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Abstract—This paper applies an ecology-inspired algorithm
(ECO) to solve a complex problem from bioinformatics. The
ecological-inspired algorithm represents a new perspective to
develop cooperative evolutionary algorithms. Different algo-
rithms are applied to compose the computational ecosystem,
both homogeneously and heterogeneously. The aim is to search
low energy conformations for the Protein Structure Prediction
problem, concerning the 2D-AB off-lattice model. From the
results, the heterogeneous configuration obtained the best
conformations for almost all cases, possibly due to the use of
different intensification and diversification strategies provided
by different search algorithms.
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I. INTRODUCTION

Many Bioinformatics problems are featured mainly to
be non-linear and strongly constrained. This is the case
of the protein structure prediction problem approached in
this paper. Due to the limitations of exact methods for
solving such a class of problems, the need for more robust
techniques arises. Along decades, Evolutionary Computation
(EC) and Swarm Intelligence (SI) have provided a large
range of flexible and robust optimization methods, capable
of dealing successfully with complex optimization problems.
Both EC and SI provide population-based methods where
each individual of a population represents a tentative solution
to the problem to be solved. With such diversity of search
strategies [1], it is possible to establish an analogy with the
dynamics of biological ecosystems.
In [2], [3] the authors illustrate the potentiality of such

ecological concepts presenting an ecology-inspired algo-
rithm (ECO) for optimization. Aiming at applying the ECO
approach to a more complex problem, the purpose of this
paper is to search low energy conformations for the Protein
Structure Prediction problem, concerning the AB off-lattice
model.
The ECO algorithm is applied using five configurations.

Four configurations employ the ECO algorithm homo-
geneously: ECOABC , employs the Artificial Bee Colony
(ABC) algorithm [4]; ECOPSO, employs the Particle Swarm

Optimization (PSO) algorithm [5]; ECODE , employs the
Differential Evolution algorithm [6]; and, ECOjDE/BBO ,
employs the Biogeography-based Optimization algorithm
hybrid with DE [7]. One configuration, ECOAll, employs
a heterogeneous approach combining all four algorithms in
which 1/4 of the populations behaves according to one of
these strategies.
Also, the overall best solutions are compared with other

results found in literature.

II. THE ECOLOGICAL-INSPIRED APPROACH
The ecological-inspired algorithm, named ECO, repre-

sents a new perspective to develop cooperative evolutionary
algorithms [8]. The ECO is composed by populations of
individuals (candidate solutions for a problem being solved)
and each population evolves according to an optimization
strategy. Therefore, individuals of each population are mod-
ified according to the mechanisms of intensification and
diversification, and the initial parameters, specific to each
optimization strategy. The ECO system can be modeled in
two ways: homogeneous or heterogeneous. An homogeneous
model implies that all populations evolve in accordance to
the same optimization strategy, configured with the same
parameters. Any change in the strategies or parameters in at
least one population characterizes an heterogeneous model.
The ecological inspiration stems from the use of some

ecological concepts, such as: habitats, ecological relation-
ships and ecological successions [9][10]. Once dispersed
in the search space, populations of individuals established
in the same region constitute an ecological habitat. For
instance, in a multimodal hyper-surface, each peak can
become a promising habitat for some populations. A hyper-
surface may have several habitats. As well as in nature,
populations can move around through all the environment.
However, each population may belong only to one habitat
at a given moment of time t. Therefore, by definition, the
intersection between all habitats at moment t is the empty
set.
With the definition of habitats, two categories of ecologi-

cal relationships can be defined. Intra-habitats relationships
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that occur between populations inside each habitat, and inter-
habitats relationships that occur between habitats [9][10].
In ECO, the intra-habitat relationship is the mating be-

tween individuals. Populations belonging to the same habitat
can establish a reproductive link between their individu-
als, favouring the co-evolution of the involved populations
through competition for mating. Populations belonging to
different habitats are called reproductively isolated.
The inter-habitats relationship are the great migrations.

Individuals belonging to a given habitat can migrate to other
habitats aiming at identifying promising areas for survival
and mating.
In addition to the mechanisms of intensification and

diversification specific to each optimization strategy, when
considering the ecological context of the proposed algo-
rithm, the intra-habitats relationships are responsible for
intensifying the search and the inter-habitats relationships
are responsible for diversifying the search.
Inside the ecological metaphor, the ecological successions

represent the transformational process of the system. In this
process, populational groups are formed (habitats), relations
between populations are established and the system stabi-
lizes by means of the self-organization of its components.
Algorithm 1 shows the pseudo-code of the proposed

approach. In line 1, NQ and NH refer to the number
of populations and the number of habitats, respectively. In
this algorithm, the ecological succession loop (lines 3 to
12) refers to iterations of the computational ecosystem. In
line 4, evolutive period, each population evolves (genera-
tions/iterations) according to its own criteria. The metric
chosen to define the region of reference is the centroid and
represents the point in the space where there is a longest
concentration of individuals of population i. For a detailed
description refer to [11].
A key concept of the proposed ECO system is the defini-

tion of habitats (line 6 in Algorithm 1). The ECO approach
uses a hierarchical clustering algorithm to set-up the habitats
where each cluster represents a habitat. Hence, the habitats
are defined probabilistically taking into account the distance
information returned by clustering algorithm [2].
Once the habitats have been defined, the next step in

Algorithm 1 Pseudo-code for ECO
1: Consider i = 1, . . . , NQ, j = 1, . . . , NH and t = 0;
2: Initialize each population Qt

i with ni random candidate solutions;
3: while stop criteria not satisfied do {Ecological succession cycles}
4: Perform evolutive period for each population Qt

i ;
5: Apply metric Ci to identify the region of reference for each population Qt

i ;
6: Using the Ci values, define the NH habitats;
7: For each habitat Ht

j define the communication topology CT t
j between

populations Qt
ij ;

8: For each topology CT t
j , perform interactions between populations Q

t
ij ;

9: Define communication topology THt between Ht
j habitats;

10: For THt topology, perform interactions between Ht
j habitats;

11: Increase t;
12: end while

Algorithm 1 (line 7) is the definition of the communication
topology for each habitat that is probabilistically defined.
For a habitat with more than one population, intra-habitat

communication occurs in such a way that each population
inside the habitat chooses another population to perform
communication. Here, the distance between populations in-
fluence directly the probabilistic decision. The closer two
populations are from each other the higher is the chance of
these two populations communicate. The opposite happens
with farthest populations.

III. PROTEIN STRUCTURE PREDICTION PROBLEM
Proteins are the basic structures of all living beings [12].

They are composed of a chain of amino acids that are linked
together by means of peptide bonds. Several amino acids
exist in nature, but only 20 are proteinogenic. They can
be classified into two classes, according to their affinity to
water: Hydrophilic (or Polar) and Hydrophobic. According
to this behavior, one can conclude that the hydropaticity of
the side chain is one of the main processes that governs the
process of forming protein structures [13].
Protein folding is the process by which a polypeptide

chain is transformed into a compact structure that performs
some biological function. It is known that better under-
standing the protein folding process can result in important
medical advancements and development of new drugs.
Computer science has an important role here, proposing

models for studying the Protein Structure Prediction (PSP)
problem [14]. Nowadays, the simulation of computational
models that take into account all the atoms of a protein is
frequently infeasible, even with the most powerful compu-
tational resources. Consequently, several simplified models
that abstract the protein structure have been proposed. One
of them is the AB off-lattice model.

A. The AB off-lattice model
The AB off-lattice model was one of the first non-lattice

model to represent protein structures. In this model the
protein sequences are composed of only two species of
monomers (ξ): ‘A’ for hydrophobic amino acids and ‘B’
for hydrophilic (or polar) amino acids. Although it is a
very simplified representation of a real protein structure, this
model is useful to verify some of the properties of proteins
in the real world.
Monomers have an unit length of distance between them,

in such a way that a monomer is connected to the next one
in the chain through a bond that forms an angle relative to
its predecessor.
In the AB model, a protein composed of N -monomers

needs N − 2 angles to be represented. These angles are
defined in the range [−π, π]. Figure 1 shows an example
of a hypothetic protein with seven amino acids.
The model defines the energy values for the monomers:

‘A’ has energy 1 and ‘B’ has energy -1. Considering two
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Figure 1. Generic representation of a hypothetic protein structure.

generic monomers i and j, and the types ξi and ξj , re-
spectively, the interaction between the monomers leads to
different values of potential energy (C). Positive values
represent attraction and negative, repulsion: AA bonds have
energy 1 (the monomers AA tend to attract each other
strongly), BB bonds have energy 1/2 (they tend to attract
each other weakly) and AB or BA bonds have energy -
1/2 (they have a weak repulsion). The energy E of the
structure of a protein with n monomers (n-mers) is given
by Equation 1:

E(�θ, �ξ) =
n−1∑

i=1

V1(θi) +

n−2∑

i=1

n∑

j=i+2

V2(dij , ξi, ξj) (1)

Equation 1 postulates two types of intermolecular poten-
tial energies, terms V1 and V2. The former represents the
backbone potentials. It is defined by Equation 2 and depends
only on the angle between monomers. The latter, defined by
Equation 3, represents the potential energy present in the
non-bonded interactions and it is known as the Lennard-
Jones potential.

V1(θi) =
1

4
× (1− cos(θi)) (2)

V2(dij , ξi, ξj) = 4× (d−12

ij − C(ξi, ξj)× d−6

ij ) (3)

where

C(ξi, ξj) =
1

8× (1 + ξi + ξj + 5× ξi × ξj)
(4)

Equation 4 is the potential energy due to the interaction
between monomers i and j, and dij is the distance between
these monomers in the chain, such that i < j.
A total of 5 synthetic protein sequences are used. These

sequences have been previously used by other researchers
[15], [16]. In Table I, N is the number of monomers of each
sequence (13, 21, 34 and 55 amino acids-long sequences)
and it is followed by the sequence itself.

Table I
BENCHMARK SEQUENCES FOR THE 2D-AB OFF-LATTICE MODEL

N Sequence
13 ABBABBABABBAB
21 BABABBABABBABBABABBAB
34 ABBABBABABBABBABABBABABBABBABABBAB
55 BABABBABABBABBABABBABABBABBABABBAB

BABABBABABBABBABABBAB

IV. COMPUTATIONAL EXPERIMENTS

The experiments are conducted using the benchmark
sequences shown in Section III, Table I. All experiments re-
ported are run in a computer with an Intel processor (Core2-
Quad running at 2.8GHz) running Linux. The applications
are developed using the C programming language.
Owing to the stochastic nature of the proposed approach

and other meta-heuristic algorithms, their performance can-
not be evaluated by the result of a single run. Many trials
with independent population initializations should be made
to obtain an useful conclusion. Therefore, in this study the
results are obtained in 30 trials.
The ecological-inspired algorithm (ECO) was tested using

five configurations. All configurations implement the Algo-
rithm 1 as described in Section II. The first configuration,
ECOABC , employs the ABC algorithm homogeneously. The
second configuration, ECOPSO , employs the PSO algorithm
homogeneously. The third configuration, ECODE , employs
the DE algorithm homogeneously. The fourth configuration,
ECOjDE/BBO , employs the BBO algorithm hybrid with
DE, also homogeneously. The fifth configuration, ECOAll,
employs a heterogeneous approach combining all four algo-
rithms in with 1/4 of the number of populations behaves
according to one of these strategies.
Also, the overall best solutions are compared with other

results found in literature.
The parameters for the ECO algorithm are: number of

populations (N-POP) that will be co-evolved, the initial
population size (POP-SIZE), number of cycles for ecological
successions (ECO-STEP), the size of the evolutive period
(EVO-STEP) that represents number of function evaluations
in each ECO-STEP, and the tournament size (T-SIZE).
The parameters used were POP-SIZE = 40, N-POP =

200, ECO-STEP = 6250, EVO-STEP = 800, and T-SIZE = 5.
The number of dimensions D is 11, 19, 32, and 53 for the
sequences of size 13, 21, 34, and 55, respectively. With this
configuration, the total number of function evaluations was
5,000,000 for each population. Studies about the adjustment
of parameters have not been carried out yet. Hence, all the
parameters of the algorithm were defined empirically [11].
Default parameters recommended in the literature were used
in the employed algorithms.
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V. RESULTS AND ANALYSIS

Table II shows the results obtained for the benchmark
sequences using the ecological approaches. In this table, the
first column identifies the sizes N of amino acids sequences
and the remaining columns show the average and standard
deviation obtained by each configuration followed by its best
result. In bold the best result obtained for each sequence are
shown.
With a close look in Table II, considering the 13 and 21

amino acids sequence, it is possible to notice that the ECOAll

approach achieved the best results. For 34 and 55 amino
acids sequences, both ECOjDE/BBO and ECOAll achieved
equivalent results.
When using the heterogeneous model (ECOAll) for se-

quences 13, 21, and 34, the optimization process took ad-
vantage of using different intensification and diversification
strategies provided by different search algorithms. However,
although ECOAll has had the best average result for the
largest sequence of 55 amino acids, the ECOjDE/BBO

achieved the best result. Overall, the best results are obtained
by ECOjDE/BBO and ECOAll approaches.
Although the results of using different search strategies

have already shown to be promising, with this observation
we realized that the use of different algorithms can be
better explored if using some source of feedback from the
optimization process during its course. The main concern
is to use this heuristic information to better distribute the
habitats formation and to better define the intra and inter
habitats communication topologies. We have a strong insight
that this can be done using the information contained in the
hierarchical clustering procedure. We believe that biasing the
dendrogram weights it should be possible to achieve differ-
ent probabilities for habitats formation and communication
topologies definition during the optimization process. This
analysis is quoted as future research.
Table III shows the mean of the elapsed time in hours by

each configuration for each sequence, followed by the re-
spective standard deviations. The processing time employed
by the ECOAll approach is around the average elapsed time
employed by the other strategies. Also, the times shown in
this table encourages the use of massive parallel strategies
inside the ECO framework (e.g., using cluster of computers
or Graphical Processing Units).
Table IV shows the lowest energies obtained by the best

ECO approaches along with the lowest energies obtained by
other works using different methods. In this table, EPERM

is a Pruned-Enriched Rosenbluth Method [15]; Emin is
the minimum energy obtained by the same method with
subsequent conjugate gradient minimisation [15]; Eground is
the putative ground state energy obtained by Stillinger and
Head-Gordon using a Monte Carlo method hybridised with
Newtonian conjugate gradient minimisation [17]; PBHS is
the best result obtained by a Population-Based Harmony

Search algorithm [18]; DE-RI is the best result obtained
by a Differential Evolutionary algorithm with a ring-island
configuration [16]; DEadp is the lowest energy obtained
using a Differential Evolution algorithm with self-adaptation
of the F parameter and with other improvements [19];
ACMC is the lowest energy obtained using an Annealing
Contour Monte Carlo Method [20]; CSA shows the energy
using a Conformational Space Annealing approach [21];
ELP+ is the lowest energy obtained using the improved
energy landscaping paving method [22]. In bold the best
results found in literature are shown.
One of the most challenging tasks when comparing differ-

ent algorithms if to perform a fair comparison between them.
To the best of our knowledge, a good base for comparison is
to compare the results obtained by the algorithms using the
same computational effort (e.g., processing time or number
of function evaluations). Here the function evaluations cri-
teria was used. Thus, it is worth remembering that for all
ECO approaches the number of function evaluations was set
to five millions (Section IV). That is the same number of
function evaluations used for PBHS and DE-RI algorithms.
For DEadp, the number of function evaluations was set to
35 millions that is a lot more than what was applied in the
experiments. For the other methods no other information
about the computational effort employed to obtain the results
was found. Also, for all ECO approaches, all algorithms
employed are in its canonical versions.
From Table IV it can be seen that the results obtained by

the proposed approach are better than those of the EPERM ,
Eground, PBHS, and DE-RI for all four sequences, with
the energy difference increasing gradually for longer chains.
For sequences with length 13 and 21, the results obtained
by the eco-approach were slightly better than that of Emin

and competitive with the ACMC, CSA, and ELP+ results.
For other cases, 34 and 55 length sequences, however, the
proposed approach cannot reach the energy yielded by Emin,
ACMC, CSA and ELP+.
The closest approach to the proposed method is the DE-

RI, which employs a Differential Evolutionary algorithm
with a ring-island configuration (sixth column of Table IV).
From the results, it can be noticed that the eco-approach
works very well when compared with the DE-RI approach.
Table V shows a comparison of the best solutions found

in literature (E∗) with the best ECO solutions (ECOBest).
The fourth column (DiffECOBestxE∗) shows the percent
difference between E∗ and ECOBest. For the first sequence
the difference observed is minimal, almost null. For the
sequence of 21 amino acids the difference is null. For the
two large sequences the differences are more accentuated,
with 4.3494% and 12.4986%, respectively.
To evaluate visually the quality of the foldings produced

by the ECO approaches, the best results shown in Table
IV were used to draw the planar form of the sequence
(conformation). A program in MATLAB was developed to
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Table II
QUALITY OF SOLUTIONS USING ECO APPROACHES.

ECOABC ECOPSO ECODE

N Avg Best Avg Best Avg Best
13 -3.1987±0.0010 -3.1990 -3.1990±0.0 -3.1990 -3.1990±0.0 -3.1990
21 -5.3743 ±0.5065 -6.1747 -5.1850 ±0.3569 -5.5056 -5.4402±0.0932 -5.5205
34 -8.2718 ±0.5404 -9.6805 -8.7419±0.4610 -9.8114 -7.8561±0.3671 -8.5590
55 -12.7603±0.5019 -13.3262 -13.5588±0.3304 -13.9440 -11.9394±0.8278 -13.4844

ECOjDE/BBO ECOAll

N Avg Best Avg Best
13 -3.1990±0.0 -3.1990 -3.2352±0.0356 -3.2940
21 -5.1049±0.4205 -5.5056 -6.1980±0.0 -6.1980
34 -9.8464±0.4861 -10.3360 -9.7185±0.5121 -10.3360
55 -14.9310±0.9884 -16.5641 -15.1982±0.5089 -15.8887

Table III
MEAN OF THE PROCESSING TIME OVER ALL RUNS (HOURS).

N ECOABC ECOPSO ECODE ECOjDE/BBO ECOAll ECOAll−LM

13 1.45±0.00 3.42±0.01 2.00±0.01 5.36±0.02 2.40±0.00 2.49±0.00
21 3.82±0.00 5.34±0.02 4.22±0.03 6.83±0.05 4.40±0.00 4.62±0.01
34 10.15±0.01 11.59±0.02 10.73±0.05 15.01±0.09 10.74±0.08 11.09±0.00
55 26.95±0.02 29.23±0.02 27.82±0.02 32.09±0.18 27.80±0.23 28.81±0.01

Table IV
COMPARATIVE OF BEST SOLUTIONS FROM DIFFERENT STRATEGIES WITH BEST ECO SOLUTIONS (ECOBest).

N EPERM Emin Eground PBHS DE-RI DEadp ACMC CSA ELP+ ECOBest

13 -3.2167 -3.2939 -3.2235 -3.28 -3.2924 -3.1999 -3.2941 -3.2941 -3.2941 -3.2940
21 -5.7501 -6.1976 -5.2881 -5.96 -6.1979 -6.1980 -6,1979 -6.1980 -6.1980 -6.1980
34 -9.2195 -10.7001 -8.9749 -8.33 -9.6838 -10.5565 -10.8060 -10.8060 -10.7453 -10.3360
55 -14.9050 -18.5154 -14.4089 -11.51 -14.6847 -17.3133 -18.7407 -18.9110 -18.9301 -16.5641

Table V
COMPARATIVE OF OVERALL BEST SOLUTIONS FOUND IN LITERATURE

(E∗) WITH BEST ECO SOLUTIONS (ECOBest).

N E∗ ECOBest DiffECOBestxE
∗

13 -3.2941 -3.2940 0.0018%
21 -6.1980 -6.1980 0.0000%
34 -10.8060 -10.3360 4.3494%
55 -18.9301 -16.5641 12.4986%

convert the string of angles into (x, y) coordinates and
plot the structure. The larger dot represents the start of
the sequence, black dots represent ‘A’ monomers and the
yellow dots represent ‘B’ monomers. Recall that the energy
of the folding is a function of the proximity of monomers,
especially the ‘A’ monomers. Therefore, compact structures
tend to have lower energy levels than those structures more
dispersed. Table VI shows the best foldings obtained with
the ECO implementations for sequences with 13, 21, 34, and
55 monomers. From Table VI it is possible to see that the
hydrophobic A monomers tend to form a hydrophobic core
in the 13 amino acids sequence or clusters of typically 3-5
monomers in other sequences. This can be explained by the
fact that hydrophobic monomers are always flanked by the
hydrophilic monomers along the sequence. This shows that
the AB off-lattice model reflects the native characters of the
real proteins in two-dimensions but it still is not perfect.

Table VI
BEST STATES FOUND BY ECO APPROACHES LISTED IN TABLE IV.

N = 13 N = 21
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−2 −1 0 1 2
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VI. CONCLUSIONS

This work applied an ecology-based approach to the
PSP AB off-lattice model. The proposed algorithm uses
cooperative search strategies where populations of individ-
uals co-evolve and interact among themselves using some
ecological concepts. Each population behaves according to
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the mechanisms of intensification and diversification, and
the control parameters, specific to a given search strategy.
Six configurations of the ECO approach were employed and,
when using the heterogeneous model (ECOAll) the search
process gets more robust than the other approaches (e.g.,
for sequences 13, 21, and 34) possibly due the use of differ-
ent intensification and diversification strategies provided by
different search algorithms. Also, ECOAll has had the best
average result for the large sequence of 55 amino acids.
It is possible to highlight that the use of different al-

gorithms can be better explored if using some source of
feedback from the optimization process during its course.
This analysis is pointed as future research.
This work is still under development and as future work

we intend to analyze the influence of the remaining control
parameters (number of ecological successions, evolutive pe-
riod, and number of populations) on the quality of solutions,
as well as to add other search strategies in the proposed
model. Currently, in order to bring more biological plau-
sibility to the system, other ecological concepts are being
modeled, and efforts are being done to eliminate control
parameters. Also, the use of massive parallel strategies inside
the ECO framework is a future trend.
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