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Many real-world engineering problems require high computational power, especially re-
garding to the processing time. Current parallel processing techniques play an important
role in reducing the processing time. Recently, reconfigurable computation has gained
large attention thanks to its ability to combine hardware performance and software
flexibility. Also, the availability of high-density FPGA (Field Programmable Gate Ar-
ray) devices and corresponding development systems, allowed the popularization of re-
configurable computation, encouraging the development of very complex, compact and
powerful systems for custom applications. This work presents an architecture for paral-
lel reconfigurable computation based on the dataflow concept. This architecture allows
reconfigurability of the system for many problems and, particularly, for numerical com-
putation. Several experiments were done analyzing the scalability of the architecture, as
well as comparing its performance with other approaches. Overall results are relevant
and promising. The developed architecture has performance and scalability suited for
engineering problems that demand intensive numerical computation.
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1. Introduction

Parallel reconfigurable architectures are computer architectures in which several

processing elements work in parallel, and their logic blocks can be reconfigured

(logically or functionally) to adapt the system features to a particular problem.

Reconfigurable computation 1 can override the bottleneck of Von Neumann’s

machines implemented with ordinary processors, allowing multiple levels of par-

1
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allelism. It allies the performance of hardware-based solutions and the flexibility

of software-based solutions. This approach can be an interesting solution for the

computational resources growing required in many research areas (see, for instance,
2,3,4).

Many complex problems are solved with sequential software-based solutions us-

ing conventional (mono-processed) hardware and cannot attain the required perfor-

mance constraints, therefore justifying the research for more efficient architectures.

Reconfigurable computing systems present advantages over conventional ap-

proaches, such as: low power consumption, high processing speed, improved inte-

gration capability, flexibility and modular operation 5. Differently from general-

purpose computers, the flexibility of a reconfigurable architecture allows a better

customization of the hardware to the application, allowing, for example, the explo-

ration of the parallelism events in a computational solution, particularly in those

including scientific computations. Such parallelism, massive or not, can lead to a

significant reduction in the processing time, dividing the computational demands

among several processing elements.

More than a decade ago, Manners and Makimoto 6 described three waves of

circuits technology. In the first wave, the dominant technology was standard tran-

sistors and simple logic gates, used for customized solutions in which both algo-

rithm and physical resources were fixed. In the next wave, microprocessors become

available, and a paradigm shift from hardware to software took place. In this new

paradigm, resources remained fixed, but the algorithm was variable. More recently,

hardware reconfiguration started the third wave in circuits projects, establishing a

migration from procedural solutions to structural solutions. This new approach is

characterized by the reconfigurability of both algorithm and resources. This work

is developed in the context of this third wave.

This paper presents a reconfigurable computer architecture using parallel com-

puting concepts to obtain a scalable performance. The concept of adapting the

architecture to the application is explored here. The proposed architecture can be

adapted to several problems, such as numerical computation. For instance, this ar-

chitecture can explore the inherent parallelism of the numerical operations required

for computing differential equations such as Eq. (1), where many operations can be

done simultaneously using a dataflow model.

d2y

dx2
+ 2x

dy

dx
+ 2y = 0. (1)

Differential equations, such as the one above, have operations that can be done

in parallel. The the specific processing elements available in the proposed architec-

ture can explore efficiently such possible parallelism, not achievable by sequential

processing.
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2. Parallel Processing

Parallel processing 7 is an efficient way to process data exploring possible simulta-

neous events of a software execution. The motivation for parallel processing is the

possibility of increasing the computational performance for solving a complex prob-

lem using many Processing Elements (PEs). The technological speed limit imposed

to sequential processing machines based on the Von Neumann architecture can be

overcome by using an arrangement of PEs operating in parallel 8.

Processors with parallel architectures include a large spectrum, from single

ALUs (Arithmetic and Logic Unit) to sophisticated microprocessors 9. For instance,

it is possible the use of SIMD (Single Instruction, Multiple Data) architectures, per-

forming binary arithmetic operations (sum, subtraction) and logic operations (and,

or, not) or the use of MIMD (Multiple Instruction, Multiple Data) architectures,

performing complex computations, such as the Pentium@ processors.

The central memory of parallel computers can be shared between processors in

two ways 10:

Physical: the same addressing space is common to all processors. In this case,

if stored values in the memories are changed, all processors will use this

value;

Logical: a data structure is used in such a way that, when the information is

written by one of the processors, it can be read by the other.

Usually, there are two modes in which the connectivity among the several com-

ponents of a computer system, such as processors and memories, can be done 11:

Statically: the components are physically connected when the computer was built

and the topology cannot be changed during use;

Dynamically: there are switching elements responsible for routing data and com-

mands among the components. Shared memories and specific communica-

tion channels are used for routing.

The use of parallelism in computer architectures has allowed a significant in-

crease of processing speed due to the concurrent execution of tasks. However, not

only architectural features are important. The use of parallel software and how the

programs can be parallelized are equally essential for achieve high performances 12.

3. Reconfigurable Computing

The idea of using reconfigurable hardware for computer systems appeared in the

1960s, but the first practical demonstration of its feasibility was only in the 1980s,

when reprogrammable devices came up, such as the FPGAs (Field Programmable

Gate Array) 13. Reconfigurable devices can be considered modern solutions for

computer hardware projects. They fill up the gap between ASICs (Application Spe-

cific Integrated Circuits) and conventional microprocessors 14, breaking the balance

point between flexibility and performance.
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Reconfigurable systems can achieve high performance with low implementation

cost. Also, they override the well-known bottleneck of Von Neumann’s machines

implemented with ordinary microprocessors, allowing massive low-level parallelism.

Reconfigurable computing associate the performance of a hardware-based solution

and the flexibility of a software-based one. That is, it offers higher performance

than that obtained by a software-based approach, with larger flexibility than that

obtained by a hardware-based approach.

Reconfigurable computing exploits the fact that, in computational intensive

tasks, most of the processing time is spent in a relatively small portion of the

software. Therefore, some kind of hardware acceleration can improve significantly

the performance of a processor in those applications 15.

Generally, reconfigurable computer architectures are those where reconfigura-

bility concepts and reconfiguration techniques are intensely used 1,4. That is, in

such architectures the logical blocks, as well as the interconnection blocks, can be

reconfigured to perform different functionalities. Logical blocks are understood as

being the processing, storage, communication, input and output structures. There-

fore, reconfigurable hardware is programmable by reconfiguration of its structure – a

combination between hardware and software approaches. An algorithm structurally

programmed in reconfigurable hardware is also known as configware 16. Configware

aggregate software and hardware concepts so as to explore the inherent parallelism

of computational tasks.

Recently, the availability of high-density reconfigurable devices with massive

interconnection capability provided a new internal organization of these devices,

known as Reconfigurable Data Path 17. This new organizational model leaded to

improved parallelism and even better performance.

4. The Dataflow Model

Dataflow architectures come up by the end of the 1970s to explore the parallelism

found in some program instructions 18. Dataflow architectures use a single memory

for both data and instructions, and do not use a program counter (as in conven-

tional Von Neumann processors) 15. Also, dataflow architectures do not manipulate

variables, because values are represented by packets, denominated templates, trans-

mitted between PEs. Each PE has the task of performing an operation using its

inputs and generating an output. In this case, each operation is dependent of only

two inputs. Consequently, there are no global variables nor any other external data

needed, and any PE can do its job as soon as the required data is available at

its inputs. The sequence of the operations is implicit to a given application and

depends only of the input data.

Dataflow uses a template associated to each PE. It contains information about

the operation to be done, buffers for the input data, and a list of destinations for the

output. A template is similar to an instruction of a conventional microprocessor.

An execution cycle consists in fetching and dispatching all ready-to-run templates,
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running the templates and storing results in the appropriated destinations. Working

this way, if the processing is started with a single PE, and later other PEs are added

to the system, the overall performance will grow until all implicit parallelism be

explored, taking advantage of the scalability provided by the approach.

As mentioned before, in the dataflow model the control flow over the operations

is a function of the availability of input data for a given instruction processing.

That is, the system is data-driven. A dataflow program is organized as a graph in

which vertices represent instructions and edges represent the data flowing between

vertices. As soon as the vertices detect that all their input edges are enabled (input

data are available), they execute the programmed operation and generates out-

put results. These results will enable further vertices. Therefore, parallelism occurs

naturally in the dataflow model as the data flows throughout the graph.

An example of the inherent parallelism of the numerical computation of a differ-

ential equation is given. The dataflow graph for computing equation Eq. (1) is shown

in Figure 1. We stress that this example is only to illustrate a simple computational

problem with its equivalent dataflow. The corresponding software approach, writ-

ten in C programming language is given in same figure just for comparison and to

facilitate understanding the dataflow graph. In Figure 1, there are 16 elementary

operations: 6 multiplications, 2 additions, 2 subtractions, 3 duplications (“Dup”),

1 conditional branch (“If”), 1 relational comparison (“<”) and 1 stop (“Stop”).

Initially, there are 5 independent vertices in the graph that can be processed simul-

taneously. Later, other 5 are enabled and so on, following the edges of the graph.

However, things can happen without such formal synchronization since, as soon as

data is available at inputs, vertices can do their operations, and these operations

can take different amount of time to completion.

In the recent literature, some reconfigurable dataflow architectures can be found,

for instance, 14,21,22,23. In particular, the two architectures are worth to mention, as

follows. The KressArray 24 has a matrix structure, in which operations are mapped

into a cluster of PEs, named DPUs (DataPath Units). However, the control is

centralized and each DPU is composed by a fixed-point ALU. Consequently, the

operations can be of a single data type, thus limiting the applicability of the ar-

chitecture. The COLT 25 architecture, proposed in the 1990s, has a matrix of PEs

(named IFUs – Interconnected Functional Units) operating as stages of pipelines.

The matrix of IFUs have to be configured using a crossbar commuter in order to

implement the desired functions of the pipeline. This approach consumes a large

amount of resources from the reconfigurable device. The main difference between

the above mentioned architectures and the one proposed here is that ours can be

applied to a larger range of problems, requesting only the re-compilation of the

software for a specific dataflow graph. This is due to the fact that the architecture

and, in particular, the PEs can be reconfigured to adapt to a new problem.



May 26, 2010 14:24 WSPC/INSTRUCTION FILE ferlin-jcsc26-05-10

6 Ferlin et al

*
 *


*


1
 2


6


dx
 2


*
3
 *
4
 +
5


2
 dx
 dx


*
7


dx


-
11


-
13


Dup
16


+
8


If
12


Dup
 Stop
14
 15


<
 Dup
9
 10


a


u
 u
x
 y
 y


while(x<a)

{


x1=x+dx;

u1=u-2*x*u*dx-2*y*dx;

y1=y+u*dx;

x=x1;

y=y1;
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}


Fig. 1. Dataflow graph corresponding to Eq. (1).

5. The Parallel Reconfigurable Architecture

In this work, we propose a parallel reconfigurable architecture based on the dataflow

model. In this computational model, the control is dataflow dependent, since the

operations are executed as soon as input data are available. The order of the pro-

gram instructions has no effect over the order of execution. This architecture can

be applied to computational problems with simultaneous events, such as numerical

computation.

The physical implementation of the proposed architecture was done in FPGA,

allowing reconfigurability to better adaptation to a given application. Although the

whole architecture can be reconfigured, it is more usual and reasonable to change

the number and the structure of PEs, the width of interconnection busses, and the

size of the memory. Therefore, the reconfiguration is semi-static, that is, it takes

place before running, thanks to the use of a modern FPGA device.

An overview of the architecture is shown in Figure 2, composed by three el-

ements. The Controller manages the communication between host and Dataflow

Machines (DFs), as well as controls where templates are sent to, and when this

takes place. Due to the nature of the tasks the Controller performs, it was imple-

mented with an embedded processor, the Altera’s NIOS II. The Switch Network is

the connection element between the Controller and the DFs, and should be simple



May 26, 2010 14:24 WSPC/INSTRUCTION FILE ferlin-jcsc26-05-10

Reconfigurable Parallel Architecture FPGA-Based 7

for not consuming many resources of the device, such as logical gates. This archi-

tecture is scalable and can have the number of DF machines required by a specific

application. Each DF is completely independent of the other, and parallelism arises

naturally at the program level.

Fig. 2. Simplified diagram of the parallel reconfigurable architecture.

In this conceptual vision, a cluster of DF nodes is under the control of a Con-

troller node. DF nodes can be different each other, having different functionalities

(operations), thus allowing more flexibility to the architecture. As mentioned be-

fore, the architecture can be reconfigured as needed. This is particularly interesting

for the DFs, aiming at adapting to specific application requirements. Consequently,

it is possible to configure a parallel architecture either homogeneous (same DFs),

as in the case of a multiprocessor, or heterogeneous (different DFs), as in the case

of a multicomputer 8,20.

The nodes of the dataflow graph (see example in Figure 1) are mapped into

templates. Each template corresponds to the instruction and contains all the infor-

mation necessary to this execution. In our implementation, the template has the

following logical structure: operation to be done – opcode (16 possible operations),

two operands, containing the input data (16 bits each), two destinations to where

the result of operation will be sent (8 bits each), besides other control bits (for

indicating when the operand is available or which will be the destination operand,

for instance). The objective of defining two destinations in each template saves one

data transfer operation, since the result can be sent out to two distinct destinations

in a single operation. Studies indicate that around 45% of the operations in algo-

rithms for processing differential equations and cryptography use two destinations.

Therefore, the proposed architecture can take advantage in that sort of applica-

tions 19. The template shown in Figure 3 is mapped in a memory position of the

DF machine. Therefore, in this work, each template is 57 bits long.

A DF machine is composed by a Control Unit (CU) and several Processing
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Opcode
 Operand 1
 Operand 2
 Destination
  1
 Destination
  2


Fig. 3. Basic structure of the template.

Elements (PEs), as shown in Figure 4. The CU is responsible for managing the

data flow, sending templates to PEs and receiving the result of the execution of the

application’s dataflow graph. This graph defines the dependency among operations.

In this case, the parallelism is defined at compilation time. The CU is composed by

five basic elements that operate simultaneously:

Dispatch Unit (DU): Verifies if there are templates to be processed and sends

them as soon as a PE is available;

Storage Unit (SU): Receives data from PEs and stores the templates;

Interface (IF): Controls the communication between the DF machine and the

Controller/host by receiving templates to be processed and sending back

results;

Table of Processing Elements (TPEs): Stores the current status (free or

busy) of the PEs. Each position of this table corresponds to a specific

PE. When the dispatch unit sends a template to a PE, its status is flagged

to busy. On the other hand, when the storage unit receives the result from

a PE, its status is cleared.

Template Memory (TM): Stores the operations received from the host. This

memory is physically shared by the PEs by means of the dispatch and

storage unities.

PEs are responsible for processing tasks. They run templates sent by the CU.

Internally, PEs are composed of ALUs that effectively execute operations with data,

and buffers to store templates and results. The complexity of PEs depends on the

task required by the application. Usually, the internal ALUs will execute simple

operations such as addition, subtraction, multiplication, comparison or conditional

branch. PEs have to be as simple as possible, using minimal hardware resources

(logical elements and memory) for their implementation. This allows the imple-

mentation of a large number of PEs in a reconfigurable device (FPGA), and enable

the parallel execution of a large number of operations. This results in a massive

parallel processing. In a PE, as soon as the input data is available, it template can

be executed.

PEs are functionally autonomous, due to the fact that each PE does its own

operation, independently of the other ones. This is an important feature that en-

ables a high level of parallelism, since there is no dependency during processing,

except those imposed by the application itself. However, such dependency can be

minimized, as mentioned before.
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The sequence of templates that composes the program, sent by the host com-

puter, is received by the interface that stores the TM. Next, the CU starts processing

the templates. The processing cycle is composed by three simultaneous processes,

as follows:

• The DU sends the templates that are ready do be processed to the available

PEs;

• PEs execute the operations of the templates;

• Data processed by the SU are updated in the operands of the appropriate

templates.

The DU sends a template ready to be processed to a PE only when it is free (that

is, the corresponding flag of the PEs’ table is active), and then set its status to busy.

The PEs execute their operation using the information contained in the template

only (operation and operands), and then sends to the SU the result of the operation

as well as the information about the destination template. When the SU receives

such information, the status of the corresponding PE is cleared, enabling it for a

new processing cycle. Next, the SU updates the result in the destination template,

thus making it available to be processed further. This cycle is repeated until the

STOP instruction is found. This makes the DU to stop fetching new templates

in the TM, while waiting for the PEs and SU to finish processing their current

templates. When, at last, all templates are processed, they are sent to the host by

the interface.

In this architecture the components are statically connected at the implemen-

tation time and, in our particular implementation, the communication between CU

and the PEs uses a parallel bus to transport both templates and results.

The proposed architecture has a superscalar structure 20, with a three-stage

pipeline (Dispatch, Processing and Storage), that divides the execution of instruc-

tions in several parts. These parts are executed in parallel, each one being processed

by a dedicated hardware with a specific function. Figure 5 shows the pipeline, com-

posed by one Dispatch Unit, four PEs and two Storage Unit. A superscalar struc-

ture implicates in having functional units in the architecture each one with its own

pipeline. Pipeline is a consequence of the time overlay of the execution of opera-

tions. This takes place at the different elements of the architecture when operating

simultaneously in different stages. Recall that regular processors also use pipelining

to overlap the execution of instructions, improving their overall performance 8. The

instruction overlap, known as ILP (Instruction-Level Parallelism), corresponds at

the lowest level of parallelism in the proposed architecture.

Aiming at to verify the validity of the concepts and feasibility of the approach,

we implemented an architecture with a single DF machine, having 16 PEs, as shown

in Figure 4.

The architecture implemented uses a set of 16 instructions, grouped as arith-

metic (addition, subtraction, multiplication, division), logical (and, or, not, xor,

nor), conditional (if), relational (=, <>,>=, <), and miscellaneous (duplication,
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Fig. 5. Pipeline structure.

stop).

All the logic blocks of the architecture are implemented in a FPGA, including

the interconnection among internal blocks. The reconfiguration of the device will

occur semi-statically. In the near future, this reconfiguration will be dynamical, at

execution time, especially regarding the number of processing elements. This will

have direct implications in the reconfiguration time and hardware resources, since

a part of the FPGA could be modified and another part could continue processing

at the same time.

6. Experiments and Results

In this section, the proposed architecture is evaluated according to its performance

and scalability, by using real-world applications. Also, other approaches and dedi-

cated processors are compared with the architecture.

The proposed architecture was physically implemented in a FPGA device of the

Stratix family from Altera (http://www.altera.com), namely, the EP1S10F780C7ES

device. The implementation, with 16 PEs, required 9,697 logic elements and 10,240

memory bits, corresponding, respectively, to 91% and 1% of the resources available

in the device. Each PE needs 931 logic elements – less than 8% of the device. We

used the Quartus II development system from Altera and all blocks were devel-

oped in standard VHDL (Very-high-speed-integrated-circuit Hardware Description

Language).

The architecture was run at 50MHz, thus having a clock cycle of 20ns. The

execution time of a single template (operation) takes around 100ns. This processing

time is the same for all, but division operation. Therefore, this system is capable

to run 10 million of operations per second using a single PE. Consequently, a very

high processing speed can be achieved with several PEs in parallel. This feature is
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essential for applications that demand a high computational power, for instance,

numerical computation. In such a class of applications, few different operations

are done many times within the loops of a program, following the dataflow of the

application.

6.1. Evaluation of Scalability

Depending on the number of PEs that can be implemented in a FPGA device,

the processing power can be scalable to a large range. To evaluate how the pro-

cessing performance of the architecture behaves as the number of PEs increase,

several experiments were done. These experiments were done using an algorithm

for computing a 5-tap FIR (Finite Impulse Response) filter with 16-bit fixed-point

arithmetic. This algorithm, shown in Figure 6, was chosen because it has was used

as benchmark for other architectures, and, thus, performance comparisons can be

done. A growing number of PEs was added to the architecture until reaching 16.

for (i=0; i<62; i=i+1)


{


    y[i]=h
0
*x[i] + h
1
* x [i+1] + h
2
* x [i+2] + h
3
* x [i+3] + h
4
* x [i+4];


}


Fig. 6. 5-tap FIR algorithm.

We observed that the total processing time decreased as the number of PEs in-

creased in the parallel structure, as shown in black-dotted curve (Real) and white-

dotted curve (Ideal) of Figure 7. The ideal time is obtained by the division of the

sequential execution time with a single PE by the amount of PEs. For instance,

ideally with 4 PEs the time would be 1/4 of the sequential time. However, we ob-

served a non-linear relationship in this curve, mainly due to the bottleneck created

in the access to the template memory. Notwithstanding, bottlenecks are expected

for any parallel architecture.

6.2. Comparison With Other Approaches

Using the same algorithm (5-tap FIR filter), an experiment was done with the

proposed architecture (with a single PE). The algorithm was run in a general-

purpose computer, a PC with Athlon XP 64 3000+ processor, running at 2.17GHz,

with 512MBytes of RAM and Microsoft Windows XP operating system. In the

PC, the algorithm takes 0.358µs, far below from the time taken by the proposed

architecture (5.04µs). However, it should be noted that the clock of the PC is

around 43 times faster than that used in the reconfigurable architecture. A more

fair comparison should consider the number of clock cycles. For this case, the PC

needed 777 clock cycles and the 1-PE-architecture needed 740 clock cycles.
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Fig. 7. Processing time (cycles) as function of the number of processing elements.

Using the same algorithm, we compared the performance of the architecture

with other ones published in the literature: ROCCC (Reconfigurable Computing

Compiler System) and OGMS (Optimization Generation Memory Structure for

Window Operations) 27, DSP TMS 320C55X 28, a simple 8051-microcontroller,

and an embedded NIOS II microprocessor. It should be stressed that the ROCC

and OGMS architectures are specifically designed for digital filtering. Our archi-

tecture needed a number of clock cycles around 2.8 and 1.5 times larger than the

specialized architectures and the DSP TMS 320C55X, respectively, but 2.7 and 11.6

times smaller than the NIOS II/e and the 8051, respectively. A comparison of the

performance of these architectures is presented in Table 1, showing the running fre-

quency, execution time (in clock cycles), throughput, CPI (Cycles Per Instruction),

number of instructions executed, and MIPS (Millions of Instructions Per Second).

Table 1. Experiments using the FIR algorithm - execution with 1 PE.

Feature Architecture ROCCC OGMS TMS 320C55X 8051 NIOS II/e

Frequency (MHz) 50 94 238.664 200 12 50
Execution Time (Clocks) 740 262 263 504 8559 1986

Throughput 0.34 0.96 0.96 0.50 0.03 0.13
CPI 5 * * * * 1.36

Number of Instructions 148 * * * 713 2701
MIPS 10 * * 400 1 45

* information not available.

Another experiment was done comparing the execution time of the architecture

with 4 and 16 PEs. This comparison, shown in Table 2, was done with another

reconfigurable architectures, KressArray 24 and COLT 29, previously mentioned. In

this table, it is observable that the executions using of our architecture with 4PEs
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and 16PEs needed less time (in clock cycles) than KressArray and COLT. This fact

shows the potential of the proposed architecture, as the number of PEs is increased.

Table 2. Experiments using the FIR algorithm - execution with n PEs.

Feature Architecture 4PEs Architecture 16PEs COLT KressArray

Number of PEs 4 16 16 24
Frequency (MHz) 50 50 50 25

Execution Time (Clocks) 296 148 496 558
MIPS 20 41 * *

* information not available.

6.3. Comparison With Dedicated Processors

A third experiment was done considering the execution of a real FIR filter, from

the BDTi (Berkeley Design Technology Inc) package 30. This package corresponds

to a set of programs for digital signal processing. The BDTi Real Block FIR Filter

benchmark is used for voice processing and consists of a FIR filter with 15 taps,

processing 40 input samples. For this experiment we used 8 PEs/Units in order to

have a fair comparison with the other approaches (ADI ADSP-TS201S, Motorola

MSC8103, TI TMS320C6414) that use the same number of PEs.

Table 6.3 shows the results of the experiment with the BDTi Real Block FIR

Filter. We compared the number of processing units, running frequency, power

consumption (Power), and execution time (Clocks). In this table it is observed that

the power consumption of the proposed architecture is as low as most of the other

ones, but, on the other hand, it needs less processing cycles (129) to do the job. It

should be noted that the other architectures to which we compared are specific for

digital signal processing. Figure 8 emphasizes the differences between approaches

regarding the number of clock cycles.

Table 3. Comparison of architectures using the BDTi Real Block FIR Filter benchmark.

Feature Architecture TMS320C6414 ADSP-TS201S MSC8103

Number of PEs/Units 8 8 8 8
Frequency (MHz) 50 720 600 300

Execution Time (Clocks) 129 202 160 183
Power (W) 0.65 0.65 2.18 0.65

7. Conclusions and Future Work

Three groups of experiments were done to evaluate the performance of the proposed

reconfigurable architecture, as well as to compare it with other approaches.

Results of the experiments showed that using only 4 PEs the processing time

was 60% above the estimated ideal time, while using 16 PEs, this value was above
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Fig. 8. Processing Time (cycles) for the BDTi Real Block FIR Filter Benchmark.

180%. However, it should be stressed that this is a real-world application and, conse-

quently, it presents many dependencies among operations, precluding the proposed

architecture to reach its idealized peak performance. This result is justified due to

the bottleneck imposed by the access to the template memory.

Another important performance measure for analyzing parallel machines is the

speedup 20. Speedup is the ratio between the execution time with a single PE, and

the execution time for several PEs in parallel. In the experiment with 16 PEs, a

speedup of 5 was obtained, corresponding to 31% of the ideal value. This is due

to the parallelization constraints implicit in the application code and that can be

explicable by the Amdhal’s Law 26.

The comparison of performance running the 5-tap FIR algorithm in our ar-

chitecture (with a single PE) and in other architectures showed that it is faster

than conventional microprocessors (including the DSP). As expected, the proposed

architecture was slower than the architectures specifically designed for digital fil-

tering. However, it should be taken into account that those results would be quite

different in favor of the proposed architecture if using 16 PEs. Also, thanks to the

dataflow approach, the number of instructions necessary to execute the algorithm

was significantly smaller when compared with the other conventional architectures.

An important comparison was done with other parallel reconfigurable architec-

tures (COLT and KressArray). The results showed that our approach is around 1.8

to 3.8 times faster, depending on the number of PEs used. Even with only 4 PEs,

our architecture achieved better performance than the other architectures using

much more parallel PEs.

The experiment with a real FIR filter benchmark showed that the proposed

architecture needs less processing cycles than other specific digital signal process-

ing architectures (TMS320C64X, ADSP-TS201S e MSC8103), while consuming the

same power. This fact suggests that our proposed architecture could be used effi-

ciently for such digital signal processing task. On the other hand, our architecture

was run at 50 MHz, which is significantly smaller than the other architectures. Since
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this speed is due to the technological limitation of the device used in the current

implementation, it is expected that future versions could run at higher frequencies,

thus leading to even higher performance.

Besides the parallelism of execution at the PEs level, and the low-level

Instruction-Level Parallelism (ILP) – see section 5, the use of a pipeline structure

allowed an additional level of parallelism in the execution, taking advantage of the

simultaneous operation the internal units (Dispatch, PEs and Storage). The joint

effect of all these levels of parallelism contributed to efficiency of the architecture.

Although the use of buffers in PEs and parallel busses helped to minimize the

bottleneck in accessing the internal units, there are still another bottlenecks in the

architecture, as inferred from the plot of Figure 7. This issue will be focused in

future works.

Current results can be considered relevant. We emphasize the fact that the

number of PEs can be increased up to the limit established by the FPGA resources.

Besides, it is possible to increase the complexity of each PE by including operations

that require a larger number of clock cycles to be done. It is obvious that a tradeoff

between the complexity of PEs and their number must be established. We believe

that, as more powerful FPGA devices become available, the more the proposed

architecture becomes feasible and interesting for complex numerical problems.

Overall, the results of the experiments suggest the appropriateness of the archi-

tecture for solving intensive numerical problems such as in digital signal processing

and other problems found scientific computation.

There are some issues that shall be addressed in future developments so as to

improve the architecture, for instance: improvement of the dataflow machines to

increase performance, and adaptation of the PEs to operate with floating point

arithmetic.
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