
Int. J. Innovative Computing and Applications, Vol. 3 No. 3, pp. 136-143, 2011 136

Copyright © 200X Inderscience Enterprises Ltd.

Data mining with a parallel rule induction system
based on gene expression programming

Wagner Rodrigo Weinert
Federal Institute of Education, Science and Technology of Paraná,
R. Antônio Carlos Rodrigues 453, 83215-750 Paranaguá (PR), Brazil
Fax: +55-41-3721-8300
E-mail: wagner.weinert@ifpr.edu.br

Heitor Silvério Lopes*
Federal University of Technology – Paraná,
Av. Sete de Setembro 3165, 80230-901 Curitiba (PR), Brazil
Fax: +55-41-3310-4694
E-mail: hslopes@utfpr.edu.br
*Corresponding author

Abstract: A parallel rule induction system based on gene expression programming (GEP) is
reported in this paper. The system was developed for data classification. The parallel processing
environment was implemented on a cluster using a message-passing interface. A master-slave
GEP was implemented according to the Michigan approach for representing a solution for a
classification problem. A multiple master-slave system (islands) was implemented in order to
observe the co-evolution effect. Experiments were done with ten datasets, and algorithms were
systematically compared with C4.5. Results were analysed from the point of view of a
multi-objective problem, taking into account both predictive accuracy and comprehensibility of
induced rules. Overall results indicate that the proposed system achieves better predictive
accuracy with shorter rules, when compared with C4.5.

Keywords: evolutionary computation; EC; gene expression programming; GEP; data mining.

Reference to this paper should be made as follows: Weinert, W.R. and Lopes, H.S. (xxxx)
‘Data mining with a parallel rule induction system based on gene expression programming’,
Int. J. Innovative Computing and Applications, Vol. X, No. Y, pp.000–000.

Biographical notes: Wagner Rodrigo Weinert received his BSc in Computer Science from Ponta
Grossa State University, and his MSc and PhD in Computer Science from the Federal University
of Technology – Paraná, Curitiba, Brazil. Currently, he is an Assistant Professor at the Federal
Institute of Education Science and Technology of Paraná. His areas of interest are evolutionary
computation and data mining.

Heitor Silvério Lopes received his degree in Electrical Engineering (1984) and his MSc in
Biomedical Engineering (1990) from the Federal University of Technology – Paraná – UTFPR.
He received his PhD in Electrical Engineering (1996) from the Federal University of Santa
Catarina. He is presently working as an Associate Professor in the Department of Electronics of
UTFPR. He is the Head of the Bioinformatics Laboratory of UTFPR since its foundation in 1997.
He is also a Researcher of the Brazilian National Research Council, and his current research
interests are: evolutionary computation, data mining and bioinformatics.

1 Introduction

Nowadays, the amount of data stored in databases tends
to increase exponentially. Frequently, many important
information, implicit to the data, is missed, thus precluding
to become high-level knowledge. Such knowledge may be
very useful for decision-making in many important areas,
such as commerce, science, environment, medicine, etc.

Computer science has contributed with different
techniques for extracting relevant knowledge from
databases. This area, known as data mining (Freitas, 2002;

Witten and Frank, 2005), is interdisciplinary by nature,
in which statistics, artificial intelligence, database,
evolutionary computation (EC), and other areas, can provide
useful tools.

There are many different tasks in data mining, such as
clustering, summarisation, dependence modelling and
classification. This work is motivated by the increasing
amount of data available in organisations and the emerging
necessity to explore and understand such data, in such a way
to discover interesting and useful knowledge. It is important

137 W.R. Weinert and H.S. Lopes

to notice that most data mining algorithms proposed in the
literature (especially rule-induction methods) take into
account only the predictive accuracy of the classifiers.
However, when the resulting solutions have to be used and
interpreted by a human, the comprehensibility of rules is a
very important issue (Freitas, 2002; Johansson et al., 2004).

Although many studies have been carried out about data
mining methodologies (Rosset et al., 2010), this work
focuses the classification task. In this task, it is aimed to
find rules (a logical composition of attributes and values)
capable of classifying instances of a dataset according
predefined classes. The task of inducing such rules can
become excessively complex for deterministic algorithms as
the number of instances and the number of attributes per
instance in the database increases. Consequently, for real
world problems, the computational complexity can grow
fast, making traditional algorithms to become inefficient.
Therefore, meta-heuristic methods, such as those from EC,
can play an important role in the rule induction process.

EC techniques have been applied successfully to many
practical problems of natural sciences, engineering and
computer science. EC includes methods inspired on the
evolution of living beings, based on the Darwinian principle
of survival of the fittest. Amongst the several EC methods,
it is worth to mention genetic algorithms (GAs) (Goldberg,
1989), genetic programming (GP) (Koza, 1992; Poli et al.,
2008) and gene expression programming (GEP) (Ferreira,
2006; Li et al., 2005; Wilson, 2008; Zakaria et al., 2010).
These methods evolve a population of individuals (in our
case, representing classification rules) for a given number of
generations. At each generation, a set of genetic operators
are applied to a selected number of individuals so as to
generate new solutions. Hopefully, the average quality of
individuals, measured by a fitness function, tends to
increase at each generation. The evolutionary process is
stopped when a satisfactory solution is found or a maximum
number of iterations are reached.

GEP is a relatively recent EC method, and it has been
poorly explored in the recent literature, when compared
with GAs and GP. Some few works reported improvements
in GEP aiming at accelerating its convergence and
reducing the processing time. For instance, Du et al. (2008)
introduced the concept of co-evolution using multiple
populations, in a distributed environment, using an
asynchronous island model. This work has some similarities
with the work reported here, however, it does not take into
account the comprehensibility of the obtained solutions.
Another related work is from Park et al. (2008), who
proposed a client-server architecture, where the clients runs
instances of a GEP algorithm, and the server runs a GA that
is aimed at finding good running parameters for the GEPs.
A migration policy controls the exchange of genetic
material between clients, and this is somewhat similar to our
work.

Frequently, the computation of the fitness function of an
EC method is computationally expensive. In the process of
rule induction – see Section 2.2, the computation of the
fitness function consists in the evaluation of set of instances

(training set) as many times as the product of the number of
individuals by the number of generations. Also, the training
set can have a large number of instances and, each of them
can have a large number of attributes. Consequently, rule
induction with using EC requires intensive computation, and
so, a parallel processing architecture is necessary to reduce
the overall processing time (Weinert and Lopes, 2010).

Therefore, the general objective of this work is to
develop a rule induction system for mining classification
rules. This system is based on a parallel GEP approach and
tackles the problem from a multi-objective optimisation
point of view. This paper is organised as follows. Section 2
presents some relevant theoretical issues. The next section
describes the methodology for developing the parallel
version of a GEP-based rule induction system. Section 4
describes how the experiments were done and Section 5
shows the results of the application of the system to ten
databases. Finally, Section 6 presents conclusions and
points out future works.

2 Theoretical foundations

2.1 Gene expression programming

GEP (Ferreira, 2006) is an EC approach, considered an
extension of GP, hybridised with elements of GAs. The
main difference between GA, GP and GEP is in the way
solutions (individuals) are represented. In GAs, usually,
they are represented as a fixed-sized linear string of bits,
while in GP they are non-linear entities in the form of a
variable-sized tree. On the other hand, in GEP, individuals
are encoded as linear chains of fixed size (genome), as in
GAs, but later expressed as trees of arbitrary size and shape
(known as expression trees – ETs), as in GP.

After the basic GEP, some improvements were proposed
in two specific domains: EGIPSYS (Lopes and Weinert,
2004), for symbolic regression; and GEPCLASS (Weinert
and Lopes, 2006), for data classification. In GEPCLASS, an
individual is composed by a single chromosome which, in
turn, is composed by a number of genes. Each gene is
divided into two parts: head and tail. The head is filled by
elements belonging to the functions set (i.e., logical and
relational functions: AND, OR, NOT, =, ≠, > and <), and tail
can elements belonging to the functions set as well as
to the terminals set. Terminals include the attributes (and
particular values) of the problem in hand.

GEP employs the concept of open reading frame (ORF)
in the process of encoding the information in the genes.
According to this biological concept, not all genetic material
present in the genome is actually used. An ORF, or
encoding region of a gene, can activate or deactivate genetic
material during the evolutionary process, thus, making some
elements of the genes to be considered or not in the
construction of a solution. Thanks to this approach, a
chromosome is transcribed into an ET of variable size. The
transcription rules follow the patterns expressed by the
Karva language (Ferreira, 2006), such that each gene is
transcribe into a sub-tree. Next, all sub-trees are joined

 Data mining with a parallel rule induction system based on gene expression programming 138

together into a single ET by a linking function (usually,
AND or OR). This ET represents the candidate solution for
the problem. Figure 1 shows a full example of the encoding
and ET in GEPCLASS. This tree is evaluated by a fitness
function (see below) over a set of instances of the problem,
thus computing the quality of the individual.

Next, individuals are selected for reproduction
according to their quality. The most usual methods used in
GEP are: the roulette wheel (Goldberg, 1989) and the
stochastic tournament (Koza, 1992). Once individuals are
selected, they undergo the action of genetic operators to
create new individuals. The genetic operators defined in
GEP are: cloning, mutation, recombination, IS transposition,
RIS transposition and genic transposition. However, due to
space limitations, the detailed description of these operators
is omitted, but can be found in Weinert and Lopes (2006).

Since the problem dealt in this work is data
classification, when classifying a given instance of the
problem by a rule, four outcomes are possible:

• tp: true positive – The rule predicts that the instance
belongs to a given class, and it really does.

• fp: false positive – The rule predicts that the instance
belongs to a given class, but it actually does not.

• tn: true negative – The rule predicts that the instance
does not belong to a given class, and it really does not.

• fn: false negative – The rule predicts that the instance
does not belong to a given class, but it actually does.

The outcomes above are the basis for the fitness function
proposed by Lopes et al. (1997). The goal of the fitness

function is to maximise two measures frequently used in
classification tasks, namely, specificity (Sp = tn / (tn + fp))
and sensitivity (Se = tp / (tp + fn)), by taking their product,
as follows:

.fitness Sp Se= (1)

2.2 The rule induction problem
The rule induction problem can be defined as follows: given
a set of instances (training set, with known classification),
find a set of rules composed by a logical combination of
attributes pertaining to the dataset, such that unseen
instances can be correctly classified (Flach and Lavrac,
2003). In general, classification rules are expressed in the
form IF A THEN C. The antecedent A is a composition of
the attributes of the problem with logical and relational
functions, and the consequent C represents the class to
which the instance should belong to.

More specifically, in this work, the antecedent of rules
are defined as t-uplets in the form Ai Op Vij, where Ai is the
ith attribute, Op is a relational operator (=, ≠, > or <), and Vij
is the jth value pertaining to the domain of attribute Ai.
Logical operators (AND, OR and NOT) are used to combine
t-uplets forming a complex condition.

In this work, the encoding of individuals of GEP follows
the Michigan approach (Freitas, 2002). According this
approach, an individual represents a single rule in the
classification system. Therefore, the set of all sub-trees
expressed by a chromosome represents a single (and
complex) rule for a given class.

Figure 1 An example of a genome, its ET, and the corresponding rule

139 W.R. Weinert and H.S. Lopes

3 Methodology

3.1 The parallel processing environment

The system was developed in C programming language for
the Linux Suse 10.0 operating system. Parallelism was
implemented using the MPICH 2.0 Library (Gropp et al.,
1999)1 that provides the message-passing interface (MPI)
support. This library creates a virtual environment
composed by several elements. Each element corresponds to
a core processor of a multi-core workstation networked as a
cluster. A set of low-level functions for communication and
synchronism allows an efficient way to develop parallel
applications. Processors in the cluster do not share memory,
since all interaction between them is accomplished by
means of messages through the MPI environment (Snir
et al., 1997). Such parallel environment was developed
especially for using in a cluster of networked computers,
homogeneous or not. For all experiments reported in
Section 4, we used a cluster of 31 workstations (with
Pentium ©Quadcore EM64T processor, running at 2.4 GHz,
and 2 GB of RAM), delivering 124 homogeneous
processing cores. Although not essential, the homogeneity
of processors in the MPI environment is important, because
it facilitates load balance, an important issue in parallel
computing applications.

All computers are interconnected by an exclusive
gigabit Ethernet switch, and only one has an external access
(gateway), so as to minimise the traffic within the network.
Within the MPI environment, all tasks are subdivided into
processes. Each process is run in a specific processing core.
Although more than a process can be run in a core, this is
avoided to allow a better load balance in the cluster.

In our implementation, a logic parallel architecture can
be dynamically dimensioned to deal with a specific
problem. Such architecture is composed by a master process
that controls slave processes. The set of a master and n slave
processes defines a processing island. The developed
system is also able to work with multiple islands that
cooperates each other for the solution of a classification
problem, as shown in Figure 2.

The master process is responsible for running the
enhanced GEP algorithm (Weinert and Lopes, 2006) and
control all the communication with its slave processes.
Every slave process runs exactly the same task, in this case,
the computation of the fitness function. In a multi-island
environment, master processes become collaborative each
other, by managing the transmission and reception of
messages between them. Messages between master
processes are migrant individuals between the islands. The
objective here is to enhance the quality of solutions evolved
in a given island by introducing new genetic material from
an external source. This procedure may induce the
co-evolution phenomenon (Freitas, 2002), which is highly
beneficial to improve the overall quality of solutions.
Co-evolution emerges from a symbiotic process where
symbiosis defined as relationships between individuals of
different populations, and the ability of an individual
directly affects fitness of another one.

Figure 2 Architecture of the parallel processing system

3.2 Parallel rule induction with gene expression
programming

The developed system was named parallel rule induction
with gene expression programming (PRIGEP). Initially, the
logical structure of PRIGEPs computing environment is
defined by two parameters: the number of master processes
(islands) and the number of slave processes subordinated to
each master.

In the experiments reported in the next section, two
versions were tested: PRIGEP-MS (one master with ten
slaves), and PRIGEP-Islands (five masters, each one with
ten slaves). In PRIGEP-Islands, aiming at enabling
co-evolution, each island is logically connected to another
island in a ring topology.

The communication between master processes always
takes place unidirectionally and synchronously under the
coordination of one of the master processes. Since the MPI
environment does not provide any load balancing
mechanism, it is entirely responsibility of the developer.
Since the processing cores are exactly the same, load
balancing is accomplished by equalising the number of
individuals processed by each slave at time, as well as the
number of slaves per island. Therefore, once the GEP
algorithm generates individuals of a new generation, they
are evenly divided among the corresponding slaves of the
island, so as to evaluate the fitness function. Due to the
inherent differences between individuals generated by GEP,
a small difference in the processing time can appear by the
end of a batch processing of a slave. Since the
communication is synchronous, in the next communication
cycle all differences disappear, thus automatically balancing
again the system.

In each island, the initial population is randomly
created, using the elements of the functions set and

 Data mining with a parallel rule induction system based on gene expression programming 140

terminals drawn from the attributes of the dataset. The rules
for filling head and tail are the same as used before (Weinert
and Lopes, 2006). The random number generator used in
our implementation was the Mersenne Twister (Matsumoto
and Nishimura, 1998), known as one of the most efficient
for evolutionary algorithms.

Creating the initial population, as well as determining
the ORFs is responsibility of the master process. Once this
is done, individuals are distributed to slaves by means of a
MPI function. Slaves compute the fitness of individuals and
wait for a request of the master to send results. Once the
master has collected all results from slaves, the evolutionary
process inherent to the GEP algorithm takes place. That is,
individuals are selected based on their fitness and undergo
the action of the genetic operators. The stop criterion is
checked (maximum number of generations) and, if not met,
the cycle is repeated, sending individuals to the slaves.

4 Computational experiments

PRIGEP was tested with classification problems using ten
publicly available datasets from the machine learning
repository (Frank and Asunción, 2010). The datasets were
randomly chosen from the repository. The only criterion
was no missing data in any instance. Table 1 shows the
most relevant information about the features of the datasets.
In this table, it is shown the number of classes (2..16),
number of attributes (4..16) and number of instances
(150..20,000). It is interesting to observe that the features of
these datasets cover a large range of possibilities, and so,
they are useful to test the proposed algorithm in different
situations.

Table 1 Features of the ten datasets used in the experiments

Database # clas. # attr. # inst.

Abalone 3 8 4,177
Balance scale 3 4 625
Car evaluation 4 6 1,728
Haberman 2 3 306
Blood transfusion 2 4 748
Ljubljana breast cancer 2 9 277
Wisconsin breast cancer 2 9 683
Iris 3 4 150
Nursery 4 8 12,958
Letter recognition 16 16 20,000

Since the number of classes for each dataset is different, for
each one, a hierarchical classification model is created. For
instance, the Abalone dataset has three classes with 4,177
instances, with 1,407, 1,323 and 1,447 instances
for classes 1, 2 and 3, respectively. The hierarchical
classification consists of, first inducing a classification rule
for class 1 (positive class), considering classes 2 and 3 as
negative examples. Next, all instances of class 1 are
eliminated from the dataset and a rule for class 2 is induced,

considering class 3 as negative examples. The last class is
considered as ‘default’ and no rule is induced for it. For
each hierarchical level, three experiments are done aiming
to evaluate the performance of the induced rules.

The first experiment is accomplished by the well-known
C4.5 decision-tree induction algorithm (Quinlan, 1993).
This algorithm is considered the baseline for data
classification and it is frequently used for comparison
purposes in data mining (Witten and Frank, 2005).

The second experiment encompasses the use of the
master-slave (MS) approach (a single processing island) of
the GEP algorithm for rule induction (named PRIGEP-MS).
The third experiment (PRIGEP-Islands) expands the
number of islands to five, and aims at verifying the possible
benefits of co-evolution. Recall that at each island there is
the same PRIGEP-MS.

Although parallel processing models suggest the
comparison of performance regarding processing time, this
was not the focus of our experiments because C4.5 is
deterministic and much faster than any heuristic algorithm,
evolutionary or not. In the three experiments, reported
below, performance was measured regarding the predictive
accuracy that is the product Se × Sp. This product returns
values in the range [0..1], where 1 is the best possible
performance (100% of correct classifications). We also
evaluated a very important issue in data mining: the
comprehensibility of induced rules (Freitas, 2002).
Considering that the knowledge extracted from the data
mining process is to be used by humans in a decision-
making process, it is essential that the user can understand
it. Therefore, the complexity of a rule is measured by the
number of nodes of the corresponding ET. The smaller the
number of nodes, the easier to comprehend.

All experiments were done using the cross-validation
procedure with five folds (Hand, 1997; Witten and Frank,
2005). The same proportion of classes as the original dataset
was maintained for each fold, not only for the training
subset, but also for the evaluation subsets. This was done to
avoid any classification bias in the process.

Since there is no conventional procedure for adjusting
parameters of the GEP algorithm for classification
problems, the control parameters of PRIGEP were adjusted
according to the default values stated in the current
literature. Independently of the number of islands, all
algorithms (GEPs) use the same parameters (Ferreira, 2006;
Lopes and Weinert, 2004; Weinert and Lopes, 2006), as
follows: 50 individuals per island, 50 generations, three
genes per chromosome, 15 elements in the head of the gene,
stochastic tournament using 10% of population size as
selection method. The function set: {AND, OR, NOT}, and
linking function AND. The probabilities of application of
operators were: mutation (2%), recombination (80%),
IS, RIS and genic transpositions (70%). The parallel
architecture included five islands with ten slave processes
per island, interconnected by a unidirectional ring. The
migration policy was defined as one individual from each
island migrates to the next neighbour island, every five
generations. The emigrant is selected by tournament

141 W.R. Weinert and H.S. Lopes

selection and substitutes the worst individual in the arriving
island.

5 Results and discussion

For the ten above mentioned datasets, a total of 17
comparisons were done between the three algorithms:
C4.5, PRIGEP-MS and PRIGEP-Islands. Each comparison
reflects a specific hierarchical level of the data
classification.

Some issues raised from the analysis of the
17 comparisons. Considering only the quality measure, in
12 out of 17 comparisons the PRIGEP-Islands model was
the most effective, followed by C4.5, which was the
best performing algorithm in four comparisons, and
PRIGEP-MS that won in only one comparison. On the
other hand, considering only the complexity measure, in
nine out of 17 comparisons, C4.5 presented solutions
with the smallest complexity, while PRIGEP-Islands and
PRIGEP-MS won in 6 and 2 comparisons, respectively.
When combining both measures, the following scenario was
found: PRIGEP-Islands showed the best trade-off in five
comparisons, and C4.5 in three comparisons. The
PRIGEP-MS model did not fit properly this scenario. The
remaining nine comparisons need a more careful analysis,
as follows.

In the Abalone database, 2nd hierarchical level, C4.5
algorithm achieved the best quality. However, this
measure exceeds only 0.007 from that of PRIGEP-Islands.
Moreover, the solution presented by C4.5 is approximately
five times more complex than that presented by
PRIGEP-Islands. Therefore, in this case, the simplest
solution can be considered more appropriate for the
problem.

In the balance scale database, there are two cases to be
checked. At 1st hierarchical level, it is evident that no
method was able to reach a satisfactory solution. Probably,
this is due to the imbalance of samples between the positive
and negative classes. The negative class has 11.75 times
more samples than the positive class. At 2nd hierarchical
level, despite the solution provided by PRIGEP-Islands has
nine nodes more than the one found by PRIGEP-MS, it has
approximately twice the quality of the latter. Therefore, it is
fair to consider here PRIGEP-Islands as the best performing
algorithm.

In the car evaluation database, two particular cases
raised. At 1st hierarchical level, the best quality was
obtained by PRIGEP-Islands, and the smallest complexity
obtained by PRIGEP-MS. Since the difference is only two
nodes, regarding complexity, the algorithm that achieved
the best quality was chosen. At 3rd hierarchical level, we
should consider another issue when choosing between
PRIGEP-Islands and C4.5, since the first won in quality
and the second in complexity. If the resulting rules
will be manipulated by a computer, we should choose
PRIGEP-Islands’ solution; otherwise, if a human will
interpret the rules, we should choose C4.5’s solution, since
complexity is an important issue.

In the Haberman database, at 1st hierarchical level, we
faced the same situation previously mentioned at 3rd level
of car evaluation database. However, at this time the choice
concerns C4.5 (regarding simplicity) or PRIGEP-MS
(regarding quality).

In the blood transfusion database, 1st hierarchical level,
PRIGEP-Islands obtained a solution with quality 30% above
C4.5. In this case, the difference in complexity, 12 nodes,
does not justify the choice of C4.5.

In the Wisconsin Breast Cancer database, 1st
hierarchical level, the quality of PRIGEP-Islands and C4.5
were equivalent. However, C4.5 obtained the simplest
solution, and this was the choice.

Figure 3 Pareto plot: (a) C4.5, (b) PRIGEP-MS and
(c) PRIGEP-Islands (see online version for colours)

(a)

(b)

(c)

In the nursery database, 3rd hierarchical level,
PRIGEP-Islands obtained a solution which quality was 61%
better than that of C4.5. In such situation, the difference in

 Data mining with a parallel rule induction system based on gene expression programming 142

complexity between algorithms does not justify the choice
for C4.5.

Figure 3 summarises the performance of the algorithms
for all the datasets using Pareto plots. In these plots, the x
axis is the complement of the fitness function (that is,
1 – (Se × Sp)), and the y axis is the normalised number of
nodes (complexity of the induced rules), obtained by
dividing the actual number of nodes by the largest value
obtained in the experiments. Pareto plots are useful for the
analysis of multi-objective problems, in which two or more
contradictory criterions (or objectives) need to be satisfied
at the same time. Recall that in a Pareto plot, the best
solutions are those closest to the origin, meaning that they
tend to satisfy both criterions (represented by the x and y
axes).

In this figure, it is shown that the C4.5 algorithm
achieved the worst performance, not only in the quality of
solutions (average = 0.448), but also, in the complexity of
the induced rules (average = 0.131). PRIGEP-MS improved
significantly the results, in quality (average = 0.449), and
mainly regarding the complexity (average = 0.035). Finally,
PRIGEP-Islands achieved around the same level of
complexity of PRIGEP-MS (average = 0.034), but improved
the quality further (average = 0.377).

A statistical analysis of the results revealed that there is
no clear correlation between the number of instances,
number of attributes, and number of classes with the quality
or complexity of induced rules, for all three algorithms. The
only exception was a direct relationship between the
number of instances with the complexity of induced rules
for C4.5 (R2 = 0.97). This is explained by the nature of the
algorithm (Quinlan, 1993). Overall, this means that PRIGEP
(in both versions) is not biased by any feature of the datasets
under analysis.

6 Conclusions and future works

This work reported the development of a parallel
rule induction system based on the gene-expression
programming paradigm. The algorithm was applied to ten
datasets and results were compared with C4.5. Results were
analysed from the point of view of a multi-objective
problem that is, taking into account quality and complexity
of rules at the same time.

PRIGEP, in both versions (MS and island), obtained
rules with higher predictive accuracy than the baseline C4.5
algorithm, for most cases. Considering that C4.5 is a
well-established deterministic algorithm, and the proposed
GEP-based system is experimental, results are very
satisfactory in general. In special, the effect of co-evolution
of PRIGEP-Islands was very beneficial for improving
the predictive quality. Generally speaking, considering
the average performance, PRIGEP-MS achieved better
predictive accuracy with less complex rules when compared
with C4.5. Also, PRIGEP-Islands extended the quality and
comprehensibility of results achieved by PRIGEP-MS. A
remarkable feature of PRIGEP is the comprehensibility of

induced rules, making it a more ‘human-friendly’ algorithm
than other regular rule-induction algorithms.

Both versions of PRIGEP were shown to be independent
of the features of datasets (number of instances, classes, and
attributes). This fact suggests the generality of the method,
and future research will investigate in depth this issue.

The PRIGEP-Islands model was tested with a fixed
topology and migration policy. Current literature indicates
that both issues are relevant for parallel evolutionary
algorithms, and this is will be also explored in future work.
Similarly, it is possible that the running parameters of the
GEP algorithm are not the optimal for the rule-induction
problem. The automatic adjustment of these parameters
would make the algorithm easier to use and possibly lead to
even better results. Therefore, self-adjustment of parameters
will be included in the next version of PRIGEP.

PRIGEP is intended to be applied to other complex
problems of rule induction, especially in the domain of
bioinformatics, such as spreading of diseases, simulation of
tumour growth, modelling enzymatic reactions, etc.

References
Du, X., Ding, L. and Jia, L. (2008) ‘Asynchronous distributed

parallel gene expression programming based on estimation
of distribution algorithm’, in Proceedings of the 4th
International Conference on Na tural Computation,
pp.433–437, IEEE Computer Society, Jinan, China.

Ferreira, C. (2006) Gene Expression Programming: Mathematical
Modeling by an A rtificial Intelligence, 2nd ed.,
Springer-Verlag, Berlin.

Flach, P. and Lavrac, N. (2003) ‘Rule induction’, in Berthold, M.
and Hand, D. (Eds.): Intelligent Data A nalysis: an
Introduction, 2nd ed., Chapter 7, pp.229–267, Springer,
Heidelberg.

Frank, A. and Asunción, A. (2010) ‘UCI machine learning
repository’, available at http://archive.ics.uci.edu/ml.

Freitas, A. (2002) Data Mining and Knowledge Discovery with
Evolutionary Algorithms, Springer-Verlag, Berlin.

Goldberg, D. (1989) Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Reading, USA.

Gropp, W., Lusk, E. and Thakur, R. (1999) Using MPI-2:
Advanced Features of the Message-Passing Interface, MIT
Press, Cambridge, USA.

Hand, D. (1997) Construction and Assessment of Classification
Rules, John-Wiley & Sons Ltd., Chichester, England.

Johansson, U., Niklasson, L. and König, R. (2004) ‘Accuracy vs.
comprehensibility in data mining models’, in Svensson, P.
and Schubert, J. (Eds.): Proceedings of th e Seventh
International Conference on Information Fusion, Vol. 1,
pp.295–300, International Society of Information Fusion,
Mountain View, CA.

Koza, J. (1992) Genetic Programming: on the Programming of
Computers by Means of Natural Selection, MIT Press,
Cambridge, USA.

Li, X., Zhou, C., Xiao, W. and Nelson, P.C. (2005) ‘Prefix
gene expression programming’, in F. Rothlauf et al. (Eds.):
Proceedings of Genetic and Evolutionary Computation
Conference GECCO, pp.25–29, USA, Washington DC.

143 W.R. Weinert and H.S. Lopes

Lopes, H., Coutinho, M. and de Lima, W. (1997) ‘An evolutionary
approach to simulate cognitive feedback learning in medical
domain’, in Sanchez, E., Shibata, T. and Zadeh, L. (Eds.):
Genetic Algorithms and Fuzzy Logic Systems, pp.193–207,
World Scientific, Singapore.

Lopes, H.S. and Weinert, W.R. (2004) ‘EGIPSYS: an enhanced
gene expression programming approach for symbolic
regression problems’, International Journal of Applied
Mathematics and Computer Science, Vol. 14, No. 3,
pp.375–384.

Matsumoto, M. and Nishimura, T. (1998) ‘Mersenne twister: a
623-dimensionally equidistributed uniform pseudorandom
number generator’, ACM Transactions on Modeling and
Computer Simulation, Vol. 8, No. 1, pp.3–30.

Park, H., Grings, A., dos Santos, M.V. and Soares, A.S. (2008)
‘Parallel hybrid evolutionary computation: automatic tunning
of parameters for parallel gene expression’, Applied
Mathematics and Computation, Vol. 201, Nos. 1–2,
pp.108–120.

Poli, R., Langdon, W.B. and McPhee, N.F. (2008) A Field Guide
to Genetic Programming, Lulu Enterprises, Raleigh, USA.

Quinlan, J.R. (1993) C4.5: Programs fo r Machine Learning,
Morgan Kaufmann, San Mateo, USA.

Rosset, S., Perlich, C., Świrszcz, G., Melville, P. and Liu, Y.
(2010) ‘Medical data mining: insights from winning two
competitions’, Data Mining and Knowledge Discovery,
Vol. 20, pp.439–468.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and Dongarra, J.
(1997) MPI: The Complete Reference, 2nd ed., MIT Press,
Cambridge.

Weinert, W. and Lopes, H. (2006) ‘GEPCLASS: a classification
rule discovery tool using gene expression programming’,
Lecture Notes in Computer Science, Vol. 4093, pp.871–880.

Weinert, W. and Lopes, H. (2010) ‘Evaluation of dynamic
behavior forecasting parameters in the process of transition
rule induction of unidimensional cellular automata’,
Biosystems, Vol. 99, No. 1, pp.6–16.

Wilson, S.W. (2008) ‘Classifier conditions using gene expression
programming’, in Bacardit, J., Bernadó-Mansilla, E.,
Butz, M.V., Kovacs, T., Llorà, X. and Takadama, K. (Eds.):
Learning Classifier Systems, pp.206–217, Springer-Verlag,
Berlin, Heidelberg.

Witten, I. and Frank, E. (2005) Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementation,
2nd ed., Morgan Kaufmann, San Francisco.

Zakaria, N.A., Azamathulla, H.M., Chang, C.K. and Ghani, A.A.
(2010) ‘Gene expression programming for total bed material
load estimation – a case study’, Science of the Total
Environment, Vol. 408, pp.5078–5085.

Notes

1 Available at http://www.mcs.anl.gov/research/projects/
mpich2/.

