% 3696 1.86% 0% 3740 0.69% 0%
WEING7 1095445 1078722 1.53% 0% 1089841 0.51% 0% 1095206 0.02% 0%
GK3 5656 5470 3.29% 0% 5538 2.09% 0% 5603 0.94% 0%

TABLE IV. AVERAGE AND STANDARD DEVIATION RESULTS

GA BDE DDE
Benchmark Avg ± SD Avg ± SD Avg ± SD
PB5 2097.60 ± 24.60 2132.90 ± 8.20 2133.72 ± 9.22
PB1 3036.90 ± 27.20 3075.80 ± 13.0 3079.12 ± 8.33
WEING1 141277.60 ± 2.80 141277.40 ± 3.40 141268.00 ± 70.35
PB4 91711.67 ± 1421.59 88802.99 ± 718.08 94716.92 ± 1168.02
WEISH1 4544.40 ± 21.60 4554.00 ± 0.00 4552.88 ± 5.49
PB2 3150.82 ± 32.55 3183.76 ± 8.41 3180.16 ± 9.70
PB7 965.84 ± 21.64 1033.01 ± 2.73 1032.28 ± 4.96
PB6 723.81 ± 17.44 730.42 ± 27.46 766.07 ± 10.59
WEISH14 6427.90 ± 124.60 6795.80 ± 53.10 6954.00 ± 0.00
SENTO1 7094.00 ± 214.30 5395.50 ± 930.50 7737.60 ± 23.92
GK1 3612.60 ± 10.80 3693.20 ± 4.24 3724.6 ± 8.38
WEING7 1052993.90 ± 7279.30 1087073.10 ± 1285.90 1093786.76 ± 900.26
GK3 5426.16 ± 14.34 5534.95 ± 6.28 5590.25 ± 11.04

and continuous individuals found for the benchmark SENTO1
are compared in Figure 3. The binary individual from BDE and
the continuous individual from DDE presented several similar
dimensions after the DE discretization. In the continuous solu-
tion, the positive dimensions represent the items being carried
on the knapsack and the negative dimensions the items carried
off. For the total of 60 dimensions, only 2 different items are
carried on and 2 items are carried off. After the discretization
process, the continuous solution vector normalized between 1
and -1 will assume binary values. Figure 3 presents part of
these individuals and highlights the difference between them
for dimensions 37 and 41.

In Figure 3, BDE and DDE lines represent, respectively,
part of discrete and continuous-valued solutions. Observing
DDE, the decision making criterion leads to gradual changes in
the items carried on/off the knapsack. The restrictions of each
item and the capacity of each knapsack made the continuous
dimensions float around zero. As example, the best continuous
combination for the benchmark SENTO1 on item 41 has
a positive value very near to zero. After the discretization
the item 41 is carried on the knapsack by the continuous
solution (DDE) but not on the discrete solution (BDE). These
continuous dimensions solution resulted in a better binary
combination after the individual discretization. This individual
evolution combined with DE continuous strategies leaded to
satisfactory solutions for the MKP.

To verify the relevance of the results of each method,
Figure 4 shows the boxplot of the 100 solutions found for the
benchmark GK3. This is one of the most complex benchmarks
and with the largest SS. The boxplot represents the first and
third quartiles, the median, the maximum and minimum.

The analysis of the Figure 4 shows the statistical non-

Fig. 3. Dimensions 35 to 47 of the best BDE and DDE individuals on
benchmark SENTO1

overlapping intervals. Each interval represents the group of
solutions achieved by each method and, consequently, they
demonstrate different groups of solutions. Other two statistical
tests were used; the Shapiro-Wilk, to verify the if the samples
come from a normally distributed population and the Kruskal-
Wallis, to verify if the results come from the same distribution.
In the Shapiro-Wilk test the observed distributions nullify
the test’s primary hypothesis and, consequently, the analysed
distribution is not a normal one. The Kruskal-Wallis test with
a 5% of significance rejects the hypothesis that these results
come from the same distribution. These statistical analyzes



Fig. 4. BoxPlot of 100 results of each method for instance GK3

support the relevance of the results for each method and they
present different groups of solutions.

The results presented in Table III (Best, % Opt and %
Suc), Table IV (Avg and SD) and their statistical analysis point
to a very robust and efficient algorithm. The DDE uses the
continuous methods and techniques from DE to search for the
continuous combination that will better fit the binary problem
after the discretization procedure.

VII. CONCLUSION

The continuous algorithms devised to handle real numbers
are frequently deployed for real-world optimization problems.
Several discretization methods provide the possibility to apply
these algorithms to discrete problems as well. Two versions
of the DE are implemented to verify how this algorithm
behaves using the binary and continuous encoding for the MKP
benchmarks. The results pointed out an efficient discretized DE
algorithm using a continuous encoding and a good percentage
of success even being an stochastic method. Therefore, the
continuous DE algorithm can be successfully applied to bi-
nary problems using a discretization method to convert the
continuous solution to a binary one.

Future work using DDE includes the investigation of
other discretization methods and different DE strategies to
understand their advantages to improve the DDE performance.
The adaptation of the DDE to combinatorial problems is
also one of the main future goals. The satisfactory results in
binary problems encourage the continuation of the research
and reinforces the benefits of applying continuous algorithms
to discrete problems.

ACKNOWLEDGMENT

The authors would like to thank Dr. Rafael Stubs Parpinelli
(UDESC) for his contributions and the National Council for
the Improvement of Higher Education (CAPES) for the schol-
arship to J. Krause. This work was also partially supported by
a research grant from the CNPq to H. S. Lopes.

REFERENCES

[1] G. Pampara, A. Engelbrecht, and N. Franken, “Binary differential
evolution,” in IEEE Congress on Evolutionary Computation, 2006, pp.
1873–1879.

[2] A. E. Kanlikilicer, A. Keles, and A. S. Uyar, “Experimental analysis of
binary differential evolution in dynamic environments,” in Proceedings
of the Conference on Genetic and Evolutionary Computation. New
York, NY, USA: ACM, 2007, pp. 2509–2514.

[3] A. P. Engelbrecht and G. Pampara, “Binary differential evolution
strategies.” in IEEE Congress on Evolutionary Computation, 2007, pp.
1942–1947.

[4] J. Zhang, V. Avasarala, A. C. Sanderson, and T. Mullen, “Differ-
ential evolution for discrete optimization: An experimental study on
combinatorial auction problems.” in IEEE Congress on Evolutionary
Computation, 2008, pp. 2794–2800.

[5] C. Deng, B. Zhao, Y. Yang, and A. Deng, “Novel binary differential
evolution algorithm for discrete optimization,” in Proceedings of the
2009 Fifth International Conference on Natural Computation, vol. 4.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 346–349.

[6] L. Hou, H. Zhou, and J. Zhao, “A novel discrete differential evolution
algorithm for stochastic VRPSPD,” Journal of Computational Informa-
tion Systems, vol. 6, pp. 2483–2491, 2010.

[7] G. Hou and X. Ma, “A novel binary differential evolution for discrete
optimization,” Key Engineering Materials, vol. 439-440, pp. 1493–1498,
Jun. 2010.

[8] D. Lichtblau, “Differential evolution in discrete optimization,” Interna-
tional Journal of Swarm Intelligence and Evolutionary Computation,
vol. 1, pp. 1–10, Jun. 2012.

[9] J. Krause, J. A. Cordeiro, R. Parpinelli, and H. Lopes, “A survey of
swarm algorithms applied to discrete optimization problems,” in Swarm
Intelligence and Bio-inspired Computation: Theory and Applications.
Elsevier Science & Technology Books, 2013, pp. 169–191.

[10] J. Krause, R. Parpinelli, and H. Lopes, “Proposta de um algoritmo in-
spirado em evolucao diferencial aplicado ao problema multidimensional
da mochila,” in Anais do Encontro Nacional de Inteligencia Artificial.
Curitiba, PR: SBC, oct 2012.

[11] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. New York, USA: John Wiley & Sons, 1990.

[12] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidi-
mensional knapsack problem,” Journal of Heuristics, vol. 4, no. 1, pp.
63–86, 1998.

[13] J. H. Holland, Adaptation in natural and artificial systems: An intro-
ductory analysis with applications to biology, control, and artificial
intelligence. Ann Arbor, USA: University of Michigan Press, 1975.

[14] R. Storn and K. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Tech.
Rep., 1995.

[15] P. C. B.V. Babu and J. Mubeen, “Multiobjective differential evolution
(mode) for optimization of adiabatic styrene reactor,” Chemical Engi-
neering Science, vol. 60, no. 17, pp. 4822–4837, September 2005.

[16] J. Adeyemo and F. Otieno, “Differential evolution algorithm for solving
multi-objective crop planning model,” Agricultural Water Management,
vol. 97, no. 6, pp. 848–856, June 2010.

[17] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Boston, MA, USA: Addison-Wesley, 1989.

[18] J. E. Beasley, “OR-Library: distributing test problems by electronic
mail,” Journal of the Operational Research Society, vol. 41, no. 11,
pp. 1069–1072, 1990.


