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Abstract: A parallel rule induction system based on gene expression programming (GEP) is 
reported in this paper. The system was developed for data classification. The parallel processing 
environment was implemented on a cluster using a message-passing interface. A master-slave 
GEP was implemented according to the Michigan approach for representing a solution for a 
classification problem. A multiple master-slave system (islands) was implemented in order to 
observe the co-evolution effect. Experiments were done with ten datasets, and algorithms were 
systematically compared with C4.5. Results were analysed from the point of view of a  
multi-objective problem, taking into account both predictive accuracy and comprehensibility of 
induced rules. Overall results indicate that the proposed system achieves better predictive 
accuracy with shorter rules, when compared with C4.5. 
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1 Introduction 

Nowadays, the amount of data stored in databases tends  
to increase exponentially. Frequently, many important 
information, implicit to the data, is missed, thus precluding 
to become high-level knowledge. Such knowledge may be 
very useful for decision-making in many important areas, 
such as commerce, science, environment, medicine, etc. 

Computer science has contributed with different 
techniques for extracting relevant knowledge from 
databases. This area, known as data mining (Freitas, 2002; 

Witten and Frank, 2005), is interdisciplinary by nature,  
in which statistics, artificial intelligence, database, 
evolutionary computation (EC), and other areas, can provide 
useful tools. 

There are many different tasks in data mining, such as 
clustering, summarisation, dependence modelling and 
classification. This work is motivated by the increasing 
amount of data available in organisations and the emerging 
necessity to explore and understand such data, in such a way 
to discover interesting and useful knowledge. It is important 



137           W.R. Weinert and H.S. Lopes  

to notice that most data mining algorithms proposed in the 
literature (especially rule-induction methods) take into 
account only the predictive accuracy of the classifiers. 
However, when the resulting solutions have to be used and 
interpreted by a human, the comprehensibility of rules is a 
very important issue (Freitas, 2002; Johansson et al., 2004). 

Although many studies have been carried out about data 
mining methodologies (Rosset et al., 2010), this work 
focuses the classification task. In this task, it is aimed to 
find rules (a logical composition of attributes and values) 
capable of classifying instances of a dataset according 
predefined classes. The task of inducing such rules can 
become excessively complex for deterministic algorithms as 
the number of instances and the number of attributes per 
instance in the database increases. Consequently, for real 
world problems, the computational complexity can grow 
fast, making traditional algorithms to become inefficient. 
Therefore, meta-heuristic methods, such as those from EC, 
can play an important role in the rule induction process. 

EC techniques have been applied successfully to many 
practical problems of natural sciences, engineering and 
computer science. EC includes methods inspired on the 
evolution of living beings, based on the Darwinian principle 
of survival of the fittest. Amongst the several EC methods, 
it is worth to mention genetic algorithms (GAs) (Goldberg, 
1989), genetic programming (GP) (Koza, 1992; Poli et al., 
2008) and gene expression programming (GEP) (Ferreira, 
2006; Li et al., 2005; Wilson, 2008; Zakaria et al., 2010). 
These methods evolve a population of individuals (in our 
case, representing classification rules) for a given number of 
generations. At each generation, a set of genetic operators 
are applied to a selected number of individuals so as to 
generate new solutions. Hopefully, the average quality of 
individuals, measured by a fitness function, tends to 
increase at each generation. The evolutionary process is 
stopped when a satisfactory solution is found or a maximum 
number of iterations are reached. 

GEP is a relatively recent EC method, and it has been 
poorly explored in the recent literature, when compared 
with GAs and GP. Some few works reported improvements 
in GEP aiming at accelerating its convergence and  
reducing the processing time. For instance, Du et al. (2008) 
introduced the concept of co-evolution using multiple 
populations, in a distributed environment, using an 
asynchronous island model. This work has some similarities 
with the work reported here, however, it does not take into 
account the comprehensibility of the obtained solutions. 
Another related work is from Park et al. (2008), who 
proposed a client-server architecture, where the clients runs 
instances of a GEP algorithm, and the server runs a GA that 
is aimed at finding good running parameters for the GEPs. 
A migration policy controls the exchange of genetic 
material between clients, and this is somewhat similar to our 
work. 

Frequently, the computation of the fitness function of an 
EC method is computationally expensive. In the process of 
rule induction – see Section 2.2, the computation of the 
fitness function consists in the evaluation of set of instances 

(training set) as many times as the product of the number of 
individuals by the number of generations. Also, the training 
set can have a large number of instances and, each of them 
can have a large number of attributes. Consequently, rule 
induction with using EC requires intensive computation, and 
so, a parallel processing architecture is necessary to reduce 
the overall processing time (Weinert and Lopes, 2010). 

Therefore, the general objective of this work is to 
develop a rule induction system for mining classification 
rules. This system is based on a parallel GEP approach and 
tackles the problem from a multi-objective optimisation 
point of view. This paper is organised as follows. Section 2 
presents some relevant theoretical issues. The next section 
describes the methodology for developing the parallel 
version of a GEP-based rule induction system. Section 4 
describes how the experiments were done and Section 5 
shows the results of the application of the system to ten 
databases. Finally, Section 6 presents conclusions and 
points out future works. 

2 Theoretical foundations 

2.1 Gene expression programming 

GEP (Ferreira, 2006) is an EC approach, considered an 
extension of GP, hybridised with elements of GAs. The 
main difference between GA, GP and GEP is in the way 
solutions (individuals) are represented. In GAs, usually, 
they are represented as a fixed-sized linear string of bits, 
while in GP they are non-linear entities in the form of a 
variable-sized tree. On the other hand, in GEP, individuals 
are encoded as linear chains of fixed size (genome), as in 
GAs, but later expressed as trees of arbitrary size and shape 
(known as expression trees – ETs), as in GP. 

After the basic GEP, some improvements were proposed 
in two specific domains: EGIPSYS (Lopes and Weinert, 
2004), for symbolic regression; and GEPCLASS (Weinert 
and Lopes, 2006), for data classification. In GEPCLASS, an 
individual is composed by a single chromosome which, in 
turn, is composed by a number of genes. Each gene is 
divided into two parts: head and tail. The head is filled by 
elements belonging to the functions set (i.e., logical and 
relational functions: AND, OR, NOT, =, ≠, > and <), and tail 
can elements belonging to the functions set as well as  
to the terminals set. Terminals include the attributes (and 
particular values) of the problem in hand. 

GEP employs the concept of open reading frame (ORF) 
in the process of encoding the information in the genes. 
According to this biological concept, not all genetic material 
present in the genome is actually used. An ORF, or 
encoding region of a gene, can activate or deactivate genetic 
material during the evolutionary process, thus, making some 
elements of the genes to be considered or not in the 
construction of a solution. Thanks to this approach, a 
chromosome is transcribed into an ET of variable size. The 
transcription rules follow the patterns expressed by the 
Karva language (Ferreira, 2006), such that each gene is 
transcribe into a sub-tree. Next, all sub-trees are joined 
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together into a single ET by a linking function (usually, 
AND or OR). This ET represents the candidate solution for 
the problem. Figure 1 shows a full example of the encoding 
and ET in GEPCLASS. This tree is evaluated by a fitness 
function (see below) over a set of instances of the problem, 
thus computing the quality of the individual. 

Next, individuals are selected for reproduction 
according to their quality. The most usual methods used in 
GEP are: the roulette wheel (Goldberg, 1989) and the 
stochastic tournament (Koza, 1992). Once individuals are 
selected, they undergo the action of genetic operators to 
create new individuals. The genetic operators defined in 
GEP are: cloning, mutation, recombination, IS transposition, 
RIS transposition and genic transposition. However, due to 
space limitations, the detailed description of these operators 
is omitted, but can be found in Weinert and Lopes (2006). 

Since the problem dealt in this work is data 
classification, when classifying a given instance of the 
problem by a rule, four outcomes are possible: 

• tp: true positive – The rule predicts that the instance 
belongs to a given class, and it really does. 

• fp: false positive – The rule predicts that the instance 
belongs to a given class, but it actually does not. 

• tn: true negative – The rule predicts that the instance 
does not belong to a given class, and it really does not. 

• fn: false negative – The rule predicts that the instance 
does not belong to a given class, but it actually does. 

The outcomes above are the basis for the fitness function 
proposed by Lopes et al. (1997). The goal of the fitness 

function is to maximise two measures frequently used in 
classification tasks, namely, specificity (Sp = tn / (tn + fp)) 
and sensitivity (Se = tp / (tp + fn)), by taking their product, 
as follows: 

.fitness Sp Se=  (1) 

2.2 The rule induction problem 
The rule induction problem can be defined as follows: given 
a set of instances (training set, with known classification), 
find a set of rules composed by a logical combination of 
attributes pertaining to the dataset, such that unseen 
instances can be correctly classified (Flach and Lavrac, 
2003). In general, classification rules are expressed in the 
form IF A THEN C. The antecedent A is a composition of 
the attributes of the problem with logical and relational 
functions, and the consequent C represents the class to 
which the instance should belong to. 

More specifically, in this work, the antecedent of rules 
are defined as t-uplets in the form Ai Op Vij, where Ai is the 
ith attribute, Op is a relational operator (=, ≠, > or <), and Vij 
is the jth value pertaining to the domain of attribute Ai. 
Logical operators (AND, OR and NOT) are used to combine 
t-uplets forming a complex condition. 

In this work, the encoding of individuals of GEP follows 
the Michigan approach (Freitas, 2002). According this 
approach, an individual represents a single rule in the 
classification system. Therefore, the set of all sub-trees 
expressed by a chromosome represents a single (and 
complex) rule for a given class. 

Figure 1 An example of a genome, its ET, and the corresponding rule 
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3 Methodology 

3.1 The parallel processing environment 

The system was developed in C programming language for 
the Linux Suse 10.0 operating system. Parallelism was 
implemented using the MPICH 2.0 Library (Gropp et al., 
1999)1 that provides the message-passing interface (MPI) 
support. This library creates a virtual environment 
composed by several elements. Each element corresponds to 
a core processor of a multi-core workstation networked as a 
cluster. A set of low-level functions for communication and 
synchronism allows an efficient way to develop parallel 
applications. Processors in the cluster do not share memory, 
since all interaction between them is accomplished by 
means of messages through the MPI environment (Snir  
et al., 1997). Such parallel environment was developed 
especially for using in a cluster of networked computers, 
homogeneous or not. For all experiments reported in 
Section 4, we used a cluster of 31 workstations (with 
Pentium ©Quadcore EM64T processor, running at 2.4 GHz, 
and 2 GB of RAM), delivering 124 homogeneous 
processing cores. Although not essential, the homogeneity 
of processors in the MPI environment is important, because 
it facilitates load balance, an important issue in parallel 
computing applications. 

All computers are interconnected by an exclusive 
gigabit Ethernet switch, and only one has an external access 
(gateway), so as to minimise the traffic within the network. 
Within the MPI environment, all tasks are subdivided into 
processes. Each process is run in a specific processing core. 
Although more than a process can be run in a core, this is 
avoided to allow a better load balance in the cluster. 

In our implementation, a logic parallel architecture can 
be dynamically dimensioned to deal with a specific 
problem. Such architecture is composed by a master process 
that controls slave processes. The set of a master and n slave 
processes defines a processing island. The developed 
system is also able to work with multiple islands that 
cooperates each other for the solution of a classification 
problem, as shown in Figure 2. 

The master process is responsible for running the 
enhanced GEP algorithm (Weinert and Lopes, 2006) and 
control all the communication with its slave processes. 
Every slave process runs exactly the same task, in this case, 
the computation of the fitness function. In a multi-island 
environment, master processes become collaborative each 
other, by managing the transmission and reception of 
messages between them. Messages between master 
processes are migrant individuals between the islands. The 
objective here is to enhance the quality of solutions evolved 
in a given island by introducing new genetic material from 
an external source. This procedure may induce the  
co-evolution phenomenon (Freitas, 2002), which is highly 
beneficial to improve the overall quality of solutions.  
Co-evolution emerges from a symbiotic process where 
symbiosis defined as relationships between individuals of 
different populations, and the ability of an individual 
directly affects fitness of another one. 

Figure 2 Architecture of the parallel processing system 

 

3.2 Parallel rule induction with gene expression 
programming 

The developed system was named parallel rule induction 
with gene expression programming (PRIGEP). Initially, the 
logical structure of PRIGEPs computing environment is 
defined by two parameters: the number of master processes 
(islands) and the number of slave processes subordinated to 
each master. 

In the experiments reported in the next section, two 
versions were tested: PRIGEP-MS (one master with ten 
slaves), and PRIGEP-Islands (five masters, each one with  
ten slaves). In PRIGEP-Islands, aiming at enabling  
co-evolution, each island is logically connected to another 
island in a ring topology. 

The communication between master processes always 
takes place unidirectionally and synchronously under the 
coordination of one of the master processes. Since the MPI 
environment does not provide any load balancing 
mechanism, it is entirely responsibility of the developer. 
Since the processing cores are exactly the same, load 
balancing is accomplished by equalising the number of 
individuals processed by each slave at time, as well as the 
number of slaves per island. Therefore, once the GEP 
algorithm generates individuals of a new generation, they 
are evenly divided among the corresponding slaves of the 
island, so as to evaluate the fitness function. Due to the 
inherent differences between individuals generated by GEP, 
a small difference in the processing time can appear by the 
end of a batch processing of a slave. Since the 
communication is synchronous, in the next communication 
cycle all differences disappear, thus automatically balancing 
again the system. 

In each island, the initial population is randomly 
created, using the elements of the functions set and 
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terminals drawn from the attributes of the dataset. The rules 
for filling head and tail are the same as used before (Weinert 
and Lopes, 2006). The random number generator used in 
our implementation was the Mersenne Twister (Matsumoto 
and Nishimura, 1998), known as one of the most efficient 
for evolutionary algorithms. 

Creating the initial population, as well as determining 
the ORFs is responsibility of the master process. Once this 
is done, individuals are distributed to slaves by means of a 
MPI function. Slaves compute the fitness of individuals and 
wait for a request of the master to send results. Once the 
master has collected all results from slaves, the evolutionary 
process inherent to the GEP algorithm takes place. That is, 
individuals are selected based on their fitness and undergo 
the action of the genetic operators. The stop criterion is 
checked (maximum number of generations) and, if not met, 
the cycle is repeated, sending individuals to the slaves. 

4 Computational experiments 

PRIGEP was tested with classification problems using ten 
publicly available datasets from the machine learning 
repository (Frank and Asunción, 2010). The datasets were 
randomly chosen from the repository. The only criterion 
was no missing data in any instance. Table 1 shows the 
most relevant information about the features of the datasets. 
In this table, it is shown the number of classes (2..16), 
number of attributes (4..16) and number of instances 
(150..20,000). It is interesting to observe that the features of 
these datasets cover a large range of possibilities, and so, 
they are useful to test the proposed algorithm in different 
situations. 

Table 1 Features of the ten datasets used in the experiments 

Database # clas. # attr. # inst. 

Abalone 3 8 4,177 
Balance scale 3 4 625 
Car evaluation 4 6 1,728 
Haberman 2 3 306 
Blood transfusion 2 4 748 
Ljubljana breast cancer 2 9 277 
Wisconsin breast cancer 2 9 683 
Iris 3 4 150 
Nursery 4 8 12,958 
Letter recognition 16 16 20,000 

Since the number of classes for each dataset is different, for 
each one, a hierarchical classification model is created. For 
instance, the Abalone dataset has three classes with 4,177 
instances, with 1,407, 1,323 and 1,447 instances  
for classes 1, 2 and 3, respectively. The hierarchical 
classification consists of, first inducing a classification rule 
for class 1 (positive class), considering classes 2 and 3 as 
negative examples. Next, all instances of class 1 are 
eliminated from the dataset and a rule for class 2 is induced, 

considering class 3 as negative examples. The last class is 
considered as ‘default’ and no rule is induced for it. For 
each hierarchical level, three experiments are done aiming 
to evaluate the performance of the induced rules. 

The first experiment is accomplished by the well-known 
C4.5 decision-tree induction algorithm (Quinlan, 1993). 
This algorithm is considered the baseline for data 
classification and it is frequently used for comparison 
purposes in data mining (Witten and Frank, 2005). 

The second experiment encompasses the use of the 
master-slave (MS) approach (a single processing island) of 
the GEP algorithm for rule induction (named PRIGEP-MS). 
The third experiment (PRIGEP-Islands) expands the 
number of islands to five, and aims at verifying the possible 
benefits of co-evolution. Recall that at each island there is 
the same PRIGEP-MS. 

Although parallel processing models suggest the 
comparison of performance regarding processing time, this 
was not the focus of our experiments because C4.5 is 
deterministic and much faster than any heuristic algorithm, 
evolutionary or not. In the three experiments, reported 
below, performance was measured regarding the predictive 
accuracy that is the product Se × Sp. This product returns 
values in the range [0..1], where 1 is the best possible 
performance (100% of correct classifications). We also 
evaluated a very important issue in data mining: the 
comprehensibility of induced rules (Freitas, 2002). 
Considering that the knowledge extracted from the data 
mining process is to be used by humans in a decision-
making process, it is essential that the user can understand 
it. Therefore, the complexity of a rule is measured by the 
number of nodes of the corresponding ET. The smaller the 
number of nodes, the easier to comprehend. 

All experiments were done using the cross-validation 
procedure with five folds (Hand, 1997; Witten and Frank, 
2005). The same proportion of classes as the original dataset 
was maintained for each fold, not only for the training 
subset, but also for the evaluation subsets. This was done to 
avoid any classification bias in the process. 

Since there is no conventional procedure for adjusting 
parameters of the GEP algorithm for classification 
problems, the control parameters of PRIGEP were adjusted 
according to the default values stated in the current 
literature. Independently of the number of islands, all 
algorithms (GEPs) use the same parameters (Ferreira, 2006; 
Lopes and Weinert, 2004; Weinert and Lopes, 2006), as 
follows: 50 individuals per island, 50 generations, three 
genes per chromosome, 15 elements in the head of the gene, 
stochastic tournament using 10% of population size as 
selection method. The function set: {AND, OR, NOT}, and 
linking function AND. The probabilities of application of 
operators were: mutation (2%), recombination (80%),  
IS, RIS and genic transpositions (70%). The parallel 
architecture included five islands with ten slave processes 
per island, interconnected by a unidirectional ring. The 
migration policy was defined as one individual from each 
island migrates to the next neighbour island, every five 
generations. The emigrant is selected by tournament 



141 W.R. Weinert and H.S. Lopes  

selection and substitutes the worst individual in the arriving 
island. 

5 Results and discussion 

For the ten above mentioned datasets, a total of 17 
comparisons were done between the three algorithms:  
C4.5, PRIGEP-MS and PRIGEP-Islands. Each comparison 
reflects a specific hierarchical level of the data 
classification. 

Some issues raised from the analysis of the  
17 comparisons. Considering only the quality measure, in 
12 out of 17 comparisons the PRIGEP-Islands model was 
the most effective, followed by C4.5, which was the  
best performing algorithm in four comparisons, and 
PRIGEP-MS that won in only one comparison. On the  
other hand, considering only the complexity measure, in 
nine out of 17 comparisons, C4.5 presented solutions  
with the smallest complexity, while PRIGEP-Islands and 
PRIGEP-MS won in 6 and 2 comparisons, respectively. 
When combining both measures, the following scenario was 
found: PRIGEP-Islands showed the best trade-off in five 
comparisons, and C4.5 in three comparisons. The  
PRIGEP-MS model did not fit properly this scenario. The 
remaining nine comparisons need a more careful analysis, 
as follows. 

In the Abalone database, 2nd hierarchical level, C4.5 
algorithm achieved the best quality. However, this  
measure exceeds only 0.007 from that of PRIGEP-Islands. 
Moreover, the solution presented by C4.5 is approximately 
five times more complex than that presented by  
PRIGEP-Islands. Therefore, in this case, the simplest 
solution can be considered more appropriate for the 
problem. 

In the balance scale database, there are two cases to be 
checked. At 1st hierarchical level, it is evident that no 
method was able to reach a satisfactory solution. Probably, 
this is due to the imbalance of samples between the positive 
and negative classes. The negative class has 11.75 times 
more samples than the positive class. At 2nd hierarchical 
level, despite the solution provided by PRIGEP-Islands has 
nine nodes more than the one found by PRIGEP-MS, it has 
approximately twice the quality of the latter. Therefore, it is 
fair to consider here PRIGEP-Islands as the best performing 
algorithm. 

In the car evaluation database, two particular cases 
raised. At 1st hierarchical level, the best quality was 
obtained by PRIGEP-Islands, and the smallest complexity 
obtained by PRIGEP-MS. Since the difference is only two 
nodes, regarding complexity, the algorithm that achieved 
the best quality was chosen. At 3rd hierarchical level, we 
should consider another issue when choosing between 
PRIGEP-Islands and C4.5, since the first won in quality  
and the second in complexity. If the resulting rules  
will be manipulated by a computer, we should choose 
PRIGEP-Islands’ solution; otherwise, if a human will 
interpret the rules, we should choose C4.5’s solution, since 
complexity is an important issue. 

In the Haberman database, at 1st hierarchical level, we 
faced the same situation previously mentioned at 3rd level 
of car evaluation database. However, at this time the choice 
concerns C4.5 (regarding simplicity) or PRIGEP-MS 
(regarding quality). 

In the blood transfusion database, 1st hierarchical level, 
PRIGEP-Islands obtained a solution with quality 30% above 
C4.5. In this case, the difference in complexity, 12 nodes, 
does not justify the choice of C4.5. 

In the Wisconsin Breast Cancer database, 1st 
hierarchical level, the quality of PRIGEP-Islands and C4.5 
were equivalent. However, C4.5 obtained the simplest 
solution, and this was the choice. 

Figure 3 Pareto plot: (a) C4.5, (b) PRIGEP-MS and  
(c) PRIGEP-Islands (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

In the nursery database, 3rd hierarchical level,  
PRIGEP-Islands obtained a solution which quality was 61% 
better than that of C4.5. In such situation, the difference in 
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complexity between algorithms does not justify the choice 
for C4.5. 

Figure 3 summarises the performance of the algorithms 
for all the datasets using Pareto plots. In these plots, the x 
axis is the complement of the fitness function (that is,  
1 – (Se × Sp)), and the y axis is the normalised number of 
nodes (complexity of the induced rules), obtained by 
dividing the actual number of nodes by the largest value 
obtained in the experiments. Pareto plots are useful for the 
analysis of multi-objective problems, in which two or more 
contradictory criterions (or objectives) need to be satisfied 
at the same time. Recall that in a Pareto plot, the best 
solutions are those closest to the origin, meaning that they 
tend to satisfy both criterions (represented by the x and y 
axes). 

In this figure, it is shown that the C4.5 algorithm 
achieved the worst performance, not only in the quality of 
solutions (average = 0.448), but also, in the complexity of 
the induced rules (average = 0.131). PRIGEP-MS improved 
significantly the results, in quality (average = 0.449), and 
mainly regarding the complexity (average = 0.035). Finally, 
PRIGEP-Islands achieved around the same level of 
complexity of PRIGEP-MS (average = 0.034), but improved 
the quality further (average = 0.377). 

A statistical analysis of the results revealed that there is 
no clear correlation between the number of instances, 
number of attributes, and number of classes with the quality 
or complexity of induced rules, for all three algorithms. The 
only exception was a direct relationship between the 
number of instances with the complexity of induced rules 
for C4.5 (R2 = 0.97). This is explained by the nature of the 
algorithm (Quinlan, 1993). Overall, this means that PRIGEP 
(in both versions) is not biased by any feature of the datasets 
under analysis. 

6 Conclusions and future works 

This work reported the development of a parallel  
rule induction system based on the gene-expression 
programming paradigm. The algorithm was applied to ten 
datasets and results were compared with C4.5. Results were 
analysed from the point of view of a multi-objective 
problem that is, taking into account quality and complexity 
of rules at the same time. 

PRIGEP, in both versions (MS and island), obtained 
rules with higher predictive accuracy than the baseline C4.5 
algorithm, for most cases. Considering that C4.5 is a  
well-established deterministic algorithm, and the proposed 
GEP-based system is experimental, results are very 
satisfactory in general. In special, the effect of co-evolution 
of PRIGEP-Islands was very beneficial for improving  
the predictive quality. Generally speaking, considering  
the average performance, PRIGEP-MS achieved better 
predictive accuracy with less complex rules when compared 
with C4.5. Also, PRIGEP-Islands extended the quality and 
comprehensibility of results achieved by PRIGEP-MS. A 
remarkable feature of PRIGEP is the comprehensibility of 

induced rules, making it a more ‘human-friendly’ algorithm 
than other regular rule-induction algorithms. 

Both versions of PRIGEP were shown to be independent 
of the features of datasets (number of instances, classes, and 
attributes). This fact suggests the generality of the method, 
and future research will investigate in depth this issue. 

The PRIGEP-Islands model was tested with a fixed 
topology and migration policy. Current literature indicates 
that both issues are relevant for parallel evolutionary 
algorithms, and this is will be also explored in future work. 
Similarly, it is possible that the running parameters of the 
GEP algorithm are not the optimal for the rule-induction 
problem. The automatic adjustment of these parameters 
would make the algorithm easier to use and possibly lead to 
even better results. Therefore, self-adjustment of parameters 
will be included in the next version of PRIGEP. 

PRIGEP is intended to be applied to other complex 
problems of rule induction, especially in the domain of 
bioinformatics, such as spreading of diseases, simulation of 
tumour growth, modelling enzymatic reactions, etc. 
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1 Available at http://www.mcs.anl.gov/research/projects/ 
mpich2/. 




