
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2012; 19:666–684
Published online 30 May 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.4295

A comparison of swarm intelligence algorithms for structural
engineering optimization

Rafael S. Parpinelli1,2, Fábio R. Teodoro1 and Heitor S. Lopes1,*,†

1Bioinformatics Laboratory, Federal University of Technology - Paraná, Curitiba, Brazil
2Department of Computer Science, Santa Catarina State University, Joinville, Brazil

SUMMARY

This paper compares the performance of three swarm intelligence algorithms for the optimization of hard
engineering problems. The algorithms tested were bacterial foraging optimization (BFO), particle swarm
optimization (PSO), and artificial bee colony (ABC). Besides the regular BFO, two other variants reported
in the literature were also included in the study: adaptive BFO and swarming BFO. Both PSO and ABC were
tested using the regular algorithm and variants that include explosion (mass extinction). Three optimization
problems of structural engineering were used: minimization of the cost of a welded beam, minimization of
the construction cost of a pressure vessel, and minimization of the total weight of a 10-bar plane truss. All
problems are strongly constrained. The algorithms were evaluated using two criteria: quality of solutions
and the number of function evaluations. The results show that PSO presented the best balance between these
two criteria. For the optimization problems approached in this paper, we can also conclude that the explosion
procedure resulted in no significant improvements. Copyright © 2012 John Wiley & Sons, Ltd.

Received 15 June 2011; Revised 4 January 2012; Accepted 14 January 2012

KEY WORDS: swarm intelligence; bacterial foraging optimization; particle swarm optimization; artificial
bee colony; engineering problems

1. INTRODUCTION

Most structural engineering optimization problems are non-linear and highly constrained. Because
of the limitations of exact methods in approaching such complex problems, the need for more robust
techniques arises. Evolutionary computation and, more specifically, swarm intelligence (SI) provide
a range of flexible and robust optimization techniques capable of dealing with this sort of problems.

In the beginning, the mainstream paradigms of the research in the area of SI were the ant
colony optimization‡ (ACO) [1] and the particle swarm optimization§ (PSO) [2]. Later, many other
algorithms and variants appeared.

The ACO metaheuristics is inspired by the foraging behavior of ants. The ants’ goal is to find the
shortest path between a food source and the nest. The standard ACO was conceived for dealing with
problems in which the search space is discrete and can be abstracted as a graph. Consequently, each
path constructed by the ants represents a potential solution to the problem being solved.

The PSO metaheuristics is motivated by the coordinate movement of fish schools and bird flocks.
The PSO is compounded by a swarm of particles that interact with each other in a continuous search
space. The position of each particle represents a potential solution to the problem being solved, and
it is represented as an n-dimensional vector. In PSO, particles ‘fly’ through the hyperdimensional

*Correspondence to: Heitor S. Lopes, Bioinformatics Laboratory, Federal University of Technology - Paraná, Curitiba
80230-901, Brazil.

†E-mail: hslopes@utfpr.edu.br
‡ACO repository: http://iridia.ulb.ac.be/�mdorigo/ACO/
§PSO Repository: http://www.particleswarm.info

Copyright © 2012 John Wiley & Sons, Ltd.

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 667

search space, and changes to their positions are based on the socio-cognitive tendency of individuals
to emulate the success of other individuals. Each particle of the swarm has its own life experience
and is able to evaluate the quality of its experience. As social individuals, they also have knowl-
edge about how well their neighbors have behaved. These two kinds of information correspond to
the cognitive component (individual learning) and social component (cultural transmission), respec-
tively. Hence, decisions of an individual are made by taking into account both the cognitive and the
social components, thus leading the population (swarm) to an emergent behavior.

Both aforementioned methods have been applied successfully in a vast range of problems [3].
Notwithstanding, in recent years several other SI algorithms have appeared, inspired by fireflies
bioluminescence, slime molds life cycle, cockroaches infestation, mosquitoes host-seeking, bats
echolocation, bees mating, bees foraging, and bacterial foraging. For a detailed review about these
algorithms, see [4].

In this paper, the performance of three SI algorithms (and variants of them) were tested for the
optimization of hard engineering optimization problems. The empirically selected swarm-based
algorithms were as follows: bacterial foraging optimization (BFO), PSO, and artificial bee colony
(ABC). Besides the regular BFO, two other variants reported in the literature were also included in
the study: adaptive BFO (BFO-A) and swarming BFO (BFO-S). Both PSO and ABC were tested
using the regular algorithm and variants that include explosion (mass extinction).

All these approaches are global optimization metaheuristics, and they are composed, basically,
of a selection of the best scheme and of a randomization scheme. The former guides the algorithm
convergence to the optimality (exploitation), and the latter avoids both the loss of diversity and the
algorithm to get trapped in local optima (exploration). A good balance between exploitation and
exploration may lead to the global optimality achievement.

The objective of this article is not to propose a new version or modifications to algorithms but to
verify the differences in exploitation and exploration balance for all algorithms performing an unbi-
ased comparison over real problems. Three optimization problems of structural engineering were
used: minimization of the cost of a welded beam, minimization of the construction cost of a pres-
sure vessel, and minimization of the total weight of a 10-bar plane truss. As mentioned before, these
problems are strongly constrained.

This paper is organized as follows: the next section describes all the SI algorithms used in this
work. Section 3 describes the experiments and the optimization problems. Section 4 shows the
results of the comparisons between algorithms. Finally, Section 5 presents the conclusions and
points future research directions.

2. SWARM INTELLIGENCE ALGORITHMS

Swarm-based algorithms are inspired by the behavior of some social living beings, such as ants,
bees, birds, and fishes. Self-organization and decentralized control are remarkable features of
swarm-based systems that, such as in nature, leads to an emergent behavior. Emergent behavior is
a property that emerges through local interactions among system components, and it is not possible
to be achieved by any of the components of the system acting alone [5, 6].

In this work, we compared the performance of three SI algorithms and some variants. These
algorithms are presented in detail in the next sections.

2.1. Bacterial foraging optimization

In this section, the canonical BFO algorithm is described. Later, some proposed variants of this
algorithm are presented: the BFO-A and the BFO-S. The BFO algorithm has been applied to several
optimization problems, such as multi-objective optimization [7]. See [8] for a summary of recent
applications.

The bacterial foraging algorithm was first proposed by [9], and it is inspired by the foraging
behavior of Escherichia coli bacteria. Possible solutions to an optimization problem are repre-
sented in the BFO algorithm by a colony of S bacteria of dimension d , set in the search space.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

668 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

Algorithm 1 shows the basic BFO, as described by [10]. It consists of three main phases, explained
later: chemotaxis, reproduction, and elimination–dispersal.

In the chemotaxis phase, every bacterium moves a single step towards a random position. If an
improvement in the fitness (decrement) of the bacterium comes out from this movement, a swim
is done. This means that the bacterium keeps on moving in the same direction while the fitness is
decreasing or until a maximum number of swim steps (Ns) is reached. This is done for all bacteria.
In this version of the algorithm, the step is set to C.i/.

In the reproduction phase, the healthiest Sr bacteria are replicated and introduced in the same
region of the search space where their ‘parents’ were from. Conversely, the Sr least healthy bacteria
are eliminated. The health of a bacterium is the summation of the fitness for all chemotaxis steps
just done. The smaller the value, the healthier the bacteria and, consequently, the better the solution
it represents.

In the dispersion phase, each bacterium can be eliminated and substituted by another one,
randomly generated, according to a given probability Ped.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 669

By default, BFO is a minimization algorithm and has the following control parameters:

� S , number of bacteria;
� Nc, number of chemotaxis steps;
� Ns, maximum number of swim steps;
� Nre, number of reproduction steps;
� Ned, number of dispersion steps;
� Ped, probability of dispersion;
� C.i/.i D 1, 2, : : : ,S/, step size of the bacteria;
� Sr, number of bacteria replicated at each reproduction step.

2.1.1. Adaptive bacterial foraging optimization. Chen et al. [10] observed that the quality of solu-
tions provided by the BFO algorithm is strongly dependent of the step size of the bacteria. Therefore,
they proposed a variant, known as adaptive BFO, to circumvent this problem. In this variant, as the
step size is individualized for each bacterium, the overall behavior of each bacterium can be signif-
icantly different from each other. The behavior can alternate between global search (when the step
size is larger) when it is stagnated in a limited region of the search space and local search (when the
step size is smaller) when it is in a promising region.

Adaptive BFO includes some other parameters to the basic BFO: ˛, ˇ, ", and Nu. Just after the
chemotaxis step of each bacterium, a stagnation counter (no_improv_counti) is updated: it is incre-
mented if the bacterium does not improve its fitness or zeroed otherwise. The parameter ˛ is the
reduction factor of the step size (C i). The parameter ˇ is the reduction factor of another parameter
", which, in turn, is the threshold (of the fitness value) from which the bacterium has its step size
reduced. The parameterNu is the number of chemotaxis steps that a bacterium is allowed to stagnate
before returning to the global search mode. If the fitness of a bacterium is improved after the chemo-
taxis step at time t, its size is updated for the next iteration (C i .t C 1/) according to Equation (1).
The parameter "i associated to this bacterium is updated according to Equation (2).

C i .t C 1/D

²
C i .t/=˛ , if J.i , j , k, l/ < "i .t/
C i .t/ , if J.i , j , k, l/> "i .t/ (1)

"i .t C 1/D

²
"i .t/=ˇ , if J.i , j , k, l/ < "i .t/
"i .t/ , if J.i , j , k, l/> "i .t/ (2)

If no improvement of the fitness occurs after the chemotaxis step, parameters C i and "i are
updated according to Equations (3) and (4). Eventually, a bacterium can return to the global search
behavior.

C i .t C 1/D

²
C iinitial , if no_improv_counti >Nu
C i .t/ , if no_improv_counti 6Nu

(3)

"i .t C 1/D

²
"iinitial , if no_improv_counti >Nu
"i .t/ , if no_improv_counti 6Nu

(4)

2.1.2. Swarming bacterial foraging optimization. Some species of bacteria, such as E. coli, have a
group behavior when moving together. This phenomenon is known as swarming, and it is a conse-
quence of pheromones that act as attractants for the bacteria. On the basis of this fact, [9] proposed a
variant of BFO named swarming BFO, in which a bacterium attracts the other ones by modifying the
search space around itself according to Equation (5). This behavior reflects the tendency of the real
bacteria to stay close to each other. They also repel other bacteria that are too close, as an analogy
to the nutrient consumption by bacteria, keeping a minimum distance between them.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

670 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

Four new control parameters are introduced in BFO-S: dattract represents the depth of the attrac-
tor released by the bacteria; wattract corresponds to the width of the attractant signal; hrepellant and
wrepellant are, respectively, the height and width of the repellant.

The distortion of the search space where the bacteria move is accomplished with Equation (5),
added to the fitness function. Its effect makes bacteria stay close to each other.

Jcc.� ,P.j , k, l//D
SX
iD1

J icc.� , � i .j , k, l//

D

SX
iD1

2
6664�dattract � e

0
B@�wattract

pX
mD1

.�m � �
i
m/
2

1
CA
3
7775

C

SX
iD1

2
6664hrepellant � e

0
B@�wrepellant

pX
mD1

.�m � �
i
m/
2

1
CA
3
7775

(5)

In this equation, � represents a position in the search space; P.j , k, l/ is the set of positions of all
bacteria in the j th chemotaxis step of the kth reproduction step of the l th dispersion step; � i is the
position of bacterium i ; �m represents component m of the vector concerning position � ; and � im is
the component m of � i .

2.2. Particle swarm optimization

The PSO metaheuristic was inspired by the coordinate movement of fish schools and bird flocks [2]
and has been applied to several optimization problems (for instance, [11–13]).

The PSO is a population-based metaheuristic composed of a swarm of n particles. Each particle
represents a potential solution to the problem to be solved. The position of a particle in the search
space is determined by the solution it currently represents. Algorithm 2 shows the canonical PSO,
as described by [2]. In this algorithm, each solution Exi D Œxi1, xi2, : : : , xid � of dimension d is
evaluated by a fitness function f .Exi /, i D 1, : : : ,n. In PSO, particles ‘fly’ through the hyperdimen-
sional search space according to their velocity Evi . Changes to the position of the particles within
the search space are based on the socio-cognitive tendency of individuals to emulate the success
of other individuals. Each individual of a population has its own life experience (Epi) and is able to
evaluate the quality of its experience. They are social individuals, and so they also have knowledge
about the quality of their neighbors (Eg). These two sources of information correspond to the cogni-
tive component (individual learning) and social component (social learning), respectively. Hence, an
individual decision is made considering both the cognitive and the social components, thus leading
the population to an emergent behavior of navigating coordinately through the search space.

The parameters 'p and 'g determine the relative influence of the cognitive and social compo-
nents, respectively, and are often both set to the same value so as to give each component (the
cognition and social learning rates) the same decisional weight. The stochastic nature of PSO is
evidenced by rp and rg that are numbers randomly generated each time the equation is computed.

PSO, like other evolutionary computation algorithms, may converge to local optima during the
search. Sometimes this can be avoided or, at least, delayed, adapting accordingly the control param-
eters. However, after being converged, the chance of finding better solutions is very poor. This is
a consequence of a population of particles with very low diversity. Whenever the stagnation of the
search is detected, some corrective measure should be taken; otherwise few or no improvements can
be expected. This can be done through a mechanism known as mass extinction, decimation and hot-
boot, or, simply, explosion. This method has already been used in PSO [11], genetic algorithms [14],
and other Evolutionary Computation algorithms (for instance, [15]), and it has been demonstrated
to improve the performance of the basic algorithm.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 671

Therefore, a variant of PSO, named PSO with explosion (PSO-X), was implemented and tested.
Basically, when stagnation of the best solution is observed for a predefined number of iterations
(i tx), all, but the best (pi), particles are extinguished, and the search is re-initialized. We established
the stagnation threshold of 10% of the total number of iterations. Overall, the explosion procedure
allows the algorithm to be more effective so that the best solution can be searched gradually during
the iterations, avoiding getting trapped in local optima.

2.3. Artificial bee colony algorithm

The ABC algorithm was inspired in the foraging behavior of honey bees. ABC was first proposed
by [16] for solving multi-dimensional and multi-modal optimization problems. A recent work [17]
compared the ABC algorithm performance against other population-based algorithms (genetic algo-
rithm, PSO, differential evolution, and evolution strategies) upon several benchmark functions.
Results showed that the performance of the ABC was better than or similar to those of the other
algorithms. Another relevant work concerning the ABC algorithm analyzed the tuning of control
parameters [18].

The ABC algorithm begins with n solutions (food sources) of dimension d that are modi-
fied by the artificial bees. In the same way as other evolutionary algorithms, each solution Exi D
Œxi1, xi2, : : : , xid � is evaluated by a fitness function f .Exi /, i D 1, : : : ,n. The bees aim at discover-
ing places of food sources (that is, regions in the search space) with high amount of nectar (good
fitness values, meaning good solutions for the problem). There are three types of bees: scout bees
that randomly fly in the search space without guidance, employed bees that exploit the neighbor-
hood of their locations selecting a random solution to be perturbed, and onlooker bees that use the
population fitness to select probabilistically a guiding solution to exploit its neighborhood. If the
amount of nectar of a new source is higher than that of the previous one in their memory, they
update the new position and forget the previous one (this is a greedy selection method). If a solu-
tion is not improved by a predetermined number of trials, controlled by the parameter limit, then
the food source is abandoned by the corresponding employed bee, and it becomes a scout bee.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

672 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

The ABC algorithm attempts to balance exploration and exploitation using the employed and
onlooker bees to perform local search and the scout bees to perform global search, respectively.
The canonical ABC is shown in Algorithm 3, and further information about the ABC algorithm can
be found in the repository¶.

Some applications found in the literature using the ABC algorithm include the generalized
assignment problem optimization [19], energy distribution network configuration [20], neural net-
work training [21], data clustering [22], solving integer programming benchmarks [23], template
matching in digital images [24], clustering [25], and signal model parameter extraction [26].

Similar to the PSO, a variant of the original algorithm including an explosion (mass extinction)
procedure was also implemented. This simple procedure has been shown more effective than the
original ABC [24]. As in the PSO-X, in the ABC with explosion (ABC-X), when stagnation of the

¶ABC Repository: http://mf.erciyes.edu.tr/abc/

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 673

best solution for a certain number of iterations (i tx) is observed, the explosion takes place. Explo-
sion maintains the best results obtained so far and extinguishes the remaining population and then
restarts the search. We established the stagnation factor of about 10% of the total number of itera-
tions. In the same way as before, the explosion procedure is intended to avoid getting the algorithm
trapped in local optima.

3. COMPUTATIONAL EXPERIMENTS

In this section, we report the experiments done for comparing the several aforementioned algo-
rithms: BFO, BFO-A, BFO-S, ABC, ABC-X, PSO, and PSO-X. We selected as test problems three
hard optimization problems from the area of structural engineering: minimization of the total cost
of a welded beam, minimization of the construction cost of a pressure vessel, and minimization of
the weight of a 10-bar planar truss. Because of its characteristics, constraints, and complexity, these
problems have been frequently used in the literature for testing metaheuristics.

All problems approached in this work are highly constrained, as most interesting engineering
problems also are. To handle constraints, all algorithms use a penalty strategy commonly used in
evolutionary computation [27]. If a candidate solution violates a constraint, the cost function value
is penalized proportionally by decreasing its chances to be chosen. Therefore, the generalized fitness
function (fit.Ex/) of a given candidate solution (Ex) is defined by Equation (6):

fit.Ex/D f .Ex/C r �

mX
iD1

ˆŒgi .Ex/� (6)

where f .Ex/ represents the normalized cost function; r indicates the penalty coefficient, empiri-
cally adjusted for each problem; m is the number of constraints; gi .Ex/ is the normalized value for
constraint i ; and ˚ represents the penalty function, as suggested by [27].

All experiments were done using the same type of desktop computers with core-2 Quad proces-
sor running at 2.8 GHz, 2 GB of RAM, under a minimal installation of Arch Linux. All algorithms
were implemented in ANSI-C programming language. The statistical analysis was done using the
R statistical computing environment.

3.1. Welded beam

In this problem, the objective is to minimize the cost of construction of a welded beam, which
includes the setup, welding labor, and material costs (Figure 1). The total cost is defined by
Equation (7), where h D x1 and l D x2 represent the thickness and the length of the welded
beam, respectively, and t D x3 and b D x4 are the height and the width of the welded cantilever,
respectively [28]. All variables represent lengths in inches.

f .Ex/D 1.10471x21x2C 0.04811x3x4.14.0C x2/ (7)

Subject to the following constraints:

g1.Ex/D 13, 600� �.Ex/> 0, (8)

g2.Ex/D 30, 000� �.Ex/>, (9)

g3.Ex/D x4 � x1 > 0, (10)

g4.Ex/D Pc.Ex/� 6000> 0, (11)

0.1256 x1 6 10, (12)

0.16 x2 6 10, (13)

0.16 x3 6 10, (14)

0.16 x4 6 5. (15)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

674 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

Figure 1. Welded beam.

where: �.Ex/, �.Ex/, and Pc.Ex/ represent, respectively, the shear stress, the bending stress (measured
in psi), and the buckling load (measured in pounds). The functions are defined by the following:

�.Ex/D

r
.� 0/2C .� 00/2C

.x2� 0� 00/

� 000
, (16)

� 0 D
6000
p
2x1x2

, (17)

� 00 D
6000.14C 0.5x2/� 000

2.0.707x1x2.x22=12C 0.25.x1C x3/2//
, (18)

� 000 D

q
0.25.x22 C .x1C x3/

2/, (19)

�.Ex/D
504, 000

x23x4
, (20)

Pc.Ex/D 64, 746.022.1� 0.0282346x3/x3x
3
4 . (21)

Many different mathematical optimization algorithms were proposed for solving this problem
[29], as well as metaheuristics such as genetic algorithms [30] and harmony search [31]. To date,
the best-known result for this problem is f .Ex/ D 1.7248, obtained by both [32] and [33]. All
algorithms used a penalty coefficient r D�1.

3.2. Pressure vessel

This problem is the design of the cylindrical pressure vessel shown in Figure 2. The total cost that
comprises not only materials but also forming and welding is to be minimized by adjusting four
parameters: Ts D x1 and Th D x2, the thickness of the shell and the head, respectively; RD x3, the
inner radius; and L D x4, the length of the cylindrical section. Both L and R are continuous, but
the other variables are discretized in 0.0625-in. steps.

The cost function is defined by Equation (22).

f .Ex/D 0.6224x1x3x4C 1.7781x1x23
C3.1661x21x4C 19.84x21x3

(22)

Subject to the following constraints:

g1.Ex/D�x1C 0.0193x3 6 0, (23)

g2.Ex/D�x2C 0.00954x3 6 0, (24)

g3.Ex/D��x
2
3x4 �

4

3
�x33 C 1, 296, 0006 0, (25)

g4.Ex/D x4 � 2406 0. (26)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 675

R

L

Th

s
R

L

Th

Ts

Figure 2. Pressure vessel.

Figure 3. Ten-bar plane truss.

This problem was also solved by [31, 33–37]. The best-known result for this problem is f .Ex/ D
5849.76169, obtained by [33]. All algorithms used a penalty coefficient r D�20.

3.3. Ten-bar plane truss

In this problem, the objective is to minimize the weight of a plane truss composed of 10 bars
(Figure 3). The weight can be computed by function 27:

f .Ex/D

10X
jD1

�AjLj (27)

where Aj is the cross section area of the j th bar, Lj is the length of this bar, and � is the density of
the material.

This problem was also extensively used in the optimization literature as a benchmark, mainly
using conventional mathematical methods (for instance, [38–41]) or metaheuristics [31, 32]. In this
work, we used the same constants and constraints used in the aforementioned works, and the best

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

676 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

solution known is f .Ex/ D 4668.72, obtained by [32]. All algorithms used a penalty coefficient
r D�10, 000.

3.4. Control parameters

Because of the stochastic nature of the algorithms compared in this work, for each algorithm men-
tioned in Section 2, 30 independent runs were done with different initial random seeds. For each
run, an upper bound for the number of fitness function evaluations was established to 500, 000.

3.4.1. Bacterial foraging optimization. Table I shows the parameters used in the BFO algorithm,
which are, respectively, the population size (S), the number of chemotactic steps (Nc), the maximum
number of swim steps (Ns), the number of reproduction steps (Nre) , the number of dispersion steps
(Ned), the probability of dispersion (Ped), the length of the bacteria steps (C), and the proportion of
the population that is replicated in the reproduction step (Sr). These parameters are the same used
in [9].

The value �1 for Ned means that it will continue until the stopping criterion is met, which is
represented here by 500, 000 function evaluations.

3.4.2. Adaptive bacterial foraging optimization. The BFO-A uses the same parameters as BFO
plus the additional parameters used by [10]. These extra parameters are, respectively (Table II), the
initial threshold to enter in exploitation mode, the reduction factor to be applied on the bacteria step
length (˛), the reduction factor (ˇ) applied to the threshold (") when this threshold is exceeded,
and the number of chemotactic steps without improvement to return the bacterium to its exploration
mode (Nu).

The parameters used for BFO-A experiments are shown in Table II.

Table I. Parameters used
for BFO.

S D 100
Nc D 100
Ns D 4
Nre D 5
Ned D �1
Ped D 0.25
C D 0.1
Sr D 0.5

The values recommended
by [9].

Table II. Parameters used
for BFO-A.

S D 100
Nc D 100
Ns D 4
Nre D 5
Ned D �1
Ped D 0.25
C D 0.1
Sr D 0.5
" D 100
˛ D 10
ˇ D 10
Nu D 20

The values recommended
by [10].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 677

3.4.3. Swarming bacterial foraging optimization. Table III shows the parameters used for BFO-S,
which are the same used for BFO plus the extra parameters of BFO-S. The extra parameters used
by BFO-S are the depth of the attractant (dattract), the width of the attractant (wattract), the height of
the repellant (hrepellant), and the width of the repellant (wrepellant).

Although wattract has a smaller value than the value of wrepellant, looking at Equation (5), we could
see that smaller values of wattract cause a wider range of influence in the search space.

3.4.4. Particle swarm optimization. Table IV shows the parameters used by the PSO algorithm; that
is, the population size (n), the relative influence of the cognitive component ('p), and the relative
influence of the social component ('g).

3.4.5. Particle swarm optimization with explosion. The PSO with explosion uses the same param-
eters of PSO plus the number of iterations without improvement before it does the explosion (i tx).
In the explosion, it re-initializes all particles positions keeping only the global best position. The
parameters used for PSO-X can be seen in Table V.

3.4.6. Artificial bee colony. ABC uses as parameters the population size (n), the number of food
sources (FoodNumber), and the number of iterations without improvement before it replaces a scout
bee (limit) (Table VI).

Table III. Parameters
used for BFO-S.

S D 100
Nc D 100
Ns D 4
Nre D 5
Ned D �1
Ped D 0.25
C D 0.1
Sr D 0.5
dattract D 0.1
wattract D 0.2
hrepellant D 0.1
wrepellant D 10

The values recommended
by [9].

Table IV. Parameters
used for PSO.

n D 50
'p and 'g D 2.05

Table V. Parameters used
for PSO-X.

n D 50
'p and 'g D 2.05
i tx D 1000

Table VI. Parameters
used for ABC.

n D 50
FoodNumber D 25
limit D 100

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

678 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

3.4.7. Artificial bee colony with explosion. The parameters for ABC-X, as can be seen in Table VII,
are the same as those for ABC plus the minimum number of iterations to do explosion (i tx).

4. RESULTS AND DISCUSSION

In this section, we present results of our experiments and a comparison of performance among all
approaches. The performance of each approach takes into account the average best solution found
in each run and the average processing time. Also, some statistical tests are performed.

4.1. Welded beam design problem

Table VIII shows the results for the welded beam problem. The PSO algorithm obtained the best
mean result, which is approximately 0.13% distant of the best result known.

The convergence of the algorithms for the welded beam problem can be seen in Figure 4. In this
figure, we can notice that all algorithms converge fast, particularly the PSO and PSO-X algorithms.

Figure 5 shows the Pareto’s graphic with results grouped by algorithm. The PSO algorithm is the
group with the best balance between mean number of function evaluations and the mean value of
fitness. BFO is the group with the smaller number of function evaluations to converge. All groups
of algorithms have its variants close to each other, and each group is distant to the others. This
reinforces the fact that the employed algorithms use different search strategies.

4.2. Pressure vessel design problem

In Table IX, we can see that PSO is the algorithm that first converges and has better results. The
results show that the PSO algorithm obtained the best mean result, which is approximately 3.69%
distant of the best result known.

Table VII. Parameters
used for ABC-X.

n D 50
FoodNumber D 25
limit D 100
i tx D 1000

Table VIII. Results for the welded beam design problem.

BFO fitnessavg 1.92˙ 0.0
evaluationsavg 140, 137.6˙ 159, 962.2

BFO-A fitnessavg 1.93˙ 0.0
evaluationsavg 124, 448.4˙ 142, 905.1

BFO-S fitnessavg 1.94˙ 0.0
evaluationsavg 143, 683.8˙ 157, 618.7

PSO fitnessavg 1.72˙ 0.0
evaluationsavg 138, 215.5˙ 78, 825.1

PSO-X fitnessavg 1.73˙ 0.0
evaluationsavg 217, 863.0˙ 123, 851.3

ABC fitnessavg 1.92˙ 0.0
evaluationsavg 250, 697.9˙ 121, 670.6

ABC-X fitnessavg 1.95˙ 0.0
evaluationsavg 323, 885.9˙ 147, 617.6

Showing the mean fitness and the mean number of evaluations to find
the best solution.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 679

Figure 4. Convergence graphics for the welded beam design problem.

Figure 5. Pareto for the welded beam design problem.

Table IX. Results for the pressure vessel design problem.

BFO fitnessavg 11, 395.8˙ 2525.5
evaluationsavg 200, 786.8˙ 133, 382.1

BFO-A fitnessavg 11, 174.6˙ 2350.7
evaluationsavg 229, 979.1˙ 150, 722.4

BFO-S fitnessavg 11, 587.3˙ 2770.1
evaluationsavg 228, 419.3˙ 158, 479.0

PSO fitnessavg 6066.2˙ 32.0
evaluationsavg 75, 782.0˙ 79, 598.0

PSO-X fitnessavg 6066.7˙ 32.1
evaluationsavg 106, 104.5˙ 114, 145.9

ABC fitnessavg 6084.0˙ 15.1
evaluationsavg 175, 303.7˙ 91, 018.9

ABC-X fitnessavg 6092.6˙ 11.9
evaluationsavg 329, 389.9˙ 109, 327.5

Showing the mean fitness and the mean number of evaluations to find
the best solution.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

680 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

Figure 6 shows the convergence of all approaches. We can see that BFO and its variants have a
smoother convergence but have very poor results in comparison with the other algorithms.

Figure 7 shows that PSO variants presented the best balance between number of function
evaluations and the quality of the results. The BFO variants are dominated by the others.

4.3. Ten-bar plane truss problem

In Table X, we can see that PSO-X has the best mean result, which is approximately 0.17% distant
from the best result known. It also can be seen that ABC is the algorithm that first converges, but it
achieves results worse than PSO-X.

All algorithms showed similar convergence curves for the 10-bar plane truss problem, with excep-
tion of the BFO algorithms which have a smoother curve, but at the end all achieved very similar
results (Figure 8).

Figure 9 shows the Pareto’s graphic for the 10-bar plane truss problem. ABC group is the group
with the smaller number of function evaluations, and PSO group has the best results. The BFO group
is dominated by the ABC group.

Figure 6. Convergence graphics for the pressure vessel design problem.

Figure 7. Pareto for the pressure vessel design problem.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 681

Table X. Results for the 10-bar plane truss problem.

BFO fitnessavg 4718.8˙ 19.1
evaluationsavg 449, 633.9˙ 40, 472.6

BFO-A fitnessavg 4720.6˙ 15.7
evaluationsavg 446, 626.2˙ 47, 190.9

BFO-S fitnessavg 4720.7˙ 25.4
evaluationsavg 446, 497.7˙ 40, 385.9

PSO fitnessavg 4677.0˙ 0.0
evaluationsavg 429, 266.0˙ 67, 654.2

PSO-X fitnessavg 4677.0˙ 0.0
evaluationsavg 476, 990.0˙ 19, 685.2

ABC fitnessavg 4703.4˙ 9.8
evaluationsavg 235, 727.4˙ 140, 919.5

ABC-X fitnessavg 4702.6˙ 10.7
evaluationsavg 250, 188.1˙ 148, 331.7

Showing the mean fitness and the mean number of evaluations to find
the best solution.

Figure 8. Convergence graphics for the 10-bar plane truss problem.

Figure 9. Pareto for the 10-bar plane truss problem.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

682 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

4.4. Statistical tests

In order to properly analyze the results reported before, we performed the analysis of variance
(ANOVA) test [42] upon the mean fitness data. As a prerequisite to the ANOVA test, the
Shapiro–Wilk normality test [42] was run to check if the samples fall into a normal distribution. As
a result, the Shapiro–Wilk test accepted the normality hypothesis with p-values equal to 2.2�10�16,
2.2� 10�16, and 3.7� 10�9 for welded beam design, pressure vessel design, and 10-bar plane truss
problems, respectively.

The results obtained with the ANOVA test were p-values equal to 0.1246, 2.1 � 10�16, and
1.4 � 10�8 for the three problems, respectively. Concerning the level of significance of 10%, it is
possible to conclude that the null hypothesis is true (i.e., there is no difference between algorithms)
only for the welded beam design problem. Table VIII shows that this statistical inference is correct.

However, for the other two problems (pressure vessel design and 10-bar plane truss), the null
hypothesis is false, meaning that there are significant differences between algorithms. This can
be observed in Table IX where the algorithms PSO, PSO-X, ABC, and ABC-X are better than
BFO, BFO-A, and BFO-S algorithms and in Table X where the PSO and PSO-X are better than the
other algorithms.

5. CONCLUSION

In this paper, we presented results verifying the differences in exploitation and exploration balance
in different SI algorithms performing an unbiased comparison over three difficult structural engi-
neering problems. The analysis of the statistical results indicated that no algorithm performed best
for all the problems, except for the welded beam design problem. Notwithstanding, different results
for each problem were achieved, suggesting that an algorithm can be the best for a problem but
not for other one. This happens mainly due the different exploration/exploitation strategies of the
algorithms, which direct the search in different ways. In addition, each problem has different fitness
landscapes (represented by its cost function and its constraints), which, by itself, may lead the same
algorithm to perform differently for each problem.

Such results are in accordance with the no free lunch theorem [43], which states that it is not
possible to point out which is the best optimization algorithm without considering a specific prob-
lem. Generically speaking, the results showed that it is not possible to point which algorithm
is more efficient for generic classes of problems, such as the constrained optimization problems
approached here.

For real-world problems, both the quality of solution and the computational cost are important
issues. In this work, the Pareto plot was found to be a useful tool for comparing the performance of
algorithms considering such a multicriteria approach.

The explosion procedure used in PSO and ABC tend to increase significantly the number of func-
tion evaluations without, however, improving significantly the quality of solutions. This is contrary
to what has been cited in the literature about this procedure. We speculate that the reason for this
unexpected behavior is the parameters that regulate the frequency of explosion. Therefore, instead
of using the standard values, a fine-tuning of such parameters can lead to better results.

On the basis of the results presented, we consider some combinations between algorithms as an
alternative to solve these and other problems even more efficiently. Recent literature has indicated
that the use of hybrid evolutionary systems working in a cooperative way can perform better than the
use of single algorithms (for instance, [44–47]). A possible approach for this is to form a pipeline,
passing the results from one algorithm to another or in parallel, choosing the best result from the
parallel runs of several algorithms, or by having communication between the algorithms and each
other. Therefore, we believe that hybrid/cooperative optimization strategies for highly constrained
engineering problems are a promising future research.

ACKNOWLEDGEMENTS

The authors would like to thank UDESC (Santa Catarina State University) and FUMDES program for
the financial support to R. S. Parpinelli as well as to the Brazilian National Research Council (CNPq) for
research grant no. 309262/2007-0 to H. S. Lopes.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

A COMPARISON OF SI ALGORITHMS FOR STRUCTURAL ENGINEERING OPTIMIZATION 683

REFERENCES

1. Dorigo M, Stützle T. Ant Colony Optimization. The MIT Press: Cambridge, USA, 2004.
2. Kennedy J, Eberhart RC. Swarm Intelligence. Morgan Kaufmann: San Francisco, USA, 2001.
3. Clerc M. Particle Swarm Optimization. Wiley-ISTE Press: London, UK, 2006.
4. Parpinelli RS, Lopes HS. New inspirations in swarm intelligence: a survey. International Journal of Bio-Inspired

Computation 2011; 3(1):1–16.
5. Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: from Natural to Artificial Systems. Oxford University

Press: New York, USA, 1999.
6. Garnier S, Gautrais J, Theraulaz G. The biological principles of swarm intelligence. Swarm Intelligence 2007;

1(1):3–31.
7. Hazra J, Sinha AK. Environmental constrained economic dispatch using bacteria foraging optimization. In Proceed-

ings of International Joint Conference on Power System Technology and IEEE Power India Conference. IEEE Press:
Piscataway, USA, 2008; 1–6.

8. Das S, Biswas A, Dasgupta S, Abraham A. Bacterial Foraging Optimization Algorithm: Theoretical Foundations,
Analysis, and Applications, Studies in Computational Intelligence, Vol. 203: Berlin/Heidelberg, Germany, 2009.
23–55.

9. Passino K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems
Magazine 2002; 22(3):52–67.

10. Chen H, Zhu Y, Hu K. Self-adaptation in bacterial foraging optimization algorithm. Proc. 3rd International
Conference on Intelligent System and Knowledge Engineering, Xiamen, China, 2008; 1026–1031.

11. Hembecker F, Godoy W, Jr., Lopes HS. Particle swarm optimization for the multidimensional knapsack problem.
Lecture Notes in Computer Science 2007; 4331:358–365.

12. Perlin HA, Lopes H, Mezzadri TC. Particle swarm optimization for object recognition in computer vision. Lecture
Notes in Computer Science 2008; 5027:11–21.

13. Poli R. Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution
and Applications 2008; 2008:1–10.

14. Benítez CMV, Lopes HS. A master–slave parallel genetic algorithm for protein structure prediction using the 3D-HP
side-chain model. Journal of the Brazilian of Computer Society 2010; 16(1):69–78.

15. Kalegari DH, Lopes HS. A differential evolution approach for protein structure optimization in a 2-D off-lattice
protein model. International Journal of Bio-Inspired Computation 2010; 2(3/4):242–250.

16. Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, Erciyes University,
Engineering Faculty, Computer Engineering Department, Kayseri, Turkey, 2005.

17. Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation
2009; 214:108–132.

18. Akay B, Karaboga D. Parameter tuning for the artificial bee colony algorithm. Lecture Notes in Artificial Intelligence
2009; 5796:608–619.

19. Baykasoǧlu A, Özbakır L, Tapkan P. Artificial Bee Colony Algorithm and Its Application to Generalized Assign-
ment Problem. In Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, Chan FTS, Tiwari MK (eds),
2007; 113–144.

20. Linh NT, Anh NQ. Application artificial bee colony algorithm (ABC) for reconfiguring distribution network. Second
International Conference on Computer Modeling and Simulation 2010; 1:102–106.

21. Karaboga D, Ozturk C. Neural networks training by artificial bee colony algorithm on pattern classification. Neural
Network World 2009; 19(3):279–292.

22. Marinakis Y, Marinaki M, Matsatsinis N. A hybrid discrete artificial bee colony—GRASP algorithm for clustering.
Proc. of International Conference on Computers and Industrial Engineering, Troyes, France, 2009; 548–553.

23. Akay B, Karaboga D. Solving integer programming problems by using artificial bee colony algorithm. Lecture Notes
in Computer Science 2009; 5883:355–364.

24. Chidambaram C, Lopes HS. An improved artificial bee colony algorithm for the object recognition problem in
complex digital images using template matching. International Journal of Natural Computing Research 2010;
1(2):54–70.

25. Karaboga D, Ozturk C. A novel clustering approach: artificial bee colony (ABC) algorithm. Applied Soft Computing
2011; 11:652–657.

26. Sabat SL, Udgata SK, Abraham A. Artificial bee colony algorithm for small signal model parameter extraction of
MESFET. Engineering Applications of Artificial Intelligence 2010; 23(5):689–694.

27. Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning, 1st ed. Addison-Wesley
Professional: Reading, MA, 1989.

28. Deb K, Srinivasan A. Monotonicity analysis, evolutionary multi-objective optimization, and discovery of design
principles. Technical Report KanGAL No. 2006004, Indian Institute of Technology, Kanpur Genetic Algorithms
Laboratory, Kanpur, India, 2006.

29. Ragsdell KM, Phillips DT. Optimal design of a class of welded structures using geometric programming. ASME
Journal of Engineering for Industries 1976; 98(3):1021–1025.

30. Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics
and Engineering 2000; 186(2–4):311–338.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

684 R. S. PARPINELLI, F. R. TEODORO AND H. S. LOPES

31. Lee KS, Geem ZW. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory
and practice. Computer Methods in Applied Mechanics and Engineering 2005; 194(36–38):3902–3933.

32. Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y. Hybridizing harmony search algorithm with sequen-
tial quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and
Engineering 2008; 197(33–40):3080–3091.

33. Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems.
Applied Mathematics and Computation 2007; 188(2):1567–1579.

34. Kannan BK, Kramer SN. An augmented Lagrange multiplier based method for mixed integer discrete continuous
optimization and its applications to mechanical design. Journal of Mechanical Design 1994; 116(2):405–411.

35. Deb K, Gene AS. A robust optimal design technique for mechanical component design. In Evolutionary Algorithms
in Engineering Applications, Dasgupta D, Michalewicz Z (eds). Springer: Berlin, Germany, 1997; 497–514.

36. Coello CAC. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry
2000; 41(2):113–127.

37. Coello CAC. Constraint-handling using an evolutionary multiobjective optimization technique. Civil Engineering
and Environmental Systems 2000; 17:319–346.

38. Khan MR, Willmert KD, Thornton WA. An optimality criterion method for large-scale structures. AIAA Journal
1979; 17(7):753–761.

39. Rizzi P. Optimization of multi-constrained structures based on optimality criteria. Proc. AIAA/ASME/SAE 17th

Structures, Structural Dynamics and Materials Conference, King of Prussia, Pennsylvania, 1976; 448–462.
40. Schmit LA, Miura H. Approximation concepts for efficient structural synthesis. AIAA Journal 1976; 12(3):692–699.
41. Venkayya VB. Design of optimum structures. Computers & Structures 1971; 1(1-2):265–309.
42. Hinkelmann K, Kempthorne O. Design and Analysis of Experiments, Vol. I and II. J. Wiley & Sons: London, UK,

2008.
43. Wolpert D, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computa-

tion 1997; 1(1):67–82.
44. Masegosa AD, Pelta DA, del Amo IG, Verdegay JL. On the performance of homogeneous and heterogeneous

cooperative search strategies. In Nature Inspired Cooperative Strategies for Optimization, Studies in Computa-
tional Intelligence, Vol. 236, Krasnogor N., Melián-Batista B, Moreno-Pérez JA, Moreno-Vega JM, Pelta DA (eds).
Springer: Berlin, Germany, 2009; 287–300.

45. Benítez CMV, Parpinelli RS, Lopes HS. Parallelism, hybridism and coevolution in a multi-level ABC-GA approach
for the protein structure prediction problem. Concurrency and Computation: Practice and Experience 2011. DOI:
10.1002/cpe.1857.

46. Sun L, Yoshida S, Cheng X, Liang Y. A cooperative particle swarm optimizer with statistical variable interdepen-
dence learning. Information Sciences 2012; 186:20–39.

47. Inthachot M, Supratid S. A multi-subpopulation particle swarm optimization: a hybrid intelligent computing for
function optimization. International Conference on Natural Computation 2007; 5:679–684.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 19:666–684
DOI: 10.1002/nme

