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a b s t r a c t

Electrical impedance spectroscopy offers many applications in the medical field due the fast response,
non-invasiveness and low cost. One promising area is the use of this method for diagnostics. This paper
describes the design and experimental evaluation of a multifrequencial complex bioimpedance analyzer.
Impedance amplitude and phase were calculated using Discrete Fourier Transform (DFT) and high fre-
eywords:
ioimpedance spectroscopy
umor diagnostics
ndersampling
eural networks

quency signals were measured with undersampling. The prototype was able to measure values from 1 �
to 50 k� (frequency range from 50 Hz to 500 kHz). The accuracy of the technique was compared with
a commercial equipment. The analysis of passive components resulted in a mean error of 2.9% for the
magnitude and 0.69 degrees for the phase. Besides, an initial study for head and neck cancer detection
through neural networks is shown. One used bioimpedance values as well as gender, age and body mass

ork u
ic cor
index as inputs. The netw
the two types of diagnost

. Introduction

Despite the wide use of bioimpedance methods, there are still
any applications that can be studied. One knows that the patient’s

lectrical impedance suffers considerably changes in certain dis-
ases [1]. In some cases it is possible to detect variations in this
arameter even before symptoms. Some works have already been
ade applying this technique to help the analysis of skin [2,3],

ongue [4], prostate [5] and breast cancer [6], as well as in the early
iagnosis of lymphedema [7,8].

The aim of this paper is to develop a complex bioimpedance
pectrometer in order to be used in clinical diagnostics, including
umor detection. The prototype uses Discrete Fourier Transform
DFT) to measure resistance and reactance values. High frequency
ignals are analyzed through the undersampling principle.

The second part of the manuscript studies the relation between
he whole-body electrical impedance and cancer diagnostics.
lthough there is a connection between both parameters, one still
ave not been able to determine the exactly model for this system

ue the great number of variables involved. However, neural net-
orks technique is able to overcome these barriers. Therefore one

xpects that this method can separate healthy and sick individuals
n different classes.

∗ Corresponding author. Tel.: +55 4133104709.
E-mail address: camaral@utfpr.edu.br (C.E.F. do Amaral).

350-4533/$ – see front matter © 2010 IPEM. Published by Elsevier Ltd. All rights reserve
oi:10.1016/j.medengphy.2010.11.001
sed 120 training and 40 validation data and was able to simulate 77.5% of
rectly.

© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

A future application of this technique is the diagnostic of
patients through the bio-electrical impedance analysis (BIA)
[9]. In the case of cancer detection, this technology would be
cheaper and more accessible than the current diagnostics pro-
cesses such as X-rays, CT scanning and magnetic resonance
imaging.

1.1. Bioimpedance spectroscopy

BIA is widely used for the determination of total body
water (TBW), fat free mass (FFM), tissue characterisation, apnea
monitoring, venous thrombus detection, tomography, cardiogra-
phy, pneumography and blood compounds analyze [10–12]. The
method of bioimpedance applies low intensity currents in physio-
logical fluids or tissues through electrodes. In this case the transport
of electrical charges is done through free ions and factors like tem-
perature and concentration can influence the ionic dissociation,
changing its electrical properties [13,14]. In order to avoid the
polarisation effect, only alternating current (AC) should be used
[15]. Although researches with electric impulses have been done
[16], sine waves are still mostly studied due the easy treatment
process.
Besides the signal characteristics, other factors can also influ-
ence this technique. The organism has tissues with different
substances, compositions and shapes, resulting in different resistiv-
ities for each organ. While muscles and blood are good conductors,
skin, fat and bones act mostly as isolators. Even in the same organ,

d.
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he electric characteristics can change with electrode position
ecause of the different cells’ shapes [15].

In low frequency currents (until 5 kHz) biological tissues show
igh capacitance values due the isolation of the cellular membrane.
hen higher frequencies are used, this parameter decreases, and in

MHz the current crosses the whole cytoplasm. Tissues also have
imilar behaviour to the cells. Therefore in lower frequencies, tis-
ues with greater cellular density will show higher impedance than
issues with more extracellular fluid [15].

The permissibility comportment of a biological tissue is called
ispersion. There are three fundamental types: �, � and �. The
ispersion � happens in low frequencies and is due to the diffu-
ion phenomenon of free ions outside the cells. The dispersion �
omes from the charge and discharge of the cellular membrane
apacitance through intra and extra-cellular liquids (100 kHz until
0 MHz). The dispersion � is caused by the bipolar relationship of
he free water molecules in the medium (10 GHz until 100 GHz)
17].

The Cole graph represents the resistive and capacitive charac-
eristics of tissue impedance with the frequency. One important
ata in this analysis is the modulus of the phase angle, which in
heory can change between 0◦ and 90◦ and in most people is found
etween 3◦ and 10◦. For medium frequencies, small angles mean
decrease in the capacitive reactance, corresponding to cellular

eath. Higher values of phase represent an increase in the capac-
tance, which reflects a great number of cells [18]. The total body
mpedance in Cole’s diagram is caused mainly by muscles’ values
19].

Due the fast development of electronics technology, high fre-
uency dielectric spectroscopy is a promising tool for tissue
haracterisation and compounds quantification. Besides, the low
ost, fast response, simple implementation and safety make this
echnique very interesting for clinical diagnostics.

.2. Neural networks

Artificial neural networks (ANNs) are a non-linear statistical
ata modellings of biological neural systems that simulate math-
matical functions such as complex relationships between inputs
nd outputs or data patterns. This adaptive system is divided in
ayers and interconnected through a great number of neurons or
odes [20].

Each node is a computational device that receives a number
f input signals, associated with weights to represent stimulat-
ng or inhibiting influences. The projection of this sum is applied
o a transfer function to produce activation of the neurons that is
orwarded towards the nodes until it reaches the network output.
he behaviour of an ANN depends on both the weights and this
nput–output function. The transfer function typically falls into one
f three categories: linear (ramp), threshold or sigmoid [21].

The most important feature of the neural network approach is
hat any continuous function defined on a compact domain can be
tted with a pre-defined arbitrary degree of accuracy. In addition,
he flexibility and the ability to maintain a good performance even
n the presence of significant amounts of noise in the input increases
he use of this tool in prediction, classification and control problems
22].

ANNs require sets of training and validation data. Backpropa-
ation is the most commonly used training algorithm. Adjustable
arameters are the weights and biases that act as offset terms by
hifting the transfer functions horizontally [23]. The training starts

y processing forward a set of samples of known response. At the
nd, the magnitude of the error between experimental and pre-
icted responses is calculated and used to adjust all variables of
he system, in a reverse step that finalizes an iteration or epoch.
he repetition of this sequence with a large number of spectra of
ing & Physics 33 (2011) 356–361 357

random order and wide concentration ranges will improve the rela-
tionship between x and y, enabling the ANN to produce reasonable
output for unknown input. On the other hand, unnecessary inter-
actions can lead to overfitting, therefore a stop criterion should be
used. The decision rule can be either a maximal number of epochs
or a standard error of prediction [24].

A single neuron is not sufficient to perform a specific task.
Therefore, the nodes have to be interconnected. The multilayer per-
ceptron (MLP) architecture is the most used neuron layout. There
are numerous rules that give an indication of how large a neural net-
work should be, most of them are based on the size of the training
data or the number of input and output nodes. If the total number of
neurons is too small, the resulting neural network will not be able
to accurately represent the training information and errors will be
significant. On the other hand, a large number of nodes could lead
to redundant paths, heavy processing algorithms and overfitting
[25].

A neural network with only one hidden layer can approximate
any function with any desired accuracy. One advantage in this case
is that the model obtained is quasi-independent from the set of
initial weights. However, for some functions the number of neu-
rons needed between input and output can be very large. In this
situation, a neural network with two hidden layers might have bet-
ter performance. The disadvantage of more hidden nodes is that
different sets of initial random weights can lead to different com-
binations of transfer functions to build empirical models. Therefore
it is recommended to systematically reduce the number of hidden
neurons as much as possible, in order to achieve simpler and more
robust models [23].

2. Materials and methods

Fig. 1 shows the block diagram of the impedance meter
prototype. By using a tetrapolar configuration, the influence of elec-
trodes’ impedance is almost eliminated. The circuit consists of an
oscillator, a current source, an amplifier module, a sample-and-
hold, an analog to digital converter (A/DC), a microcontroller, a
keyboard, a graphic display, and a serial interface. Since all signals
are digitally processed, the analogical circuitry is not complex.

A Direct-Digital Synthesizer (DDS) AD9831 generates sinus
waves from a few mHz up to 1 MHz. This circuit requires only a
single 32-bit word for programming. A current source of 800 �A is
used for patient’s safety [14]. The voltage generated in the subject is
measured through an association of differential and programmable
gain amplifiers (PGA), with a maximum gain of 160. The first PGA
stage (THS702) has an error of 0.04%, which may be multiplied by
16 in the second stage.

The prototype uses the Discrete Fourier Transform to extract
both real x and imaginary y components from a sampled signal. To
compute these vectors one needs to know the period of the original
waveform and the sampling rate, as shown in Eqs. (1) and (2):

x = 2
N

N−1∑
k=0

s(k) · cos
(

2�
k

N

)
(1)

y = 2
N

N−1∑
k=0

s(k) · sen
(

2�
k

N

)
(2)

where N is the total number of samples, k is the sample index, t is

the sampling rate, s(t) is the measured value and T is the period of
the wave. After finding x and y it is possible to obtain the magnitude
(A) and phase (�) of impedance, as shown in Eqs. (3) and (4):

A =
√

x2 + y2 (3)
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Fig. 1. Block diagram of the im

= arctan
(−y

x

)
(4)

The standard measurement frequency for commercial
ioimpedance devices is 50 kHz [15]. Digital processing of
ignals in this range is not difficult. However, at higher frequencies
ne can have serious limitations in the electronics technology. The
icrocontroller’s ADC had an upper sampling limit of 12.56 kHz.
ccording to the Nyquist criterion only signals lower than 6.28 kHz
ould be measured. However, one used the undersampling tech-
ique to allow high frequency signals to be processed as well
26,27]. This technique is based on the principle that even with
ampling signals in a frequency smaller than the Nyquist criteria,
he resulting data still contains the same phase and amplitude
nformation from the original wave.

The only requirement in order to use the DFT with undersam-
ling is a small signal tracking time, which can be satisfied using a
ast sample-and-hold circuit (HA5351). Also, although undersam-
ling allows the use of low rates, the higher the sampling frequency,
he smaller the measurement error. To sweep the whole frequency
pectrum one could use a fixed sampling frequency. However this
ption may be more sensible to harmonics errors. To improve accu-
acy of the measurement, a variable sampling period (Ts) was used
ccording to the following equation:

s = Ts min + T

sc
(5)

here T is the measured wave period, Ts min is the hardware small-
st sampling period and sc is the desired number of samples per
ignal cycle.

. Simulations and results

.1. Meter prototype

The analogical circuit and the digital signal processing can add
rrors to the system due the imprecision of the PGA gain, the
ample and hold delay, the A/D converter resolution and the DTF
alculation itself. Fig. 2 shows a simulation of a DFT treatment
n MatLab. One can compare the measurements of an adjustable
ampling frequency from Eq. (5) limited in 12.56 kHz with a fixed

ate in the same value. The ordinate axis represents the frequen-
ies of the sampled signals, ranging from 10 kHz to 1 MHz. This
s the window where undersampling is applied. Analyzing the
mplitude and phase behaviours of the constant sampling rate,
ne can observe that both errors increase around the harmonics in

ig. 2. Magnitude and phase errors in a MatLab simulation of the DFT processing
sing Eq. (5) for a sampling frequency limited in 12,560 kHz.
nce spectrometer prototype.

12,589 Hz, 25,118 Hz and 25,1188 Hz. In this case the DFT simula-
tion showed a mean error of 4.55% for magnitude and 4.33 degrees
for phase. On the other hand, the variable sample frequency from
Eq. (5) decreases the mean error in 0.34% for magnitude and 0.08
degrees for phase.

Due to the small current that flows through the patient’s body,
physiological artefacts and circuit’s parasite currents can become
noise sources. To improve the accuracy, the averaged of many mea-
surements was used. One found that 20 repetitions are enough for
a good performance with an acceptable acquisition time.

In order to validate the prototype’s response, one compared the
measurements with a calibrated KC-605 LCR meter from Kokuyo
Testing Instruments & Systems. This device is able to measure
from 42 Hz up to 5 MHz with accuracy of 0.1%. The tests were
made at room temperature (23 ◦C) in the laboratory of the Insti-
tute of Technology and Development (LACTEC). The first validation
essay was made with resistors. Since they have a very small phase
angle for the frequency range analyzed, it was possible to observe
the prototype’s phase response. Typical bioimpedance values are
smaller than 10 k�, consequently the prototype was specified
for small loads. The mean errors for magnitude and phase of
test resistors in frequencies from 50 Hz to 1 MHz are shown in
Fig. 3.

Magnitude errors do not follow a clear pattern but, as expected,
phase response stays almost constant in all ranges. For small resis-
tance values (such as 1 �), the measurement errors increase due the
resolution of the A/D converters and the limited amplifier’s gain.
For high resistance values, the amplifiers’ input impedance is the
main source of errors. The developed prototype was able to mea-
sure complex impedance values from 1 � to 50 k� in a frequency
range from 50 Hz until 1 MHz with 2.9% magnitude and 0.69 phase
mean errors.

Essays with capacitance and inductance showed that the proto-
type was able to measure phase angles from −180 to +180 degrees.
The impedance errors of a RC circuit were also analyzed (Fig. 4). In
order to simulate physiological values of the human body, a 895 �
resistor was connected in series with a 3.3 nF capacitor, both in
parallel with a 617 � resistor.

The phase of the circuit showed greater deviation to high fre-
quencies, reaching 0.82 degrees at 800 kHz. The module of the
impedance error for the RC circuit was approximately 1.5% in low
and 3% in the high frequencies. The lack of precision to measure the
real gain of the PGA can have caused the higher magnitude error
starting in 60 kHz.

In vivo bioimpedance measurements were made with frequen-
cies ranging from 1 kHz to 1 MHz. Current gel electrodes were
placed in the back of the right hand and on top of the right foot.
Voltage gel electrodes were placed approximately 4 cm from the
current electrodes, towards wrist and ankle. The system was able
to measure six different frequencies per minute with twenty rep-
etitions for each. Physiological changes and movement artefacts

during this period are probably the cause of oscillations in the
impedance in Fig. 5. The characteristic frequency is found in 48 kHz
where Xc is 49 � and the resistance is 423 �.
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Fig. 3. Magnitude and phase mean errors of test resistors in the impedance spectrometer prototype.

C circuit in the impedance spectrometer prototype.
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Table 1
Artificial neural network (ANN) input and output formats.

Parameter Patient 1 Patient 2

Original ANN Original ANN

Gender Female 0 Male 1
Age (years) 35 0.39 65 0.72
Resistance (�) 551 0.60 357 0.39
Reactance (�) 61 0.70 19 0.22
Fig. 4. Magnitude and phase mean errors of a R

.2. Neural networks

Among the various types and topologies of neural networks, the
etwork chosen was a Multilayer Perceptron (MLP) with Backprop-
gation training. This training applies the technique of gradient
escent to minimize the total mean square error (MSE) of the out-
ut. The training involves three stages: the response at the output
f the network to input signals, calculation of the associated error
nd adjusting of the weights. After training, the network applica-
ion involves only the processing of the inputs, with a fast response
ime.

The study was approved by the Institutional Ethics Board Com-
ittee of the Faculty of Medical Sciences of Santa Casa de São Paulo.

wo classes of diagnostics were used: one for healthy people and
nother for individuals with head or neck cancer. One used 60
raining and 20 validation vectors for each class as well as the diag-
osis associated with them. Each input vector was composed of six
arameters: gender, age, BMI (body mass index), R (resistance), |Xc|
capacitive reactance) and PA (phase angle).

Body mass index (BMI) was calculated by dividing weight by

quared height. The impedance values shown in Fig. 6 were mea-
ured with the tetrapolar technique using a current of 800 �A
50 KHz). Although patients had neck and head cancers, total body
mpedance may reflect the general effects of the disease. There-
ore, the gel electrodes were placed in the right foot and hand. Sick

ig. 5. Total body impedance (Cole graph) measured by tetrapolar configuration
easured between the right hand and right foot.

Fig. 6. Bioimpedance measurements of healthy subjects and cancer patients.
Phase angle (◦) 6.32 0.67 3.05 0.32
BMI (kg/m2) 21.26 0.59 16.33 0.45
Expected result Healthy −1 Sick 1

individuals tend to have lower values, however, it is not possible to
separate both classes completely only with the resistance and reac-
tance. In this case, one believes that neural network can detect the
complex relationships between these electrical parameters, BMI,
age gender and tumors.

The software MatLab was chosen to perform the neural network,
as well as the training and validation of the results. One advantage
of this platform is that it offers a toolbox with graphic interface
specific for the processing of ANNs. The network layout, weights
values after the training phase and an example of its activation
with a test input vector are shown in Fig. 7. The input layer had 6
neurons, one for each parameter. In order to level all the inputs,
each vector was normalized in the range between “0” and “1”, as
shown in Table 1. The number of neurons in the intermediate layer
was 13. One used only one neuron in the output layer to classify
the response according to the value of activation. During the train-
ing, the two result classes were represented by the values “−1” and
“1”, respectively. In the test phase, the first class for healthy indi-
viduals was identified values less than “0” The second class, which

corresponds to sick people, was represented by numbers equal or
greater than “0”.

Table 2 shows the main characteristics of the network and its
performance. Since the type of network is backpropagation, when

Fig. 7. Neural network activation with a test input vector (SNNS platform).
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[2] Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin cancer
identification using multifrequency electrical impedance—a potential screen-
ing tool. IEEE Trans Biomed Eng 2004;51:2097–102.

[3] Aberg P, Geladi P, Nicander I, Hansson J, Holmgren U, Ollmar S. Non-invasive
and microinvasive electrical impedance spectra of skin cancer—a comparison
between two techniques. Skin Res Technol 2005;11:281–6.
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learning pattern is clamped, the activation values are propagated
o the output units, resulting in an error. Than one distributes the
ifference of an output unit to all the hidden units that are con-
ected to this cell. The 120 training vectors were divided equally

n healthy and sick individuals data, mixed randomly in order to
void the overtraining. The 40 test vectors also contained the same
umber of positive and negative diagnostics. Before starting the
raining, one initialized the weights randomly between “−1” and
1”. The decision to finish the training phase was either a maximal
umber of epochs (10,000) or a mean square error (MSE) crite-
ion of equal or less than 0.3%. The learning coefficient reflects the
elocity in which the weights are updated. In this case the transfer
unction used was purely linear; therefore, the output activity is
roportional to the total weighted output. The learning algorithm
sed to adapt networks (learning function) was gradient descent,
hich is an optimisation method for minimizing an objective func-

ion that is written as a sum of differentiable functions. From the 40
est vectors used, the network was able to diagnostic 31 cases cor-
ectly with values lower than “0” for healthy individuals and equal
r higher than “0” for sick people.

. Discussion

There are many complex impedance spectrometers available
oday in the marked such as the Solartron 1260 which is able to

easure from 10 �Hz to 32 MHz with accuracy of 0.1% for the mag-
itude and 0.1 degrees for the phase. However, in order to be used

n humans’ essays, the equipment needs comply with IEC60601-1
afety and electromagnetic compatibility requirements. We expect
hat our prototype will be approved for human use since its earth
nd patient leakage values are under the norm limits.

The prototype developed was useful in demonstrating the feasi-
ility of the method, but despite good results many improvements
an still be done. The input impedance will be increased by adding
uffers, in order to allow higher loads. An improvement of the pro-
essing time is also necessary, and can be addressed by using a faster
/D converter and microprocessor (or Digital Signal Processors).
shorter sampling period would also allow the measurement of

mpedances in a wider frequency range. This would require replac-
ng the current DDS, which is limited to 12.5 MHz. It would also
e interesting to use A/D converters with bipolar inputs, reducing
he number of summing amplifiers in the system and, therefore,

ecreasing circuit delays. The use of dual A/D converters could
liminate the need for sample-and-hold circuits. Self-correction
lgorithms are an alternative to compensate measurement errors.
uch methods find a non-linear equation to compensate errors
n the response of phase and modulus data. Results obtained

able 2
ain characteristics of the 6-13-1 network and its performance.

Software MATLAB

Type of network Backpropagation
Number of input neurons 6
Number of intermediate layers 1
Number of neurons in the intermediate

layer
13

Number of output neurons 1
Number of classes 2
Class identification Activation value from the

output neuron
Training vectors 120
Test vectors 40
Weight initialisation Random values from −1 to 1
Training epochs 10,000
MSE of training 0.3
Learning coefficients 0.05
Percentage of accuracy in the diagnosis

of test vectors
77.5%
ing & Physics 33 (2011) 356–361

show that undersampling with the DFT algorithm is an efficient
and promising method for multifrequency bioimpedance measure-
ments.

The neural network studied was able to simulate 77.5% of the
two types of diagnostic correctly. Considering the small amount of
data available for training, the application of the MLP Backpropa-
gation neural network can be considered as promising. The error
values are satisfactory, since there were a high level of biologic
variations and impedance standard deviation. A more detailed clas-
sification, where the network output would lead to the prognostic
of the patient’s clinic state seems also possible. It would probably
only require a higher amount of training/test cases for each class.
This work shows that the use of neural networks as classifiers using
data from bioimpedance may enable early diagnosis and prognosis
of tumors. As result, such technique could increase the chances for
healing or help providing a better treatment for patients.
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