
FOCUS

A genetic programming method for protein motif discovery
and protein classification

Denise Fukumi Tsunoda • Alex Alves Freitas •

Heitor Silvério Lopes

Published online: 16 June 2010

� Springer-Verlag 2010

Abstract Proteins can be grouped into families according

to some features such as hydrophobicity, composition or

structure, aiming to establish common biological functions.

This paper presents MAHATMA—memetic algorithm-

based highly adapted tool for motif ascertainment—a sys-

tem that was conceived to discover features (particular

sequences of amino acids, or motifs) that occur very often

in proteins of a given family but rarely occur in proteins of

other families. These features can be used for the classifi-

cation of unknown proteins, that is, to predict their function

by analyzing their primary structure. Experiments were

done with a set of enzymes extracted from the Protein Data

Bank. The heuristic method used was based on genetic

programming using operators specially tailored for the

target problem. The final performance was measured

using sensitivity, specificity and hit rate. The best results

obtained for the enzyme dataset suggest that the proposed

evolutionary computation method is effective in finding

predictive features (motifs) for protein classification.

Keywords Evolutionary algorithms �
Genetic programming � Data mining �
Proteins patterns discovery

1 Introduction

This paper proposes a computational tool based on a

genetic programming method, a type of evolutionary

algorithm, specially devised for the automatic discovery of

protein motifs (‘‘signatures’’ or ‘‘patterns’’ characterizing

proteins), using as input the primary structure (see below)

of proteins.

Proteins are very large molecules responsible for several

functions in living organisms, such as: transport of small

molecules, sustentation, regulation, increase of reaction

speed and others. Biological organisms have thousands of

different types of proteins, which are constituted basically

of amino acids linked in linear chains through peptide

connections. The amino acid sequence of a protein’s

polypeptide chain, also called primary structure, is inex-

tricably linked to its function (Lehninger et al. 1998). Some

different regions of the sequence form secondary structures

like alpha (a) helices or beta (b) strands. The tertiary

structure is formed by packing some structural elements

into one or several compact units called domains. The final

configuration of the protein also may contain several

polypeptide chains arranged in a quaternary structure.

Active intra-molecular forces like covalent peptide bonds

and disulfide bonds cause proteins to assume specific three-

dimensional shapes that are directly related to their bio-

logical functions (Branden and Tooze 1999). Proteins are

grouped into super families, families and subfamilies

according to these biological functions (Friedberg 2006;

Rost et al. 2003; Jensen et al. 2002).

D. F. Tsunoda (&)

Federal University of Parana, Av. Prefeito Lothário Meissner,

632, Room 38, Curitiba, PR, Brazil

e-mail: dtsunoda@ufpr.br

A. A. Freitas

School of Computing, University of Kent, Room S107,

Canterbury, Kent CT2 7NF, UK

e-mail: A.A.Freitas@kent.ac.uk

H. S. Lopes

Federal University of Technology, Av. 7 de Setembro,

3165, Bloco D, 3� floor, Curitiba, PR, Brazil

e-mail: hslopes@utfpr.edu.br

123

Soft Comput (2011) 15:1897–1908

DOI 10.1007/s00500-010-0624-9

For instance, according to Lehninger et al. (1998), pro-

teins can be categorized into broad groups such as enzymes

(highly specialized proteins with catalytic activity, e.g.,

catalase, that catalyzes the decomposition of hydrogen

peroxide into water and oxygen), transport proteins (which

in blood plasma bind and carry molecules or ions from one

organ to another, e.g., hemoglobin, which transports oxy-

gen), storage proteins (required for the growth of the ger-

minating seedling for some plants, e.g., ovalbumin, casein

and ferritin), motile proteins (which endow cells and

organisms with the ability to contract, change shape or

move, e.g., myosin and actin), structural proteins (which

serve as supporting structures, offering strength or protec-

tion, e.g., collagen and keratin), defense proteins (which

defend organisms against invasions by other species or

protect them from injury, e.g., immunoglobulin and fibrin-

ogen), regulatory proteins (which help to regulate cellular or

physiological activity, e.g., insulin) and others.

Genome-sequencing technology has produced a huge

amount of data about proteins and their primary structure

(amino acid sequence). However, there are a large number

of proteins whose function is unknown. Hence, an active

research area consists of predicting proteins’ functions

based on proteins’ primary sequences. Despite the exis-

tence of several methods to solve this kind of protein

function prediction problem (Chua et al. 2006; Zhao et al.

2008), it still remains one of the main challenges in the

current post-genomic era.

Evolutionary algorithms are search and optimisation

methods inspired by the principle of natural selection in

biological evolution. In essence, they evolve a population of

candidate solutions (‘‘individuals’’) to a target problem,

doing a search in the space of candidate solutions guided by

a ‘‘fitness function’’, which measures the quality of candi-

date solutions. In general the higher the fitness of individu-

als, the more likely they are to be selected to reproduce,

creating new candidate solutions that inherit characteristics

of their ‘‘parent’’ individuals. Hence, the population gradu-

ally evolves to better and better candidate solutions as

measured by the fitness function. Genetic programming is a

particular type of evolutionary algorithms where an indi-

vidual (candidate solution) consists not only of data

(variables or constants), but also of operators (or functions)

applied to the individual’s data. Hence, in genetic pro-

gramming individuals can be said to represent ‘‘programs’’,

in a loose sense, or ‘‘executable structures’’.

The proposed genetic programming method—called

MAHATMA (memetic algorithm-based highly adapted

tool for motif ascertainment)—finds subsequences of

amino acids (patterns, features or motifs expressions) that

occur very often in proteins of a given class (family) but

rarely occur in proteins of other classes. Those discovered

motifs can be further used for the characterization of

families of proteins as well as for the automatic classifi-

cation of unknown-class proteins.

The remainder of this paper is organized as follows.

Section 2 presents algorithmic details of the proposed

genetic programming method, like individual representa-

tion, selection method, genetic operators, and others.

Sections 3 and 4 present the setup of the computational

experiments and their results, respectively. In these sec-

tions parameter tuning experiments and results are reported

in order to decide which components of the method to use

and to explain their influence in the performance of the

method. Section 5 reviews related work. Finally, conclu-

sions and future research directions are provided in Sect. 6.

This paper is an extended version of Tsunoda et al. (2009).

2 The proposed genetic programming method

Eiben and Smith (2003) state that there are many variants

of evolutionary algorithms (EAs) with a common basic

idea: given an initial population of individuals, the envi-

ronmental pressure causes natural selection (survival of the

fittest) and hence the improvement (a rise in the fitness) of

the population.

The genetic algorithm (GA) proposed by John Holland

at the University of Michigan is a subclass of evolutionary

algorithms (EAs) that has proven to be successful in

solving some difficult problems (Goldberg 1989). GAs are

based on the mechanics of natural selection, in others

words, inspired from the Darwinian theory of evolution.

Genetic programming (GP) (Koza 1992, 1994) has been

used mainly for its ability to perform adaptive and robust

searches. Besides, as an evolutionary computation technique,

it operates in parallel over a population of candidate solutions,

allowing a simultaneous exploration of different regions of

the search space in the solution domain. This characterizes a

global search, less likely to get trapped in local optima, by

comparison with many local-search methods.

The combination of evolutionary algorithms with local-

search operators that work within the EA loop has been

termed ‘‘memetic algorithms’’ (Moscato 1989). This term

also applies to EAs that use operators based on problem-

specific knowledge. According to Eiben and Smith (2003),

memetic algorithms (MA) or hybrid algorithms (HA) have

been shown to be orders of magnitude faster and more

accurate than EAs on some problems, and are the ‘‘state of

the art’’ on many search or optimisation problems.

2.1 Basic algorithm and individual representation

MAHATMA is a hybrid genetic programming (GP) based

tool (Koza 1992, 1994; Hsu 2009). In GP, like in other types

of evolutionary algorithms, each individual corresponds to a

1898 D. F. Tsunoda et al.

123

candidate solution to the target problem. As mentioned in

Sect. 1, the key characteristic that distinguishes GP from

other evolutionary algorithms is that the former evolves

candidate solutions representing ‘‘executable structures’’,

consisting of both data and operators (functions); whilst in

other types of evolutionary algorithms such as GAs a can-

didate solution typically consists of data only (and not

operators/functions).

In this work the goal of the GP method is to find a set of

rules combining protein motifs which, when used as pre-

dictive features by a classification algorithm, lead to a high

protein-classification accuracy. In this work, an individual is

represented by a tree (Fig. 1). There are three kinds of nodes:

root node, intermediate nodes and leaf nodes. The root and

intermediate nodes represent the logical operations: and, or

and not. The leaf nodes are variable-length sequences of

amino acids representing candidate protein motifs.

Hence, each individual represents the antecedent (IF

part) of an IF–THEN classification rule consisting of a

motif formed by applying logical operations to the names

of amino acids in the proteins’ amino acid sequences. Each

amino acid name can be abbreviated by a single letter. For

instance, the individual shown in Fig. 1 can be read as the

rule antecedent: IF ‘‘(a protein has the aminoacid sub-

sequence MD or MM) and (a protein has the aminoacid

subsequences LQE and IGA)’’.

Table 1 presents the 20 ‘‘standard’’ monomeric units of

proteins, the amino acids (Lesk 2001). It is from these

substances that proteins are synthesized.

The class predicted by the THEN part of a rule is

computed by using a deterministic procedure that assigns

the best possible class to the rule (individual), to be

explained later.

Figure 2 presents MAHATMA’s flowchart. The steps of

this flowchart will be explained in the following sub-

sections.

2.2 Selection method and genetic operators

The system uses stochastic tournament selection, which

works as follows (Banzhaf et al. 1998). First, k individuals

are randomly drawn from the current population, with

replacement, where k is determined as a percentage of the

population size. In this work, k is 3% of the population size

(this is a user-defined parameter). Then, the k individuals

are prompted to ‘‘play a tournament’’, where the proba-

bility of an individual to win the tournament is proportional

to its fitness value. A copy of the winner of a tournament is

then passed on, as a parent, to genetic operators such as

crossover and mutation. Notice that each tournament

selects just one parent, so that the tournament selection

procedure has to be called N times to produce N parents,

where N is the population size. The choice of k must be

done carefully, since this parameter modulates the degree

of the selective pressure. The larger the k, the higher the

selective pressure will be, possibly leading the algorithm to

converge rapidly into a ‘‘local maximum’’. On the other

hand, a k too small will impose no selective pressure,

turning the method into a random search.

We emphasize that MAHATMA has two kinds of

operators: structural operators (usual in GP Koza 1992,

1994) and leaf operators (based on genetic algorithms

Goldberg 1989; Larose 2006). The structural operators are:

reproduction, crossover, mutation and editing. The repro-

duction operator just copies a selected individual to the

next generation.Fig. 1 MAHATMA individual representation

Table 1 The amino acids and their three-letter and one-letter codes

Amino acid Three-letter symbol One-letter symbola

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V

a The one-letter symbol for an undetermined or ‘‘nonstandard’’ amino

acid is X

A genetic programming method for protein motif discovery 1899

123

The leaf operators modify the sequence of amino acids

by genetic operators (e.g., crossover and mutation) in order

to produce offspring (Goldberg 1989; Larose 2006).

2.2.1 Structural operators

These operators modify an individual’s structure.

MAHATMA’s structural mutation introduces random

changes in structures. For example, in the ‘‘parent’’ indi-

vidual in the left part of Fig. 3, the AND at the intermediate

node is selected as the mutation point. A subtree is randomly

generated and inserted at that point, to produce the ‘‘child’’

individual.

The structural crossover operator produces new off-

spring taking parts from each of the two parents. It is also

called sexual recombination. For example, in the two

‘‘parent’’ individuals in the left part of Fig. 4, one random

point in each parent is select. Each of these points is a

rooted subtree crossover point. The right part of Fig. 4

shows the two offspring resulting from crossover.

The edition operation provides a means to edit and

simplify expressions as genetic programming is running.

Fig. 2 MAHATMA flowchart

1900 D. F. Tsunoda et al.

123

Edition is an asexual operator and it recursively applies a

set of simplifying operations (editing rules, Table 2) in

order to optimize the rule. If any function has no side

effects, the edition operator will evaluate that function and

replace it with the value obtained by the evaluation.

Figure 5 shows an expression before and after the

MAHATMA’s editing operation.

2.2.2 Leaf operators

These operators modify the contents of leaf nodes (sequen-

ces of amino acids representing motifs). MAHATMA uses

Fig. 3 MAHATMA structural

mutation operator

Fig. 4 MAHATMA structural

crossover operator

Table 2 Editing rules

Before operation After operation

X or X X

A and A A

Not not B B

(C and C) or C C

D and (D or D) D

Fig. 5 MAHATMA edition operator

A genetic programming method for protein motif discovery 1901

123

the classical one-point crossover often used in GAs, where a

crossover point is randomly selected and then the two par-

ents swap their genetic material from the crossover point up

to the right-hand end of the individual (Hsu 2009). Notice,

however, that this kind of crossover was originally designed

for a fixed-length individual representation, unlike the var-

iable-length motif representation used in this work. There-

fore, this work has adapted the conventional one-point

crossover to a variable-length representation, as follows. The

crossover point (which is still randomly generated) indicates

the percentage of the genome of each parent where the

swapping of genes starts. The percentile (relative position) is

the same for both parents, but the actual (absolute) position

where the gene swapping starts can be different, since the

parents can have different numbers of genes. This is illus-

trated in Fig. 6, where the crossover percentage is 60%. The

absolute position of the crossover point for each parent is

computed by multiplying 0.6 by the number of genes of the

parent and rounding up the result. This results in crossover

points at positions 4 and 5 in the first and second parents,

respectively. The genetic material being swapped is shown

in Fig. 6.

The crossover operator introduced here also has another

feature that distinguishes it from conventional crossover

operators. This feature consists of monotonically increas-

ing the fitness of the children with respect to their parents,

and it was introduced to eliminate the potentially destruc-

tive effect of crossover (which can produce offspring with

fitness worser than the parents). This idea works as follows.

After crossover has been done, all the corresponding four

individuals (two parents and two children) are compared to

each other and the best two individuals are passed to the

next population, no matter whether the individuals being

passed are parent or offspring.

This work introduces four kinds of mutation operators

tailored for the variable-length sequence of amino acids

represented by each individual, as follows:

a. Addition to the left (AE) a letter, representing an amino

acid, is randomly generated and inserted into the

leftmost end of the sequence of amino acids;

b. Addition to the right (AR) analogous to AE, with the

difference that the new amino acid is inserted into the

rightmost end of the sequence of amino acids;

c. Multiple mutations (MM) each of the amino acids from

a randomly generated starting position up to the end of

the sequence is replaced by another randomly gener-

ated amino acid. The starting position can be any

position in the sequence except the first and the last

positions.

d. Removal (RM) the amino acid in a randomly chosen

position is removed from the sequence. Notice that

after removal of an amino acid the sequence will still

have at least three amino acids. If this condition is not

met then this operator is not applied, and another

mutation operator is applied instead.

These mutation operators also have the feature of

monotonically increasing the fitness of offspring with

respect to the parents, as explained for the crossover

operator. That is, if the fitness of the offspring is worser

than the fitness of the parent then the offspring is thrown

away and the parent is passed to the next generation.

The system also has an extra genetic operator designed

specifically for the target problem. This operator, called the

expansion operator, performs a kind of local search in the

solution space, so that the MAHATMA can be considered a

hybrid method or a memetic algorithm (Moscato 1989).

The expansion operator works as follows.

The basic idea is to increase the length of the motif

represented by an individual, making that motif more

specific to a given class, while at the same time increasing

the motif’s ability to discriminate between different classes

of proteins. The operator starts by randomly selecting a

protein among those that contain the motif represented by

the individual to be expanded. (If there is no protein with

that motif, the operator is not applied.) The selected protein

is then used as a source of amino acids to be inserted into

the individual, as follows.

First, the amino acid which is located immediately to the

left of the motif in the protein is inserted into the leftmost

end of the individual’s sequence of amino acids, and the

Fig. 6 One-point crossover

between variable-length

parents: a original parents,

b offspring

1902 D. F. Tsunoda et al.

123

individual’s fitness is recomputed. If the new fitness is

worser than the previous one, then this operation is

undone—i.e., the just-added amino acid is removed from

the individual’s sequence of amino acids—and the expan-

sion based on the current protein is terminated. Otherwise

the just-inserted amino acid is kept in the individual, and

the process continues. Next, the amino acid which is

located immediately to the right of the motif in the protein

is inserted into the rightmost end of the individual’s

sequence of amino acids, and the fitness of the individual is

recomputed. Again, if the new fitness is worser than the

previous one, this operation is undone and the expansion

based on the current protein is terminated. Otherwise the

just-inserted amino acid is kept in the individual, and the

process continues. This process is repeated, considering

amino acids that are 2, 3, …, positions away from the motif

in the current protein, alternating between amino acids to

the left and to the right of that motif, until an attempt to

further expand the individual would lead to a reduction in

its fitness. The basic idea of this expansion operator is

conceptually similar, at a high level of abstraction, to the

well-known BLAST method for protein alignment, which

was presented by Altschul et al. (1990). This method

implements a dynamic programming approach to protein

alignment, a technique to find motifs in a set of proteins.

Nisbet et al. (2009) state that Blast will take a sequence and

compare it to a database of already-analyzed sequences to

check for matches and thus help in identifying a DNA,

RNA or protein sequence. Blast is available at the NCBI

website.1 Note that BLAST is not typically used for clas-

sification, whilst the proposed expansion operator works in

the context of a genetic programming algorithm for

classification.

Next, this process is repeated for all other proteins that

also contain the individual’s motif and that belong to the

same class as the class of the protein that was used in the

first step of the operator.

Hence, the expansion operator aims at generating the

longest (most specific) motif for a given class, but notice

that the expansion process never decreases the fitness of the

individual being expanded. Therefore, this operator also

has the feature of monotonically increasing the fitness of

the offspring with respect to its parent, like the crossover

and mutation leaf operators.

2.3 Fitness function

As mentioned earlier, an individual represents a protein

motif that will be used as a predictor attribute by a given

classification algorithm. Since the goal is to maximize

classification accuracy, the quality of a motif is determined

by its ability in discriminating proteins of different classes.

That is, ideally a motif should represent an amino acid

sequence that occurs in many proteins of a given class and

in no (or few) proteins of other classes. The fitness function

was designed to take this basic principle into account.

Hence, the fitness of an individual (motif) is computed as

follows.

At first, MAHATMA computes, for each class i, i = 1,

…, 6 (for the enzyme dataset used in this work), the rela-

tive frequency of occurrence of the motif in that class. This

is simply the number of proteins of the ith class where the

motif occurs in the protein’s primary sequence. Secondly,

it computes, for each class i, a measure of the ability of the

motif to discriminate between class i and the other classes,

denoted Disci and given by Eq. 1, where Fi is the relative

frequency of the individual’s motif in the ith class, n is the

number of classes (n = 6 in this work), and k is the number

of classes that contain at least one protein whose primary

sequence contains the individual’s motif. Hence, the fitness

function can be formally stated as follows:

Disci ¼ Fi � 1�
Xn

j¼1

Fj;j6¼i

ðk � 1Þ

� �" #
ð1Þ

where the rightmost term of the formula simply computes

the average relative frequency of the motif in all the (n - 1)

classes j with j = i. This term is subtracted from 1, so that

the term between square brackets is to be maximized; the

higher its value, the better the value of Disci. Similarly, the

value of Fi (the first term of the formula) is also to be

maximized, so that a high value of Disci means that the

motif occurs very often in class i but rarely in the other

classes.

Finally, once the value of Disci has been calculated for

all classes i, i = 1, …, n, the motif is associated with the

class i that has the largest value of Disci, and that value is

considered the fitness of the individual.

Hence, the motif is considered as a characteristic pattern

of proteins belonging to class i. In other words, the

occurrence of that motif in a protein of unknown class will

be considered, by the classification algorithm, as evidence

that the protein belongs to class i.

2.4 Result designation

As explained earlier, each individual represents a motif

which is associated with a given class of proteins. There-

fore, it is not enough to return, as solution found by the

method, only the best motif found throughout the evolu-

tionary process; that is usual in conventional evolutionary

algorithms. It is necessary, in this kind of problem, to

return a set of motifs, in order to perform a comprehensive

classification of proteins into known families. In this work,1 Available at http://www.ncbi.nlm.nih.gov/blast.

A genetic programming method for protein motif discovery 1903

123

http://www.ncbi.nlm.nih.gov/blast

we return the best M motifs found throughout the evolu-

tionary process, where M is a user-defined parameter.

3 Setup of the computational experiments

The data set to be mined consists of data about enzymes.

The data was extracted from the PDB (Protein Data Bank),

version 102, by identifying the PDB entries which had an

EC number. The PDB is ‘‘the single worldwide repository

of information about the 3D structures of large biological

molecules, including proteins and nucleic acids’’ (RCBS

2010). It is freely available at the RCBS website.2 The EC

number is an enzyme code provided by the International

Union of Biochemistry and Molecular Biology (IUBMB).

From a data mining viewpoint, each EC number corre-

sponds to a class, i.e., a specific protein function. More

precisely, the EC number consists of four digits, where

each pair of adjacent digits is separated by a dot (‘‘.’’), and

it specifies the chemical reaction catalyzed by the corre-

sponding enzyme. For instance, the enzyme alcohol

dehydrogenase has the number EC.1.1.1.1.

Note that this is a hierarchical classification consisting

of four levels, so that the first digit represents the most

general classes and the last digit the most specific sub-

classes. In this work we address the prediction of the first

digit only, corresponding to the prediction of the most

general class to which the example belongs. We emphasize

that this is still a useful, challenging prediction, and other

projects have also focused on the prediction of the first

digit only, see e.g., (desJardins et al. 1997); (Izrailev and

Farnum 2004) and (Santos et al. 2009). For a review of

hierarchical classification applied to protein function pre-

diction, see (Freitas and de Carvalho 2007); and for a

recent review of hierarchical classification in general, see

(Silla Jr and Freitas 2010). The first digit can take on six

different values, corresponding to the following six dif-

ferent classes: EC.1, oxidoreductases; EC.2, transferases;

EC.3, hydrolases; EC.4, lyases; EC.5, isomerases and

EC.6, ligases.

Some of the enzymes stored in the PDB contained

nonstandard amino acids, from which no useful motif can

be discovered. Therefore, as part of our data preparation

procedure, we have only retrieved from PDB the enzymes

whose primary sequence has at least 30 standard amino

acids. After this simple filtering, the total number of pro-

teins retrieved from the PDB was 8,399, distributed across

the six classes as follows: 1,583 proteins in class EC.1;

1,866 in class EC.2; 3,385 in class EC.3; 775 in class EC.4;

481 in class EC.5, and 309 in class EC.6.

As described earlier, MAHATMA has several parame-

ters. Hence, this paper describes experiments performed to

find good values for some of these parameters. In these

experiments the expansion operator was initially turned off,

because this is a computationally expensive operator and

we wanted to perform some relatively quick experiments to

set other parameters. The expansion operator has been used

in later experiments, though. The leaf operators (mutation

and crossover operators) were set during experiments with

a genetic algorithm that discovers protein motifs in a stand-

alone fashion, without being hybridized with GP as in

MAHATMA (Tsunoda and Lopes 2005).

The initial parameter settings are: number of genera-

tions, 20; population size, 500; structural crossover and

mutation probability, 60% each; hill climbing, 10% prob-

ability; leaf crossover and mutation probabilities, 20 and

70%; stochastic tournament size, 3%; edition active and

expansion deactivated. From now on these parameter val-

ues will be referred to as the initial values.

To evaluate the predictive accuracy of the classification

algorithm we used the well-known fivefold cross-validation

method (Witten and Frank 2005) in all experiments

reported in this paper. The average values of specific pre-

dictive accuracy measures on the test set (unseen during

training) over all five folds are the so-called cross-validated

predictive accuracy measures. Although tenfold cross-val-

idation is more common in the literature, we used fivefold

cross-validation to reduce the computational time taken by

the experiments (since we have done many experiments

with different parameter values).

For each fold of the cross-validation procedure, the GP

method is run once for each class, since each run has to use

that fold’s training set to find motifs (rules/patterns) dis-

criminating one class (the ‘‘positive’’ class) from all the

other classes (collectively considered the ‘‘negative

class’’). Hence, each run of the GP method discovers a set

of possible rules (each represented by an individual) which

tend to occur in proteins of the positive class and tend not

to occur in proteins from the other classes.

The number of motifs discovered for each class (i.e., the

number of individuals output by MAHATMA as the dis-

covered ‘‘solution’’) is a user-defined parameter. At present

this parameter specifies the same value for all the classes,

for the sake of simplicity, but in future research it might be

interesting to allow the number of motifs discovered for

each class to be variable, depending for instance on the

number of examples available for each class. The returned

motifs (individuals) are the ones with the best fitness in the

last generation.

For each cross-validation fold, once a set of motifs has

been discovered (from the training set) for each class, the

entire set of discovered motifs can be used to classify

examples in the test set of the current cross-validation fold2 Available at http://www.pdb.org/pdb/home/home.do.

1904 D. F. Tsunoda et al.

123

http://www.pdb.org/pdb/home/home.do

(i.e., examples whose class is unknown by the system) in

two different ways, as follows.

Firstly, each individual can be interpreted as a rule of the

form IF \motif_condition[THEN \motif_class[, where

motif_condition is the logical expression associated with

the motif involving all nodes of the corresponding indi-

vidual, see, e.g., Fig. 1; and motif_class is the positive

class associated with the rule that was discovered. Hence,

this kind of rule suggests that if the logical expression

associated with a rule antecedent is satisfied by an example

(protein), then the rule predicts the motif’s class for that

example.

The entire set of rules corresponding to all discovered

motifs (for all classes) is then used as follows. For each

new example in the test set, the example is submitted to all

discovered rules and the system computes the number of

rules in each class whose antecedents are satisfied by the

example. Finally, the test example is assigned the class

with the highest number of rules satisfied by the example,

subject to the condition that at least 60% of the rules for the

chosen class have to be satisfied by the example. If this

latter condition is not satisfied, then the test protein is

simply assigned the most frequent class in the training set

(in our dataset, EC3). Note that in this case the motif

(individuals/rules) discovered by MAHATMA are directly

used for the classification of test examples.

A second and very different approach to classify

examples in the test set consist of passing each of the

discovered motifs to a separate classification algorithm,

which simply uses the set of discovered motifs as a set of

predictor attributes. That is, in this approach each motif is

used as a binary attribute, taking the value 1 or 0 to indicate

whether or not the pattern (motif) occurs in each example

(protein). In this case in principle any classification algo-

rithm can be used with the set of motifs discovered by

MAHATMA.

4 Computational results

We report first the results of experiments with the first

approach, using the discovered motifs to directly classify

examples in the test set. Results of experiments with the

second approach, using a well-known decision tree induc-

tion algorithm as the classification algorithm, are reported

later in the paper.

Each result table reports the following cross-validated

measures of predictive accuracy: sensitivity (Sn), speci-

ficity (Sp), performance (P) (Sn multiplied by Sp) (Lopes

1996) and hit rate (HR). Sn and Sp are defined in Eq. 2 and

3. Mahatma’s HR is defined as Eq 4, where proteinCount is

the count of proteins in test set. In Eqs. 2, 3, 4 the terms

TP, FP, TN and FN denote, respectively, the numbers of

true positives, false positives, true negatives and false

negatives observed in the test set; these are well-known

terms used to measure predictive accuracy in the classifi-

cation task of machine learning and data mining, see, e.g.,

(Witten and Frank 2005).

We have bold emphasized the best results (better per-

formance) in each of the tables of results. In each of the

Tables 3, 4, 5, 6, 7, the best value of the performance

measure (P) can be considered as statistically relevant, as

there is no overlap of the confidence intervals (consisting

of ±one standard deviation around the mean computed by

the cross-validation procedure) associated with the best P

value and the other P values in the table.

Sp ¼ TN

ðTNþ FPÞ ð2Þ

Sn ¼ TP

ðTPþ FNÞ ð3Þ

Hit rate ¼ TP

proteinCount
ð4Þ

The first step was to find a good value for the number of

generations (G) and population size (PS). The results

obtained via fivefold cross-validation are reported in

Table 3.

The second step was to adjust structural crossover (SC)

and mutation (SM) probabilities (%). The results are

reported in Table 4.

The third step adjusted the hill climbing (HC) proba-

bility (%). As shown in Table 5, higher values for this

parameter do not assure better results. In fact, when we

used 70%, performance decreased significantly. This hap-

pens because this parameter does not guarantee the off-

spring’s improvement. It simply states that a parent will be

copied for next generation if the offspring has lower fitness

than that parent.

Since the experiments that generated Table 5 led to the

conclusion that higher predictive accuracy was achieved

with hill climbing probability 40%, instead of 0 or 70%,

this value (40%) was used to run the experiments sum-

marized in Tables 6 and 7.

The fourth step fixed a good value for the parameter

tournament size. This parameter was given special atten-

tion, because it is potentially one of the most important

Table 3 MAHATMA’s performance varying number of generations

and population size

G PS Sn (%) Sp (%) P (%) HR (%)

20 500 87.28 – 0.12 43.35 – 0.31 61.51 – 0.21 79.03 – 0.74

40 250 86.85 ± 0.12 37.60 ± 0.30 57.15 ± 0.20 78.28 ± 0.81

50 200 86.87 ± 0.12 42.37 ± 0.36 60.67 ± 0.26 77.40 ± 1.12

70 150 85.56 ± 0.12 32.32 ± 0.30 52.59 ± 0.20 77.30 ± 0.79

A genetic programming method for protein motif discovery 1905

123

parameters of an evolutionary algorithm. The reason is that

this parameter directly determines the selective pressure of

the algorithm. The larger the tournament size, the larger the

selective pressure. The results of experiments with differ-

ent values of tournament size are reported in Table 6.

Surprisingly, the value of tournament size had little

impact in the predictive accuracy. In any case, we decided

to fix the default value of this parameter to 3%, since this

value led to slightly higher predictive accuracy.

Having fixed this parameter, the next experiment eval-

uated the influence of the expansion operator in the clas-

sification accuracy. The expansion operator was somewhat

effective, leading to a slight increase of the predictive

accuracy (performance of 64.69%), but the processing time

increased exponentially (22 h instead of 37 min).

Finally, we performed experiments to determine the

influence—in the predictive accuracy—of another impor-

tant parameter of the algorithm, the number of motifs (NM)

used for each class. In the experiments reported so far this

parameter was set to five motifs per class. The new

experiments produced the results shown in Table 7.

As it can be observed in Table 7, there was some vari-

ation in predictive accuracy when the number of motifs

changed. However, three values of this parameter were

considerably more successful than the value of 5 which had

been used in earlier experiments. Hence, it is important to

return a larger number of motifs per class, in order to give

more predictor attributes to the classification algorithm.

For comparison purposes, as described earlier, the list of

the top ten best motifs (or rules) for each class, as well as

the corresponding training results and test sets of course,

were converted as input (arff file) for the WEKA data

mining tool, in order to allow the discovered motifs to be

used as predictor attributes by a separate classification

algorithm. As the classification algorithm we chose J4.8, a

Java implementation of the very well-known C4.5 algo-

rithm (Quinlan 1993). This choice was motivated for the

following reasons. First, J4.8 produces a decision tree, a

classification model that tends to be comprehensible to the

user, allowing him/her to interpret discovered knowledge.

This is important in bioinformatics applications such as

protein function prediction (Freitas et al. 2010), and also in

data mining in general, where the goal is to give the user

some new insight about the predictive relationships that

hold in the data. Second, J4.8 is available in the WEKA

data mining tool (Witten and Frank 2005), which has the

advantage of being a public domain and widely used tool.

Using the J48 classification algorithm, with WEKA

default parameters values and active pruning, the results

were sensitivity (Sn), specificity (Sp) and performance (P)

values of 82.88 ± 6.03, 96.81 ± 1.78 and 89.50 ± 3.02,

respectively; and a hit rate of 85.36% ± 2.59. The average

size of the trees and the average count of leaf nodes are,

respectively, 648 and 324. These results are in general

better than the results produced using the discovered motifs

directly for classification, as reported in Tables 3, 4, 5, 6, 7,

with the exception that using J4.8 led to a somewhat

smaller Sn than the best results in Tables 3, 4, 5, 6, 7.

5 Related work

Broadly speaking, MAHATMA is related to three types of

algorithms in the literature. First, since MAHATMA

addresses the classification task of data mining, it is related

to GP algorithms for classification. There are innumerous

Table 4 MAHATMA’s performance varying structural mutation and

crossover probabilities

SM SC Sn (%) Sp (%) P (%) HR (%)

30 60 87.17 ± 0.12 38.37 ± 0.32 57.83 ± 0.22 78.68 ± 0.99

20 70 87.70 ± 0.11 41.62 ± 0.30 60.42 ± 0.21 79.85 ± 1.01

10 80 86.70 ± 0.12 36.18 ± 0.32 56.01 ± 0.21 77.76 ± 0.98

60 60 87.28 – 0.11 43.35 – 0.32 61.51 – 0.23 79.03 – 0.74

60 30 87.18 ± 0.11 42.09 ± 0.32 60.58 ± 0.23 78.40 ± 0.92

70 20 87.49 ± 0.10 39.61 ± 0.31 58.87 ± 0.22 79.32 ± 0.68

80 10 88.31 ± 0.10 42.34 ± 0.28 61.15 ± 0.20 81.34 ± 0.87

Table 5 MAHATMA’s performance varying hill climbing

probability

HC (%) Sn (%) Sp (%) P (%) HR (%)

0 87.31 ± 0.11 42.38 ± 0.30 60.83 ± 0.21 79.19 ± 0.89

40 86.65 – 0.12 47.09 – 0.34 63.88 – 0.25 76.95 – 0.84

70 87.12 ± 0.11 38.52 ± 0.34 57.93 ± 0.24 77.98 ± 0.85

Table 6 MAHATMA’s performance varying tournament size

TS (%) Sn (%) Sp (%) P (%) HR (%)

1 86.85 ± 0.14 37.60 ± 0.34 57.15 ± 0.27 77.87 ± 0.89

3 86.65 – 0.12 47.09 – 0.34 63.88 – 0.25 76.95 – 0.84

5 87.10 ± 0.14 42.31 ± 0.39 60.71 ± 0.31 77.99 ± 1.08

7 86.94 ± 0.13 42.43 ± 0.37 60.74 ± 0.28 77.05 ± 0.71

Table 7 MAHATMA’s performance varying number of motifs per

class

NM Sn (%) Sp (%) P (%) HR (%)

1 86.15 ± 0.17 28.76 ± 0.25 49.78 ± 0.15 78.42 ± 0.91

5 87.26 ± 0.16 35.68 ± 0.27 55.80 ± 0.16 81.19 ± 0.87

10 86.65 – 0.12 47.09 – 0.34 63.88 – 0.25 76.95 – 0.84

15 87.64 ± 0.15 41.98 ± 0.30 60.66 ± 0.21 80.25 ± 0.75

20 87.11 ± 0.16 41.61 ± 0.31 60.20 ± 0.22 81.15 ± 0.73

1906 D. F. Tsunoda et al.

123

GP algorithms for classification, a good recent review of

which can be found in (Espejo et al. 2010). However, in

general those GP algorithms have not been applied to

protein function prediction. The second type of algorithm

related to MAHATMA involves classification algorithms

that have been applied to protein function prediction, but

are not based on GP. A review of such algorithms can be

found in (Freitas and de Carvalho 2007).

It should be noted that neither of the above two broad

types of algorithms can be directly applied to the protein

function prediction problem in the form addressed by

MAHATMA. The main reason for this is that classification

algorithms for protein function prediction (whether or not

they are based on GP) in general require the training

examples to be of fixed length, with the same number of

(abstract) attributes per example. In contrast, MAHATMA

uses training examples of variable length, since examples

represent directly the primary sequences of proteins (and

different proteins have primary sequences of different

lengths), and operates directly on the amino acid sequence,

rather than using abstract attributes. Hence, instead of

using a fixed number of abstract attributes predefined by

the user, MAHATMA automatically constructs motifs that

are used as predictor attributes.

The third type of algorithm related to MAHATMA

involves algorithms to discover motifs from proteins’ pri-

mary sequences. According to Leung and Chin (2006)

there are two general approaches to extracting sequence

motifs in proteins. In the first one, given sequences are

compared or aligned to find local similarities; subse-

quences common to the dataset are detected and checked.

In the second approach, candidate patterns in the solution

space are ennumerated, and ‘‘appropriate’’ or ‘‘better’’ ones

are chosen based on their fitness scores. MAHATMA is

different from well-known systems such as MEME because

it uses positive and negative examples, in the context of a

trainable classification algorithm, in order to discover

motifs. Leung and Chin state that MEME, in some cases,

cannot guarantee finding a motif in a reasonable time,

especially when the motif is too long.

6 Conclusions

We have proposed a Genetic Programming method (which

can also be regarded as a hybrid genetic programming/

genetic algorithm system) for protein motif discovery,

aiming to classify proteins with unknown functional class.

We have performed experiments to adjust the parame-

ters of our method in an enzyme subset of the PDB (Protein

Data Bank), containing 8,399 enzymes.

The proposed MAHATMA system uses not only con-

ventional GP (and GA-like) operators, but also operators

specifically designed for the problem of finding protein

motifs. Despite the complexity of the algorithm, the use of

these problem-specific operators was very beneficial in the

sense that it allowed MAHATMA to reach better motifs

(motifs with higher fitness).

The predictive performance was measured by three

different criteria, viz., using sensitivity (Sn), specificity

(Sp) and hit rate (HR), in two different scenarios: using the

motifs discovered by MAHATMA directly for classifica-

tion, and using the discovered motifs as predictor attributes

for another classification algorithm. Overall the latter

approach led to better Sp and much better HR, but worser

Sn.

Future work includes more extensive tests of the sys-

tem in datasets involving enzymes’ secondary structures

(Kaminska et al. 2009) and comparisons with other meth-

ods (e.g., comparing the motifs found by MAHATMA and

MEME using the well-known C4.5 classification method).

Also, it is intended to apply this system to alternative sets

of proteins, like transmembranes, globins, hormones and

others.

In addition, the fact that the best predictive accuracy was

obtained when the motifs discovered by MAHATMA were

used as predictor attributes by another classification algo-

rithm, rather than using the motifs discovered directly for

classification, suggests that the procedure currently used to

combine the predictions of the set of discovered motifs

could be improved. This will also be object of future

research.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic

local alignment search tool. J Mol Biol 215:403–410

Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic

programming: an introduction. Morgan Kaufmann, San Mateo,

CA

Branden CI, Tooze J (1999) Introduction to protein structure.

Garland, New York

Chua H, Sung W, Wong L (2006) Exploiting indirect neighbors and

topological weight to predict protein function from protein

interactions. Bioinformatics 32(13):1623–1630. doi:10.1093/

bioinformatics/btl145

desJardins M, Karp PD, Krummenacker M, Lee TJ (1997) Prediction

of enzyme classification from protein sequence without the use

of sequence similarity. ISMB-97 Proceedings, pp 92–99

Eiben AE, Smith JE (2003) Introduction to evolutionary computing,

2nd printing. Natural computing series. Springer, Berlin

Espejo PG, Ventura S, Herrera F (2010) A survey on the application

of genetic programming to classification. IEEE Trans Syst Man

Cybern Part C Appl Rev 40(2):121–144. doi:10.1109/TSMCC.

2009.2033566

Freitas AA, de Carvalho ACPLF (2007) A tutorial on hierarchical

classification with applications in bioinformatics. In: Taniar D

(ed) Research and trends in data mining technologies and

applications, Idea Group, pp 175–208

A genetic programming method for protein motif discovery 1907

123

http://dx.doi.org/10.1093/bioinformatics/btl145
http://dx.doi.org/10.1093/bioinformatics/btl145
http://dx.doi.org/10.1109/TSMCC.2009.2033566
http://dx.doi.org/10.1109/TSMCC.2009.2033566

Freitas AA, Wieser DC, Apweiler R (2010) On the importance of

comprehensible classification models for protein function pre-

diction. IEEE/ACM Trans Comput Biol Bioinform 7(1):172–

182. doi:10.1109/TCBB.2008.47

Friedberg I (2006) Automated protein function prediction—the

genomic challenge. Brief Bioinform 7(3):225–242. doi:10.1093/

bib/bbl004

Goldberg DE (1989) Genetic algorithms in search optimization and

machine learning. Addison-Wesley, Reading

Hsu WH (2009) Genetic programming. In: Wang J (ed) Encyclopedia

of data warehousing and mining, 2nd edn. Idea Group Inc.

Global, pp 926–931

Izrailev S, Farnum MA (2004) Enzyme classification by ligand

binding. Proteins Struct Funct Bioinform 57(4):711–724. doi:

10.1002/prot.20277

Jensen LJ, Gupta R, Blom N, Devos D, Tamames J, Kesmir C,

Nielsen H, Staerfeldt HH, Rapacki K, Workman C, Andersen

CAF, Knudsen S, Krogh A, Valencia A, Brunak S (2002)

Prediction of human protein function from post-translational

modifications and localization features. J Mol Biol 319:1257–

1265. doi:10.1016/S0022-2836(02)00379-0

Kaminska KH, Milanowska K, Bujnicki JM (2009) The basics of

protein sequence analysis. In: Bujnicki JM (ed) Prediction of

protein structures, functions, and interactions, pp 1–38. doi:

10.1002/9780470741894

Koza JR (1992) Genetic programming—on the programming of

computers by means of natural selection. MIT Press, Cambridge

Koza JR (1994) Genetic programming ii: automatic discovery of

reusable programs. MIT Press, Cambridge

Larose DT (2006) Data mining methods and models. Wiley and Sons,

Hoboken, NJ

Lehninger AL, Nelson DL, Cox MM (1998) Principles of biochem-

istry, 2nd edn. Worth Publishers, New York

Lesk AM (2001) Introduction to protein architecture. Oxford

University Press Inc., New York

Leung CM, Chin FYL (2006) Algorithms for challenging motif

problems. J Bioinform Comput Biol 4:43–58. doi:10.1142/

S0219720006001692

Lopes HS (1996) Analogia e Aprendizado Evolucionário: uma

aplicação em diagnóstico clı́nico. PhD thesis, Brazil (in

Portuguese)

Moscato P (1989) On evolution, search, optimization, genetic

algorithms and martial arts: towards memetic algorithms.

Technical report Caltech Concurrent Computation Program,

No. 826, CA

Nisbet R, Elder J, Miner G (2009) Statistical analysis and data mining

applications. Elsevier, San Diego, CA

Quinlan JR (1993) C4.5: programs for machine learning. Morgan

Kaufmann, San Mateo, CA

RCBS (2010) Research collaboratory for structural bioinformatics

(RCSB) website. Available at http://www.pdb.org/pdb/home/

home.do

Rost B, Liu J, Nair R, Wrzeszczynski KO, Ofran Y (2003) Automatic

prediction of protein function. CMLS Cell Mol Life Sci 60:

2637–2650

Santos CT, Bazzan ALC, Lemke N (2009) Automatic classification of

enzyme family in protein annotation. Lect Notes Comput Sci

5676:86–96. doi:10.1007/978-3-642-03223-3_8

Silla Jr CN, Freitas AA (2010) A survey of hierarchical classification

across different application domains. Data Min Knowl Discov

(in press)

Tsunoda DF, Lopes HS (2005) Automatic motif discovery in an

enzyme database using a genetic algorithm-based approach. Soft

Comput Fusion Found Methodol Appl 10(4):325–330. doi:

10.1007/s00500-005-0490-z

Tsunoda DF, Freitas AA, Lopes HS (2009) MAHATMA: a genetic

programming-based tool for protein classification. In: Proc 2009

ninth international conference on intelligent systems design and

applications (ISDA-09), IEEE Press, pp 1136–1142

Witten IH, Frank E (2005) Data mining: practical machine learning

tools and techniques, 2nd edn. Morgan Kaufmann, San Mateo,

CA

Zhao XM, Wang Y, Chen L, Aihara K (2008) Protein function

prediction with high-throughput data. Amino Acids 35(3):

517–530. doi:10.1007/s00726-008-0077-y

1908 D. F. Tsunoda et al.

123

http://dx.doi.org/10.1109/TCBB.2008.47
http://dx.doi.org/10.1093/bib/bbl004
http://dx.doi.org/10.1093/bib/bbl004
http://dx.doi.org/10.1002/prot.20277
http://dx.doi.org/10.1016/S0022-2836(02)00379-0
http://dx.doi.org/10.1002/9780470741894
http://dx.doi.org/10.1142/S0219720006001692
http://dx.doi.org/10.1142/S0219720006001692
http://www.pdb.org/pdb/home/home.do
http://www.pdb.org/pdb/home/home.do
http://dx.doi.org/10.1007/978-3-642-03223-3_8
http://dx.doi.org/10.1007/s00500-005-0490-z
http://dx.doi.org/10.1007/s00726-008-0077-y

	A genetic programming method for protein motif discovery and protein classification
	Abstract
	Introduction
	The proposed genetic programming method
	Basic algorithm and individual representation
	Selection method and genetic operators
	Structural operators
	Leaf operators

	Fitness function
	Result designation

	Setup of the computational experiments
	Computational results
	Related work
	Conclusions
	References

