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Abstract. This paper presents a comparative study among default 

implementations of Genetic Algorithm, Differential Evolution and Particle 

Swarm Optimization for load balancing, a specific case of the Generalized 

Assignment Problem (GAP). DE was found the best algorithm, and it was 

further tested with harder GAP instances to determine its best configuration, 

so as to be applied to other GAP-like problems. 

Resumo. Este trabalho apresenta um estudo comparativo entre 

implementações padrão do Algoritmo Genético, Evolução Diferencial e 

Otimização por Enxame de Partículas no problema de balanceamento de 

carga, um caso específico do Problema Generalizado de Atribuição (GAP). 

Neste estudo comparativo, o algoritmo de Evolução Diferencial apresentou o 

melhor desempenho. Por isso, o algoritmo foi também experimentado em 

instâncias GAP mais complexas a fim de determinar a sua melhor 

configuração para execução deste tipo de problema.  

1. Introduction 

Over the last decades, Evolutionary Computation (EC) techniques have been 

successfully applied to many complex optimization problems. Among the EC 

techniques, Genetic Algorithms (GA) (Holland, 1975) and, more recently, Differential 

Evolution (DE) (Price, 2005) and Particle Swarm Optimization (PSO) (Kennedy, 2001) 

are those which efficiency has been frequently pointed out in the recent literature. 

However, few works focus on the performance comparison between EC techniques for 

a given problem. This work aims at establishing an unbiased comparison between GA, 

DE and PSO for a relevant and well-known engineering problem, the Generalized 

Assignment Problem (GAP) (Osman, 1995),(Chu, 2007). 

The specific instance of the problem addressed in this work is load balancing, that is, 

how to distribute work between computers so as to minimize the overall processing time 

and resources usage. The use of EC techniques for load balancing is suitable once new 

alternatives should be presented against the existing ones (e.g. Random Allocation, 

Round-Robin, Weighted Round Robin, and Fewest connections with limits), to be 

applied to static or dynamic load balancing problems. In the static mode, the balancing 

takes place before the execution of any process, whereas in the dynamic mode, it occurs 

at the execution time. This paper focuses the static mode, to assure conformity with 

GAP.  



  

The paper is organized as follows: section 2 shortly describes the algorithms used in this 

study. Section 3 presents the formulation and approaches for modeling the problem. 

Section 4 shows graphically the results of experiments using GAP benchmarks and 

suggests suitable values for the running parameters of the best EC algorithm. Finally, 

section 5 discusses results and presents conclusions. 

2. EC Techniques 

This section shortly introduces the EC techniques used in this work. GA, DE, and PSO 

are somewhat similar in the sense of that they are population-based metaheuristics that 

can be used for optimization problems, but they differ significantly in their specific 

biological inspiration. 

2.1. Genetic Algorithm (GA) 

GA was proposed by John Holland in the 60’s (Holland, 1975), and was inspired in the 

Darwin study about the evolution of living beings, including the principle of naturals 

election, hereditariness and genetic drift.   

GA works with an initial population of randomly generated solutions. Each individual 

encodes the parameters of the problem in its chromosomes. Thus, the genetic material 

of an individual ultimately represents a possible solution to the optimization problem.  

To each individual, a given value (i.e. fitness) is assigned, which represents how good it 

is to the specific problem in hand. This value is obtained by a mathematical function, 

called fitness function. Individuals of the population are submitted to a selection 

procedure, where the natural selection principle comes up. 

Throughout generations, the average fitness of the population is expected to increase, 

since the best individuals (that is, those with the highest fitness values) of a population 

have an increasing probability to be selected for generating descendants.This is done by 

a selection method that maintains good individuals and rejects bad ones. Selected 

individuals undergo the effect of genetic operators, usually crossover and mutation. 

Algorithmically, this selection process occurs until a stop criterion is reached.   

In this work, GA is configured with mutation and crossover rates of 0.01 and 0.7, 

respectively. Selection of individuals was accomplished by the tournament selection 

method, which selects t ≥ 2 individuals to compare their fitness values; t means the 

tourney size, corresponding to 3% of the population size. 

2.2. Differential Evolution (DE) 

The Differential Evolution is a heuristic approach for minimizing nonlinear and non-

differentiable continuous space problems (Price, 2005). DE works with a population of 

individuals represented by vectors, where four are randomly selected. One of them is 

chosen to be substituted (target vector) in the population and the other three are used as 

parents. One of the parents is chosen as the main vector (i.e. the best vector of the 

population            
   

) or a randomly one (          
   

)), and the remaining are chosen as 

secondary parents(       
   

        
   

). 

The mutation operation occurs when a scalar number F weighs the difference between 

the secondary parents and add it to the main parent, producing yet another vector called 



  

donor vector (       
     

). Equation 1 presents the mutation process for the j
th 

component of 

each vector according to the specific mutation strategy known as DE/Best/1/Bin: 

       
     

            
   

           
   

         
   

  (1) 

In order to increase the potential diversity of the population, a crossover operator mix 

values of the donor vector with the values of the target vector (            ), resulting in a 

trial vector (       
   

). In DE, the crossover can be performed by two different strategies: 

binomial and exponential.  

Binomial and exponential crossovers are performed, respectively, on each variable 

according to the scheme outlined in Equations 2 and 3, where CR is a crossover 

constant. In the exponential crossover, an integer n is randomly chosen within the vector 

dimension (D) to act as starting point in the crossover process with the donor vector. 

Another integer (L) is chosen to set the number of components that the donor vector 

contributes to the target one. To keep the population size constant over subsequent 

generations, the selection operator determines if the target or trial vector will survive in 

the next generation. 

       
     

                       
               

                   
 (2)        

     
       

                                     

                                                                                     
 (3) 

The control parameters for the experiments are F=0.5 and CR=0.1 with the classical 

Binomial DE/Best/1 strategy. The population size (NP) corresponds to 10 times the D 

value. 

2.3. Particle Swarm Optimization (PSO) 

PSO is based on the observation of the social behavior of groups of individuals (in this 

case, particles) in the nature. These individuals move in a search space where each 

position represents a possible solution to a problem. The movement of a particle is 

influenced by its own acquired experience and the experience of other neighbor 

particles (or the whole population).The PSO population consists of particles generated 

randomly where each one is evaluated by a pre-established fitness function. The 

particles move in the n-dimensional search space until a stop criterion is reached, such 

as a maximum number of iterations. The movement is guided by the Equations 4 and 5. 

                                                         (4) 

                     (5) 

where, 

     : new velocity used to adjust the new position(    ) 

     : current velocity of each particle 

  : inertia operator, controls the momentum of the particle 

      : keep the best position reached by own particle 

         : current position of the particle 

      : keep the swarm best position 

  : random number in the interval [0,1] 

           : indicate, respectively, the influence of the own experience or of the 

swarm’s. Controls the amount of local and global search 



  

In the experiments, we used the default values of the literature for the control 

parameters (Price, 2005), as follows: c1=c2=2 and w=0.5. 

3. Load Balancing (GAP-like) Formulations 

This section introduces and mathematically describes the NP-Hard load balancing 

combinatorial problem (GAP -like) (Fisher, 1986) to be solved by the EC techniques. In 

fact, the EC techniques presented consider the problem as maximization, such that the 

balancing profit should be increased with respect to the problem restrictions. 

The balancing profit computation is influenced by the proximity between the node that 

contains a process and those that contains most of the necessary resources for its 

execution. For instance, an optimal assignment takes place when a process j is attributed 

to a processor i that offer all the necessary resources for the execution of j. Thus, the 

processing capacity consumed by this assignment will be ideal, since no communication 

with remote nodes will be necessary to negotiate resources usage.  

The objective function is presented in the Equation 6, where pij є ZZ+ represents the 

profit associated with the assignment of the process j to processor i. Variable xij 

indicates whether (xij = 1) or not (xij = 0) process j is assigned to processor i . 

Equation 7 represents two constraints. The first one refers to a processor capacity, 

where wij є ZZ+ is the capacity demand of processor i by a process j (if j is assigned to 

i) and bi є ZZ+ is the capacity of processor i. The second constraint warrants that 

process i is assigned to only one processor.  
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subjected to 

           

 

   

                   

                           

 

   

 

             
                                      
                                                                  

  

 

 

(7) 

The fitness function is presented in Equation 8, with respect to the objective function 

and the constraints of the problem. This function penalizes unfeasible solutions with the 

normalized value returned by Equation 9 (i.e. penalty є [0…1]). This value is multiplied 

by a penalty weight (default is 5). 

                                                    (8) 

The solution is penalized only if one or more processors i load more processes than they 

can execute in an acceptable performance. This penalty function solves the first 

constraint imposed by Equation 7. 

         
        

                                         

                       
  

   

                  
 

(9) 

The second constraint is solved directly by the way individuals are structured (i.e. GA 

chromosome, DE vector, and PSO particle), represented as an array of integers. It 



  

imposes that each array position k represents a process j to be assigned to only one 

processor i, identified by the value stored in the array position k. 

4. Results 

4.1. Comparative Study on EC Techniques 

In order to compare the EC algorithms, we used the standard implementations with 

default parameters proposed in the literature. For each test instance we used the same 

number of fitness evaluations as a common ground for comparison of algorithms. The 

test instances shown in Table 1 were found in the ORLib (ORLib, 2012). Table 2 shows 

the general parameters settings used to execute each test instance with each algorithm. 
Table 1. Test Instances 

Test Processes Processors Best 

Profit
1
 

Best 

Fitness 

a 15 5 336 0,954 

 

b 20 5 434 0,947 
 

c 30 5 656 0,968 
 

Table 2. Parameters Settings 
 

 Test 

a 

Test b Test c 

 

PSO 

Pop. 100 150 200 

Gen. 500 667 1000 

 

AG 

Pop. 200 200 250 

Gen. 250 500 800 

 

DE 

Pop. 150 200 250 

Gen. 334 500 800 

Evaluations 50000 100000 200000 

Each algorithm was run independently 20 times for each test instance, and the average 

performances of them are shown in Figure 1, where the horizontal axis represents the 

number of fitness evaluations and the vertical axis represents the fitness value, 

normalized between 0.5 and 1 to enlarge the visualization area of the plots. 

As observed in the figure, DE presented the best results in the tests. DE presents a 

similar curve in all three experiments, with gradual growth towards the optimum. The 

curves of PSO were also similar in all the experiments. However, they represent the 

worst results, due to a premature convergence to a local maximum. It reasonable to infer 

that PSO performance could be improved by fine-tuning their control parameters, c1, 

c2, and w, during the execution. Finally, GA presented different form of curves though 

the tests. Its curves are identified for the high jumps in direction to the optimum. The 

basic GA performed reasonably well, therefore it is possible that improving GA with 

some hybrid functionality can improve the results, however this is out of the scope of 

this work. 
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 Sometimes the algorithms in experiment reached the best profit result 



  

 

Fig. 1. Performance comparison of PSO, DE and GA, for the a, b and c test 
instances 

Due to the superiority of DE in the experiments, further experiment were done to 

explore the effectiveness of this algorithm for the problem, now using more complex 

instances of test. 

5. Experiments Using DE 

In (Price, 2005), authors suggested 10 different strategies for DE and explain their 

applicability to optimization problems. These binomial and exponential strategies and 

their respective mutation scheme are presented in the Table 3. They are identified by the 

notation DE/x/y, where x specifies whether the vector will be disturbed by a vector 

randomly chosen (Rand), by the best vector in the population (Best), or even by the 

interaction between the target and the best vectors (RandToBest), and y is the number of 

difference vectors considered for the perturbation of x. 

The experiments using DE for the GAP were subdivided in three steps, as follows:  

a. A comparative study among the five binomial strategies; 

b. A comparative study among the five exponential strategies; 

c. A comparative study among the best strategies of the previous steps for determining 

the best one to be applied to GAP-like. In this process, the test instances used were more 

complex than those of the previous section, and are shown in Table 4. 

Table 3. DE Strategies 

Bin/Exp Mutation scheme 

DE/Best/1     
     

          
   

         
   

      
 

   
  

DE/Rand/1     
     

          
   

         
   

      
 

   
  

DE/Best/2     
     

          
   

         
   

   
 

   
    

   
   

 

   
  

DE/Best/2     
     

          
   

         
   

   
 

   
    

   
   

 

   
  

DE/RandToBest/1     
     

            
               

   
            

   
      

   
      

 

   
  

 

 

 



  

Table 4. Complex Test Instances Approach 

Test Processes Processors Best 
Profit 

Best 
Fitness 

DE 
Profit 

DE 
Fitness 

DE 
Profit 

DE 
Fitness 

d 30 10 709  0,967 703 0,959 706 0,963 

e 40 10 958 0,981 952 0,975 955 0,978 

f 50 10 1139 0,980 1114 0,958 1132 0,974 

Amount of Fitness 

Evaluations 

Not knew 500.000 1.000.000 

Table 4 presents the best profit and fitness values obtained by (ORLib, 2012), together 

with those obtained by the application of the best DE strategy indicated in this paper. 

The experiments consider, for the 3 tests (d, e and f), a total of 500.000 and 1.000.000 

fitness evaluations, using a population of 300 vectors and the default parameters shown 

above. 

In the first evaluation step, strategy DE/Best/1 was superior over the other binomial 

strategies during the optimization progress. In the second step, the strategies obtained 

similar results, differently from those from the binomial experiment. In test (d), the 

strategies DE/Best/1 and DE/Rand/1 did not present significant differences by the end 

of the evaluations cycle. However, when considering the whole cycle, the strategy 

DE/Best/1 presented better results. Moreover, as complexity of the instance increased 

(tests e and f), the DE/Best/1 was confirmed as the best exponential strategy for GAP. 

Finally, Figure 2 presents the final comparison of performance among the Binomial 

DE/Best/1 and Exponential DE/Best/1. Analyzing the plot, a significant difference 

among the solutions is observed, such that the Exponential DE/Best/1 was found the 

best one for the GAP. 

 

Fig. 1. Comparison on Better Binomial and Exponential Strategies 

6. Conclusion   

In this paper we compared three EC algorithms for the GAP. DE presented the best 

performance for the instances testes, since it converges quickly to high-quality results. 

Moreover, DE is a simple and robust algorithm that performed consistently in different 

runs and for different instances of the problem. The paper contribution is the 

comparison of some of the most popular EC algorithms and the definition of the best 

applicable parameters GAP instances of load balancing. Also, the paper presented the 

best DE strategy to deal with GAP. As conclusion, the DE exponential strategies found 



  

better results than the binomial ones, for instances tested, since in some experiments, the 

worst exponential strategy presented better results than the best binomial one. It is fair 

to conjecture that the particular DE strategy will perform similarly well for other 

instances of GAP. However, one cannot generalize our conclusions to other classes of 

problems. 
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